# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """NEWSROOM Dataset.""" import json import os from bs4 import BeautifulSoup import re import datasets _CITATION = """ @inproceedings{N18-1065, author = {Grusky, Max and Naaman, Mor and Artzi, Yoav}, title = {NEWSROOM: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies}, booktitle = {Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year = {2018}, } """ _DESCRIPTION = """ NEWSROOM is a large dataset for training and evaluating summarization systems. It contains 1.3 million articles and summaries written by authors and editors in the newsrooms of 38 major publications. Dataset features includes: - text: Input news text. - summary: Summary for the news. This dataset can be downloaded upon requests. Unzip all the contents "train.jsonl, dev.josnl, test.jsonl" to the tfds folder. """ _DOCUMENT = "text" _SUMMARY = "summary" _DATA_DIR = os.path.join( os.path.expanduser("~"), ".cache/huggingface/datasets/newsroom" ) DM_SINGLE_CLOSE_QUOTE = "\u2019" # unicode DM_DOUBLE_CLOSE_QUOTE = "\u201d" # acceptable ways to end a sentence END_TOKENS = [ ".", "!", "?", "...", "'", "`", '"', DM_SINGLE_CLOSE_QUOTE, DM_DOUBLE_CLOSE_QUOTE, ")", ] def _process_document_and_summary(document, summary): """Process document to remove double newlines and process summary to remove html tags and encode to utf-8. References: (1) https://stackoverflow.com/a/12982689/13448382 (2) https://stackoverflow.com/a/67560556/13448382 (3) https://docs.python.org/3/howto/unicode.html#the-unicode-type (4) https://stackoverflow.com/a/11566398/13448382 (5) https://huggingface.co/datasets/cnn_dailymail/blob/2d2c6100ccd17c0b215f85c38e36c4e7a5746425/cnn_dailymail.py#L155 """ # process document document = re.sub(r"\n+", " ", document).strip() # process summary try: summary = summary.encode("latin1") except: summary = summary.encode("utf-8") finally: summary = BeautifulSoup(summary.decode("utf-8", "ignore"), "lxml").text summary = summary.replace("“", '"').replace("”", '"') summary = re.sub(r"\n+", " ", summary) summary = re.sub(r"\s+", " ", summary) summary = re.sub(r"\\'", "'", summary) summary = re.sub("''", '"', summary) summary = re.sub("\xa0", " ", summary) summary = re.sub(r'\."', '".', summary) summary = re.sub(r'\,"', '",', summary).strip() if summary and summary[-1] not in END_TOKENS: summary += "." return document, summary class Newsroom(datasets.GeneratorBasedBuilder): """NEWSROOM Dataset.""" VERSION = datasets.Version("1.0.0") def _info(self): features = {k: datasets.Value("string") for k in [_DOCUMENT, _SUMMARY]} return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), supervised_keys=(_DOCUMENT, _SUMMARY), homepage="https://lil.nlp.cornell.edu/newsroom/index.html", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"input_file": os.path.join(_DATA_DIR, "train.jsonl")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"input_file": os.path.join(_DATA_DIR, "dev.jsonl")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"input_file": os.path.join(_DATA_DIR, "test.jsonl")}, ), ] def _generate_examples(self, input_file=None): """Yields examples.""" idx = 0 with open(input_file, encoding="utf-8") as f: for line in f: d = json.loads(line) document, summary = _process_document_and_summary( d[_DOCUMENT], d[_SUMMARY] ) if not summary or not document: continue yield idx, {_DOCUMENT: document, _SUMMARY: summary} idx += 1