updates dataset_info.json
Browse files- dataset_info.json +1 -1
dataset_info.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"description": "Hugging Face COCO-Style Labelled Dataset for Object Detection in Carla Simulator: This dataset contains 1028 images, each 640x380 pixels, with corresponding publically accessible URLs. The dataset is split into 249 test and 779 training examples. The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame. The labels where then automatically generated using the semantic segmentation information.", "citation": "", "homepage": "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset", "license": "MIT", "features": {"image_id": {"dtype": "int64", "_type": "Value"}, "image": {"_type": "Image"}, "width": {"dtype": "int32", "_type": "Value"}, "height": {"dtype": "int32", "_type": "Value"}, "file_name": {"dtype": "string", "_type": "Value"}, "license": {"dtype": "int32", "_type": "Value"}, "url": {"dtype": "string", "_type": "Value"}, "date_captured": {"dtype": "string", "_type": "Value"}, "objects": {"feature": {"id": {"dtype": "int64", "_type": "Value"}, "image_id": {"dtype": "int64", "_type": "Value"}, "area": {"dtype": "int64", "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "_type": "Value"}, "length": 4, "_type": "Sequence"}, "category": {"names": ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"], "_type": "ClassLabel"}}, "_type": "Sequence"}}, "builder_name": "Carla-COCO-Object-Detection-Dataset", "dataset_name": "Carla-COCO-Object-Detection-Dataset", "config_name": "default", "version": {"version_str": "1.1.0", "major": 1, "minor": 1, "patch": 0}, "download_checksums": {"https://huggingface.co/datasets/yunusskeete/cppe5/resolve/main/cppe5.tar.gz": {"num_bytes": 396704813, "checksum": "
|
|
|
1 |
+
{"description": "Hugging Face COCO-Style Labelled Dataset for Object Detection in Carla Simulator: This dataset contains 1028 images, each 640x380 pixels, with corresponding publically accessible URLs. The dataset is split into 249 test and 779 training examples. The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame. The labels where then automatically generated using the semantic segmentation information.", "citation": "", "homepage": "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset", "license": "MIT", "features": {"image_id": {"dtype": "int64", "_type": "Value"}, "image": {"_type": "Image"}, "width": {"dtype": "int32", "_type": "Value"}, "height": {"dtype": "int32", "_type": "Value"}, "file_name": {"dtype": "string", "_type": "Value"}, "license": {"dtype": "int32", "_type": "Value"}, "url": {"dtype": "string", "_type": "Value"}, "date_captured": {"dtype": "string", "_type": "Value"}, "objects": {"feature": {"id": {"dtype": "int64", "_type": "Value"}, "image_id": {"dtype": "int64", "_type": "Value"}, "area": {"dtype": "int64", "_type": "Value"}, "bbox": {"feature": {"dtype": "float32", "_type": "Value"}, "length": 4, "_type": "Sequence"}, "category": {"names": ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"], "_type": "ClassLabel"}}, "_type": "Sequence"}}, "builder_name": "Carla-COCO-Object-Detection-Dataset", "dataset_name": "Carla-COCO-Object-Detection-Dataset", "config_name": "default", "version": {"version_str": "1.1.0", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 0, "num_examples": 779, "dataset_name": "Carla-COCO-Object-Detection-Dataset"}, "test": {"name": "test", "num_bytes": 0, "num_examples": 249, "dataset_name": "Carla-COCO-Object-Detection-Dataset"}}, "download_checksums": {"https://huggingface.co/datasets/yunusskeete/cppe5/resolve/main/cppe5.tar.gz": {"num_bytes": 396704813, "checksum": "17a6a4d358418aa6ecc69fa1ba66459d7a955589be47797990e08adadb3b55b0"}}, "download_size": 396704813, "dataset_size": 396736033, "size_in_bytes": 793440846}
|