--- task_categories: - image-to-image tags: - RAW - raw - DNG - dng - denoising - superresolution - underexposure - overexpos pretty_name: fiveK size_categories: - 1KDSC1459.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a0001-jmac_DSC1459.dng)|![tiff16_a/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_A.jpg)|![tiff16_b/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_B.jpg)|![tiff16_c/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_C.jpg)|![tiff16_d/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_D.jpg)|![tiff16_e/a0001-jmac_DSC1459](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a0001-jmac_DSC1459_E.jpg)|{"location":"outdoor","time": "day","light": "sun_sky","subject": "nature"}|Nikon D70| |[a1384-dvf_095.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a1384-dvf_095.dng)|![tiff16_a/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_A.jpg)|![tiff16_b/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_B.jpg)|![tiff16_c/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_C.jpg)|![tiff16_d/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_D.jpg)|![tiff16_e/a1384-dvf_095](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a1384-dvf_095_E.jpg)|{ "location": "outdoor", "time": "day", "light": "sun_sky", "subject": "nature" }|Leica M8| |[a4607-050801_
080948__
I2E5512.dng](https://data.csail.mit.edu/graphics/fivek/img/dng/a4607-050801_080948__I2E5512.dng)|![tiff16_a/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_A.jpg)|![tiff16_b/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_B.jpg)|![tiff16_c/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_C.jpg)|![tiff16_d/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_D.jpg)|![tiff16_e/a4607-050801_080948__I2E5512](https://raw.githubusercontent.com/yuukicammy/mit-adobe-fivek-dataset/master/data/thumbnails/a4607-050801_080948__I2E5512_E.jpg)|{ "location": "indoor", "time": "day", "light": "artificial", "subject": "people" }|Canon EOS-1D Mark II| # References ``` @inproceedings{fivek, author = "Vladimir Bychkovsky and Sylvain Paris and Eric Chan and Fr{\'e}do Durand", title = "Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs", booktitle = "The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition", year = "2011" } ``` # Code [GitHub repository](https://github.com/yuukicammy/mit-adobe-fivek-dataset) provides tools to download and use MIT-Adobe FiveK Dataset in a machine learning friendly manner. You can download the dataset with a single line of Python code. Also, you can use Pytorch's DetaLoader to iteratively retrieve data for your own use. The processing can be easily accomplished with multiprocessing with Pytorch's DataLoader! ## Requirements - Python 3.7 or greater - Pytorch 2.X - tqdm - urllib3 ## Usage You can use as follows. NOTE: For DataLoader, MUST set `batch_size` to `None` to disable automatic batching. ```python from torch.utils.data.dataloader import DataLoader from dataset.fivek import MITAboveFiveK metadata_loader = DataLoader( MITAboveFiveK(root="path-to-dataset-root", split="train", download=True, experts=["a"]), batch_size=None, num_workers=2) for item in metadata_loader: # Processing as you want. # Add noise, overexpose, underexpose, etc. print(item["files"]["dng"]) ``` ## Example Please see [sample code](https://github.com/yuukicammy/mit-adobe-fivek-dataset/blob/master/sample_process.py) . ## API CLASS MITAboveFiveK(torch.utils.data.dataset.Dataset) - - - MITAboveFiveK(root: str, split: str, download: bool = False, experts: List[str] = None) -> None - root (str): The root directory where the MITAboveFiveK directory exists or to be created. - split (str): One of {'train', 'val', 'test', 'debug'}. 'debug' uses only 9 data contained in 'train'. - download (bool): If True, downloads the dataset from the official urls. Files that already exist locally will skip the download. Defaults to False. - experts (List[str]): List of {'a', 'b', 'c', 'd', 'e'}. 'a' means 'Expert A' in the [website](https://data.csail.mit.edu/graphics/fivek/ ). If None or empty list, no expert data is used. Defaults to None.