My third try
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_dkv3.zip +3 -0
- ppo-LunarLander-v2_dkv3/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_dkv3/data +99 -0
- ppo-LunarLander-v2_dkv3/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_dkv3/policy.pth +3 -0
- ppo-LunarLander-v2_dkv3/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_dkv3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.95 +/- 21.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78536f5f35b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78536f5f3640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78536f5f36d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78536f5f3760>", "_build": "<function ActorCriticPolicy._build at 0x78536f5f37f0>", "forward": "<function ActorCriticPolicy.forward at 0x78536f5f3880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78536f5f3910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78536f5f39a0>", "_predict": "<function ActorCriticPolicy._predict at 0x78536f5f3a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78536f5f3ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78536f5f3b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78536f5f3be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78537918e040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1536000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726725741205617404, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPMYUT4r238/+UwNPeIRqb5R0Kk9kLVWvQAAAAAAAAAAAL52PVwjK7poOgi7/IAiOP6/0bmy65k4AACAPwAAgD8zTYY9XDtYuldqsbocj/k1YR95OWvR0DkAAIA/AACAP9pIgz2Pmga65dHlOFFRSTQO/x07BGoEuAAAgD8AAIA/mkHWu9ejULkStIS6Ht02NrlHgrsGBaA5AACAPwAAgD8A+DG8w2UAulVkd7oGWjS1DgIqu3r6jjkAAIA/AACAPwBAJrqFc+O5AhFGu7rbvDboHA65VMMvOgAAgD8AAIA/zVhhvSnoQLp3yMu3DMwUsxtDlDqtnOc2AACAPwAAgD9G1Qo+1qiZPnL5Qj3DuW++5GuFPeaZc70AAAAAAAAAAACKrD1alKM/9dYuPxKhCL/nC5I7xbcqPgAAAAAAAAAARhQxPu/1Tz+ELTc6VniLvvRC5D1hsgo9AAAAAAAAAADaLMc99sRoutL2AjpL3MU1dohruqewF7kAAIA/AACAP4DyTT3D8W269T/tuq1b4LXmEGS7jxYLOgAAgD8AAIA/ANBYPMNhB7oeFgG5ZOyZM+43i7u5wRY4AACAPwAAgD/a5vw9rb87P9jBkz3xAoa+5JCiPWM5FrwAAAAAAAAAAJqAa71I5ZW6bDaPOfBnkTSXGOq6X4iluAAAgD8AAIA/WmLiPVxTSbrPP7E7wXTQN5+6kLpLjTs2AAAAAAAAgD/m60k9KLKVPwQBFT5uKsO+Ubg9PTeSnT0AAAAAAAAAAM3MCDsG4JM/JdCEPUMRtb5kR6u8skqYvQAAAAAAAAAApvChPVwrNbrmX147d4P7tDQv0blO/n66AAAAAAAAAADNk6Q8SIeKukJi5rbmM8w1ksT7ufaP9TUAAIA/AACAPzP+Bz0lUrY/SiQmP1Ldhz2FxpG8D66IOwAAAAAAAAAAM98xPY/eT7oWunM2LT8SMp0RTjsc75G1AACAPwAAgD8WNGa+igKMPxYVlb7Tzbe+e8qFvr75JbsAAAAAAAAAAJqMr7z2HEq6HC09uisVT7VW21k63SpfOQAAgD8AAIA/5sBePYVb17kAtDs7UWfPNnX0FzttaEK6AACAPwAAgD+NqzU+Kf1kvAKcIbsEvDQ5JO/BvfTdSzoAAIA/AACAP/qMFD7iv2g/mPv8PZcupr4G7N89AD76vQAAAAAAAAAAmrm4ulIXnTwrGBe+3k1wvtvFpL11SHg9AAAAAAAAAAAAALo41zNyuQkllbsRJXy1+NElOjLtrzoAAIA/AACAP6qtVL40C5I/i16nvuT8rL44WpC++O2pPAAAAAAAAAAAmgGJPMNxTrpE77g3muDLMjJ+Vbs4z9i2AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGXFYrjHXEuMAWyUTegDjAF0lEdAn7e5gCwKSnV9lChoBkdAOc/wRXfZVWgHS+9oCEdAn7imIXTEznV9lChoBkdAZL5D7655JWgHTegDaAhHQJ/DevOhTOx1fZQoaAZHQGYhjJ+2E01oB03oA2gIR0Cfx0bLlmvodX2UKGgGR0BjbSrLhaTwaAdN6ANoCEdAn8zQHqu8snV9lChoBkdAY2c3DvVmSWgHTegDaAhHQJ/NqqLjxTd1fZQoaAZHQF51kZJkGzNoB03oA2gIR0CfzchxHXmOdX2UKGgGR0Bl2YZn+Q2daAdN6ANoCEdAn882HUMG5nV9lChoBkdAYucHC4z7/GgHTegDaAhHQJ/Qe3AmAsl1fZQoaAZHQGV3FlK9PDZoB03oA2gIR0Cf0/+uNgjRdX2UKGgGR0BmGh71Iy0saAdN6ANoCEdAoA4Wb9ZRsXV9lChoBkdAZBNqjafzz2gHTegDaAhHQKAOTpFkQPJ1fZQoaAZHQGQxcc+7lJZoB03oA2gIR0CgD405U96kdX2UKGgGR0BhIuHSF49paAdN6ANoCEdAoBGD2OAAhnV9lChoBkdAY8Ga86FM7GgHTegDaAhHQKAR5Rw6ySp1fZQoaAZHQGJE3j+717JoB03oA2gIR0CgEjYNiH6/dX2UKGgGR0A79nCO3lS1aAdL8mgIR0CgEta6J66bdX2UKGgGR0BmAlqcmShbaAdN6ANoCEdAoBYVD0Dlo3V9lChoBkdAaGS8KXv6TGgHTegDaAhHQKAWu1mapgl1fZQoaAZHQGy7qIacZtNoB002A2gIR0CgG+Wd3B55dX2UKGgGR0BfPdGNJe3QaAdN6ANoCEdAoBxrf+CK8HV9lChoBkdAUZyNkvsZ52gHS+1oCEdAoB2iTnq3VnV9lChoBkdAZc7INEw352gHTegDaAhHQKAfCXE61b91fZQoaAZHQGWz35WRzRxoB03oA2gIR0CgIVX5N47jdX2UKGgGR0Bll1Fx4ptraAdN6ANoCEdAoCH33cpLEnV9lChoBkdAXjXkgfU4JmgHTegDaAhHQKAn+f2bobJ1fZQoaAZHQGJK5eZ5Rj1oB03oA2gIR0CgKTUuL740dX2UKGgGR0BnByO1fE4vaAdN6ANoCEdAoCt04YJmd3V9lChoBkdAY6BG7z06HWgHTegDaAhHQKAvw84gieN1fZQoaAZHQF5ZF10T101oB03oA2gIR0CgMAed07r+dX2UKGgGR0Bgp1EgGKQ8aAdN6ANoCEdAoDInL5h0AHV9lChoBkdAZFRcUuctoWgHTegDaAhHQKAzpQJokAx1fZQoaAZHQGPbP+fh/AloB03oA2gIR0CgNFtZmqYJdX2UKGgGR0BlPhgmZ3LWaAdN6ANoCEdAoDWOUpuuR3V9lChoBkdAZhXxhDw6Q2gHTegDaAhHQKA9gRwqAjJ1fZQoaAZHQGRXFPJq7AdoB03oA2gIR0CgPhytFKChdX2UKGgGR0BmeGs3hn8LaAdN6ANoCEdAoESOuaF23nV9lChoBkdAYQ3HmzSkTGgHTegDaAhHQKBGZQYUFjd1fZQoaAZHQGQLKD9OymhoB03oA2gIR0CgSSb961LKdX2UKGgGR0BnNjKcNH6NaAdN6ANoCEdAoEmTRWtEHHV9lChoBkdAYVmY6XBxgmgHTegDaAhHQKBKSC+10DF1fZQoaAZHQGQsny/bj95oB03oA2gIR0CgStRPwd8zdX2UKGgGR0Bi1/BJqZc+aAdN6ANoCEdAoEyJlSS/03V9lChoBkdAZE0EFGG21GgHTegDaAhHQKBUxgVoHs11fZQoaAZHQGVIXRoh6jZoB03oA2gIR0CgVhv9UCJXdX2UKGgGR0Bk+27jDKoyaAdN6ANoCEdAoFjP9WIXTHV9lChoBkdAZGiSvC/Gl2gHTegDaAhHQKBZZGYKIBR1fZQoaAZHQGBedNet0V9oB03oA2gIR0CgWdjsdDIBdX2UKGgGR0BjfKydFvycaAdN6ANoCEdAoFrBlYlpoXV9lChoBkdAYK43qAz55GgHTegDaAhHQKB4ry4nWrh1fZQoaAZHQGI0M6ij+JhoB03oA2gIR0CgeVKaG5+ZdX2UKGgGR0BuwJddE9dNaAdNugJoCEdAoH4VgUlAvHV9lChoBkdAYoM8Hv+fiGgHTegDaAhHQKB+JFG5MDh1fZQoaAZHQGD/SeqaPS5oB03oA2gIR0Cgfp4ptrKvdX2UKGgGR0BdEhzijtXxaAdN6ANoCEdAoH+tgOSW7nV9lChoBkdAUdKl/H5rQGgHS+ZoCEdAoIB2JBPbf3V9lChoBkdAZPw4tHxz72gHTegDaAhHQKCA1taY/ml1fZQoaAZHQHHxQmzByjpoB01IAmgIR0CggQVtwaR7dX2UKGgGR0BMHSfcvduYaAdL3WgIR0CggeQqAjIJdX2UKGgGR0Bj+wdXDFZQaAdN6ANoCEdAoIKPnGKhtnV9lChoBkdAZwgu3+dbxGgHTegDaAhHQKCC5f0Eov11fZQoaAZHQG3/T+3pfQdoB001AWgIR0CghlG6PKdQdX2UKGgGR0A/JUwztTkyaAdL8GgIR0CghnnH/95ydX2UKGgGR0Bhu2SZBsyjaAdN6ANoCEdAoIaFMVUMonV9lChoBkdAcIhgWac7Q2gHTcYDaAhHQKCHdJFspG51fZQoaAZHQGXUqJuVHFxoB03oA2gIR0Cgh35JTVDsdX2UKGgGR0BwJ+Eug6EKaAdNiwJoCEdAoIjFw5vLo3V9lChoBkdAYa0df9gndGgHTegDaAhHQKCNSHzpX6t1fZQoaAZHQGA/rs8gZCRoB03oA2gIR0CgjZnSWqtHdX2UKGgGR0BL1ZVwPy08aAdL62gIR0Cgj/Oh0yP/dX2UKGgGR0BjP+dy1eByaAdN6ANoCEdAoJFzNr0rb3V9lChoBkdAYC2VqN6w+2gHTegDaAhHQKCSCwpvxYt1fZQoaAZHQGHzLwF1SwZoB03oA2gIR0Cgkw1zhgmadX2UKGgGR0Bx1U+QlruZaAdN8AFoCEdAoJNQOYplSXV9lChoBkdAZ9M1PWQOnWgHTegDaAhHQKCZe2sJY1Z1fZQoaAZHQHHHxQFcIJJoB01eAWgIR0Cgm+yeyzHCdX2UKGgGR0BorBv99+gEaAdNwQNoCEdAoJ4llkH2RXV9lChoBkdAQ14YtQKrrGgHS+FoCEdAoJ/oGwA2h3V9lChoBkdAa0+gSOBDomgHTYkBaAhHQKCh4qBmPHV1fZQoaAZHQGu6cNx2jfxoB00sAWgIR0CgoptYr8R+dX2UKGgGR0BglZEv0yxiaAdN6ANoCEdAoKNKKLsKLXV9lChoBkdAYXb10T101mgHTegDaAhHQKCjqT3Zf2N1fZQoaAZHQGLzhS9/SYxoB03oA2gIR0CgpEZHNHH4dX2UKGgGR0BhjZ59mYjTaAdN6ANoCEdAoKTVu5z5oHV9lChoBkdAbZEoWHk92WgHTSkDaAhHQKCmmwN9YwJ1fZQoaAZHQGIEc/+sHSpoB03oA2gIR0Cgpvz238XOdX2UKGgGR0BmnpO+IuXeaAdN6ANoCEdAoK+9ytFKCnV9lChoBkdAcHJXWe6I32gHTZoCaAhHQKCxbXBguyx1fZQoaAZHQFG8DP4VRDVoB0vQaAhHQKCyiW56MR91fZQoaAZHQF+Hz90ihWZoB03oA2gIR0CguAsA3kxRdX2UKGgGR0BmbABq9GqhaAdN6ANoCEdAoL1ZhDw6Q3V9lChoBkdAZJ9rkbPyCmgHTegDaAhHQKC9aZNwiq11fZQoaAZHQGJJJm29cr1oB03oA2gIR0Cgve5yuIRAdX2UKGgGR0Bbzvk7wKBvaAdN6ANoCEdAoL9aJj2Ba3V9lChoBkdAZPPljmSyMWgHTegDaAhHQKDAhOGj9GZ1fZQoaAZHQF6xjin5zo5oB03oA2gIR0CgwRlnIyTIdX2UKGgGR0BkTtafSQYDaAdN6ANoCEdAoMFhTqB3A3V9lChoBkdAbtmaBI4EOmgHTVoCaAhHQKDCQP6sQup1fZQoaAZHQGTO7sF+uvFoB03oA2gIR0Cgw5+aBqbjdX2UKGgGR0BhcZxxT850aAdN6ANoCEdAoMQqd1+y7nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1200, "gamma": 0.9989, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2_dkv3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b4eebbdeea793b2198753a77ce0b676f5834580170ff748c622de47eca2a955
|
3 |
+
size 148776
|
ppo-LunarLander-v2_dkv3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2_dkv3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78536f5f35b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78536f5f3640>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78536f5f36d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78536f5f3760>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78536f5f37f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78536f5f3880>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78536f5f3910>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78536f5f39a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78536f5f3a30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78536f5f3ac0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78536f5f3b50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78536f5f3be0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78537918e040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1536000,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1726725741205617404,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAPMYUT4r238/+UwNPeIRqb5R0Kk9kLVWvQAAAAAAAAAAAL52PVwjK7poOgi7/IAiOP6/0bmy65k4AACAPwAAgD8zTYY9XDtYuldqsbocj/k1YR95OWvR0DkAAIA/AACAP9pIgz2Pmga65dHlOFFRSTQO/x07BGoEuAAAgD8AAIA/mkHWu9ejULkStIS6Ht02NrlHgrsGBaA5AACAPwAAgD8A+DG8w2UAulVkd7oGWjS1DgIqu3r6jjkAAIA/AACAPwBAJrqFc+O5AhFGu7rbvDboHA65VMMvOgAAgD8AAIA/zVhhvSnoQLp3yMu3DMwUsxtDlDqtnOc2AACAPwAAgD9G1Qo+1qiZPnL5Qj3DuW++5GuFPeaZc70AAAAAAAAAAACKrD1alKM/9dYuPxKhCL/nC5I7xbcqPgAAAAAAAAAARhQxPu/1Tz+ELTc6VniLvvRC5D1hsgo9AAAAAAAAAADaLMc99sRoutL2AjpL3MU1dohruqewF7kAAIA/AACAP4DyTT3D8W269T/tuq1b4LXmEGS7jxYLOgAAgD8AAIA/ANBYPMNhB7oeFgG5ZOyZM+43i7u5wRY4AACAPwAAgD/a5vw9rb87P9jBkz3xAoa+5JCiPWM5FrwAAAAAAAAAAJqAa71I5ZW6bDaPOfBnkTSXGOq6X4iluAAAgD8AAIA/WmLiPVxTSbrPP7E7wXTQN5+6kLpLjTs2AAAAAAAAgD/m60k9KLKVPwQBFT5uKsO+Ubg9PTeSnT0AAAAAAAAAAM3MCDsG4JM/JdCEPUMRtb5kR6u8skqYvQAAAAAAAAAApvChPVwrNbrmX147d4P7tDQv0blO/n66AAAAAAAAAADNk6Q8SIeKukJi5rbmM8w1ksT7ufaP9TUAAIA/AACAPzP+Bz0lUrY/SiQmP1Ldhz2FxpG8D66IOwAAAAAAAAAAM98xPY/eT7oWunM2LT8SMp0RTjsc75G1AACAPwAAgD8WNGa+igKMPxYVlb7Tzbe+e8qFvr75JbsAAAAAAAAAAJqMr7z2HEq6HC09uisVT7VW21k63SpfOQAAgD8AAIA/5sBePYVb17kAtDs7UWfPNnX0FzttaEK6AACAPwAAgD+NqzU+Kf1kvAKcIbsEvDQ5JO/BvfTdSzoAAIA/AACAP/qMFD7iv2g/mPv8PZcupr4G7N89AD76vQAAAAAAAAAAmrm4ulIXnTwrGBe+3k1wvtvFpL11SHg9AAAAAAAAAAAAALo41zNyuQkllbsRJXy1+NElOjLtrzoAAIA/AACAP6qtVL40C5I/i16nvuT8rL44WpC++O2pPAAAAAAAAAAAmgGJPMNxTrpE77g3muDLMjJ+Vbs4z9i2AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.02400000000000002,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGXFYrjHXEuMAWyUTegDjAF0lEdAn7e5gCwKSnV9lChoBkdAOc/wRXfZVWgHS+9oCEdAn7imIXTEznV9lChoBkdAZL5D7655JWgHTegDaAhHQJ/DevOhTOx1fZQoaAZHQGYhjJ+2E01oB03oA2gIR0Cfx0bLlmvodX2UKGgGR0BjbSrLhaTwaAdN6ANoCEdAn8zQHqu8snV9lChoBkdAY2c3DvVmSWgHTegDaAhHQJ/NqqLjxTd1fZQoaAZHQF51kZJkGzNoB03oA2gIR0CfzchxHXmOdX2UKGgGR0Bl2YZn+Q2daAdN6ANoCEdAn882HUMG5nV9lChoBkdAYucHC4z7/GgHTegDaAhHQJ/Qe3AmAsl1fZQoaAZHQGV3FlK9PDZoB03oA2gIR0Cf0/+uNgjRdX2UKGgGR0BmGh71Iy0saAdN6ANoCEdAoA4Wb9ZRsXV9lChoBkdAZBNqjafzz2gHTegDaAhHQKAOTpFkQPJ1fZQoaAZHQGQxcc+7lJZoB03oA2gIR0CgD405U96kdX2UKGgGR0BhIuHSF49paAdN6ANoCEdAoBGD2OAAhnV9lChoBkdAY8Ga86FM7GgHTegDaAhHQKAR5Rw6ySp1fZQoaAZHQGJE3j+717JoB03oA2gIR0CgEjYNiH6/dX2UKGgGR0A79nCO3lS1aAdL8mgIR0CgEta6J66bdX2UKGgGR0BmAlqcmShbaAdN6ANoCEdAoBYVD0Dlo3V9lChoBkdAaGS8KXv6TGgHTegDaAhHQKAWu1mapgl1fZQoaAZHQGy7qIacZtNoB002A2gIR0CgG+Wd3B55dX2UKGgGR0BfPdGNJe3QaAdN6ANoCEdAoBxrf+CK8HV9lChoBkdAUZyNkvsZ52gHS+1oCEdAoB2iTnq3VnV9lChoBkdAZc7INEw352gHTegDaAhHQKAfCXE61b91fZQoaAZHQGWz35WRzRxoB03oA2gIR0CgIVX5N47jdX2UKGgGR0Bll1Fx4ptraAdN6ANoCEdAoCH33cpLEnV9lChoBkdAXjXkgfU4JmgHTegDaAhHQKAn+f2bobJ1fZQoaAZHQGJK5eZ5Rj1oB03oA2gIR0CgKTUuL740dX2UKGgGR0BnByO1fE4vaAdN6ANoCEdAoCt04YJmd3V9lChoBkdAY6BG7z06HWgHTegDaAhHQKAvw84gieN1fZQoaAZHQF5ZF10T101oB03oA2gIR0CgMAed07r+dX2UKGgGR0Bgp1EgGKQ8aAdN6ANoCEdAoDInL5h0AHV9lChoBkdAZFRcUuctoWgHTegDaAhHQKAzpQJokAx1fZQoaAZHQGPbP+fh/AloB03oA2gIR0CgNFtZmqYJdX2UKGgGR0BlPhgmZ3LWaAdN6ANoCEdAoDWOUpuuR3V9lChoBkdAZhXxhDw6Q2gHTegDaAhHQKA9gRwqAjJ1fZQoaAZHQGRXFPJq7AdoB03oA2gIR0CgPhytFKChdX2UKGgGR0BmeGs3hn8LaAdN6ANoCEdAoESOuaF23nV9lChoBkdAYQ3HmzSkTGgHTegDaAhHQKBGZQYUFjd1fZQoaAZHQGQLKD9OymhoB03oA2gIR0CgSSb961LKdX2UKGgGR0BnNjKcNH6NaAdN6ANoCEdAoEmTRWtEHHV9lChoBkdAYVmY6XBxgmgHTegDaAhHQKBKSC+10DF1fZQoaAZHQGQsny/bj95oB03oA2gIR0CgStRPwd8zdX2UKGgGR0Bi1/BJqZc+aAdN6ANoCEdAoEyJlSS/03V9lChoBkdAZE0EFGG21GgHTegDaAhHQKBUxgVoHs11fZQoaAZHQGVIXRoh6jZoB03oA2gIR0CgVhv9UCJXdX2UKGgGR0Bk+27jDKoyaAdN6ANoCEdAoFjP9WIXTHV9lChoBkdAZGiSvC/Gl2gHTegDaAhHQKBZZGYKIBR1fZQoaAZHQGBedNet0V9oB03oA2gIR0CgWdjsdDIBdX2UKGgGR0BjfKydFvycaAdN6ANoCEdAoFrBlYlpoXV9lChoBkdAYK43qAz55GgHTegDaAhHQKB4ry4nWrh1fZQoaAZHQGI0M6ij+JhoB03oA2gIR0CgeVKaG5+ZdX2UKGgGR0BuwJddE9dNaAdNugJoCEdAoH4VgUlAvHV9lChoBkdAYoM8Hv+fiGgHTegDaAhHQKB+JFG5MDh1fZQoaAZHQGD/SeqaPS5oB03oA2gIR0Cgfp4ptrKvdX2UKGgGR0BdEhzijtXxaAdN6ANoCEdAoH+tgOSW7nV9lChoBkdAUdKl/H5rQGgHS+ZoCEdAoIB2JBPbf3V9lChoBkdAZPw4tHxz72gHTegDaAhHQKCA1taY/ml1fZQoaAZHQHHxQmzByjpoB01IAmgIR0CggQVtwaR7dX2UKGgGR0BMHSfcvduYaAdL3WgIR0CggeQqAjIJdX2UKGgGR0Bj+wdXDFZQaAdN6ANoCEdAoIKPnGKhtnV9lChoBkdAZwgu3+dbxGgHTegDaAhHQKCC5f0Eov11fZQoaAZHQG3/T+3pfQdoB001AWgIR0CghlG6PKdQdX2UKGgGR0A/JUwztTkyaAdL8GgIR0CghnnH/95ydX2UKGgGR0Bhu2SZBsyjaAdN6ANoCEdAoIaFMVUMonV9lChoBkdAcIhgWac7Q2gHTcYDaAhHQKCHdJFspG51fZQoaAZHQGXUqJuVHFxoB03oA2gIR0Cgh35JTVDsdX2UKGgGR0BwJ+Eug6EKaAdNiwJoCEdAoIjFw5vLo3V9lChoBkdAYa0df9gndGgHTegDaAhHQKCNSHzpX6t1fZQoaAZHQGA/rs8gZCRoB03oA2gIR0CgjZnSWqtHdX2UKGgGR0BL1ZVwPy08aAdL62gIR0Cgj/Oh0yP/dX2UKGgGR0BjP+dy1eByaAdN6ANoCEdAoJFzNr0rb3V9lChoBkdAYC2VqN6w+2gHTegDaAhHQKCSCwpvxYt1fZQoaAZHQGHzLwF1SwZoB03oA2gIR0Cgkw1zhgmadX2UKGgGR0Bx1U+QlruZaAdN8AFoCEdAoJNQOYplSXV9lChoBkdAZ9M1PWQOnWgHTegDaAhHQKCZe2sJY1Z1fZQoaAZHQHHHxQFcIJJoB01eAWgIR0Cgm+yeyzHCdX2UKGgGR0BorBv99+gEaAdNwQNoCEdAoJ4llkH2RXV9lChoBkdAQ14YtQKrrGgHS+FoCEdAoJ/oGwA2h3V9lChoBkdAa0+gSOBDomgHTYkBaAhHQKCh4qBmPHV1fZQoaAZHQGu6cNx2jfxoB00sAWgIR0CgoptYr8R+dX2UKGgGR0BglZEv0yxiaAdN6ANoCEdAoKNKKLsKLXV9lChoBkdAYXb10T101mgHTegDaAhHQKCjqT3Zf2N1fZQoaAZHQGLzhS9/SYxoB03oA2gIR0CgpEZHNHH4dX2UKGgGR0BhjZ59mYjTaAdN6ANoCEdAoKTVu5z5oHV9lChoBkdAbZEoWHk92WgHTSkDaAhHQKCmmwN9YwJ1fZQoaAZHQGIEc/+sHSpoB03oA2gIR0Cgpvz238XOdX2UKGgGR0BmnpO+IuXeaAdN6ANoCEdAoK+9ytFKCnV9lChoBkdAcHJXWe6I32gHTZoCaAhHQKCxbXBguyx1fZQoaAZHQFG8DP4VRDVoB0vQaAhHQKCyiW56MR91fZQoaAZHQF+Hz90ihWZoB03oA2gIR0CguAsA3kxRdX2UKGgGR0BmbABq9GqhaAdN6ANoCEdAoL1ZhDw6Q3V9lChoBkdAZJ9rkbPyCmgHTegDaAhHQKC9aZNwiq11fZQoaAZHQGJJJm29cr1oB03oA2gIR0Cgve5yuIRAdX2UKGgGR0Bbzvk7wKBvaAdN6ANoCEdAoL9aJj2Ba3V9lChoBkdAZPPljmSyMWgHTegDaAhHQKDAhOGj9GZ1fZQoaAZHQF6xjin5zo5oB03oA2gIR0CgwRlnIyTIdX2UKGgGR0BkTtafSQYDaAdN6ANoCEdAoMFhTqB3A3V9lChoBkdAbtmaBI4EOmgHTVoCaAhHQKDCQP6sQup1fZQoaAZHQGTO7sF+uvFoB03oA2gIR0Cgw5+aBqbjdX2UKGgGR0BhcZxxT850aAdN6ANoCEdAoMQqd1+y7nVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 160,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 32,
|
80 |
+
"n_steps": 1200,
|
81 |
+
"gamma": 0.9989,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2_dkv3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95a402b5538f6286a40d67a8efbadde28a5333f2094f2e5207cc15254d8434ca
|
3 |
+
size 88362
|
ppo-LunarLander-v2_dkv3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f8246d59bb7cfa9e14d1e37bfd5a15fc0dd16c6f653a9e1270bed9a8c911b48
|
3 |
+
size 43762
|
ppo-LunarLander-v2_dkv3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2_dkv3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (182 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.9542405, "std_reward": 21.153275317057467, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-19T06:44:02.020834"}
|