File size: 9,803 Bytes
05a6dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923af49
05a6dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6846fac
05a6dc1
6846fac
05a6dc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import json
import os
import datasets
import pandas as pd
from PIL import Image


class ArtelingoBuilderConfig(datasets.BuilderConfig):

    def __init__(self, name, splits, **kwargs):
        super().__init__(name, **kwargs)
        self.splits = splits


# Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{mohamed2022artelingo,
  title={ArtELingo: A Million Emotion Annotations of WikiArt with Emphasis on Diversity over Language and Culture},
  author={Mohamed, Youssef and Abdelfattah, Mohamed and Alhuwaider, Shyma and Li, Feifan and Zhang, Xiangliang and Church, Kenneth and Elhoseiny, Mohamed},
  booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
  pages={8770--8785},
  year={2022}
}
"""

# Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
ArtELingo is a benchmark and dataset having a collection of 80,000 artworks from WikiArt with 1.2 Million annotations in English, Arabic, and Chinese. 
"""

# Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://www.artelingo.org/"

# Add the licence for the dataset here if you can find it
_LICENSE = "Terms of Use: Before we are able to offer you access to the database, \
please agree to the following terms of use. After approval, you (the 'Researcher') \
receive permission to use the ArtELingo database (the 'Database') at King Abdullah \
University of Science and Technology (KAUST). In exchange for being able to join the \
ArtELingo community and receive such permission, Researcher hereby agrees to the \
following terms and conditions:  [1.] The Researcher shall use the Database only for \
non-commercial research and educational purposes.  [2.] The Universities make no \
representations or warranties regarding the Database, including but not limited to \
warranties of non-infringement or fitness for a particular purpose.  [3.] Researcher \
accepts full responsibility for his or her use of the Database and shall defend and \
indemnify the Universities, including their employees, Trustees, officers and agents, \
against any and all claims arising from Researcher's use of the Database, and \
Researcher's use of any copies of copyrighted 2D artworks originally uploaded to \
http://www.wikiart.org that the Researcher may use in connection with the Database.  \
[4.] Researcher may provide research associates and colleagues with access to the \
Database provided that they first agree to be bound by these terms and conditions. \
[5.] The Universities reserve the right to terminate Researcher's access to the Database \
at any time.  [6.] If Researcher is employed by a for-profit, commercial entity, \
Researcher's employer shall also be bound by these terms and conditions, and Researcher \
hereby represents that he or she is fully authorized to enter into this agreement on \
behalf of such employer.  [7.] The international copyright laws shall apply to all \
disputes under this agreement."

# Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)

# This script can work with local (downloaded) files.
_URLs = {
    'val': 'https://artelingo.s3.amazonaws.com/val.zip',
    'test': 'https://artelingo.s3.amazonaws.com/test.zip', 
    'train': 'https://artelingo.s3.amazonaws.com/train.zip',
    'wecia-emo_dev': 'https://artelingo.s3.amazonaws.com/wecia_emo_dev.zip',
    'wecia-cap_dev': 'https://artelingo.s3.amazonaws.com/wecia_cap_dev.zip',
    'wecia-emo_hidden': 'https://artelingo.s3.amazonaws.com/wecia_emo_hidden.zip',
    'wecia-cap_hidden': 'https://artelingo.s3.amazonaws.com/wecia_cap_hidden.zip',
}

# _URL_ANN = "https://artelingo.s3.amazonaws.com/artelingo_release_lite.csv"


_EMOTIONS = ['contentment', 'awe', 'amusement', 'excitement', 'sadness', 'fear', 'anger', 'disgust', 'something else']

# Name of the dataset usually match the script name with CamelCase instead of snake_case
class Artelingo(datasets.GeneratorBasedBuilder):
    """An example dataset script to work with ArtELingo dataset"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        ArtelingoBuilderConfig(name='artelingo', splits=['train', 'val', 'test'],
                               version=VERSION, description="The full ArtELingo dataset"),
        ArtelingoBuilderConfig(name='dev', splits=['val', 'test'],
                               version=VERSION, description="The Test and Val subsets of ArtELingo"),
        ArtelingoBuilderConfig(name='wecia-emo', splits=['dev', 'hidden'],
                               version=VERSION, description="The Dev set of the WECIA Emotion Prediction challenge"),
        ArtelingoBuilderConfig(name='wecia-cap', splits=['dev', 'hidden'],
                               version=VERSION, description="The Dev set of the WECIA Affective Caption Generation challenge"),
    ]
    DEFAULT_CONFIG_NAME = "artelingo"

    def _info(self):
        # This method specifies the datasets. DatasetInfo object which contains informations and typings for the dataset

        feature_dict = {
            "uid": datasets.Value("int32"),
            'image': datasets.Image(),
            "art_style": datasets.Value("string"),
            "painting": datasets.Value("string"),
            # "emotion": datasets.ClassLabel(names=_EMOTIONS),
            "emotion": datasets.Value("string"),
            "language": datasets.Value("string"),
            "text": datasets.Value("string"),
        }

        features = datasets.Features(feature_dict)

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
        data_dir = self.config.data_dir
        if data_dir is None:
            data_dir = {}
            prefix = self.config.name + '_' if 'wecia' in self.config.name else ''
            for split in self.config.splits:
                data_dir[split] = dl_manager.download_and_extract(_URLs[prefix + split])
            # data_dir = dl_manager.download_and_extract(_URLs)

        splits = []
        for split in self.config.splits:
            dataset = datasets.SplitGenerator(
                name=split,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "metadata": os.path.join(data_dir[split], split, "metadata.csv"),
                    "image_dir": os.path.join(data_dir[split], split),
                }
            )
            splits.append(dataset)
        return splits

    def _generate_examples(
        # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
        self, metadata, image_dir
    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        name = self.config.name

        df = pd.read_csv(metadata)
        uids = range(len(df))

        if name == 'wecia-emo':
            for uid, entry in zip(uids, df.itertuples()):
                result = {
                    "uid": entry.uid,
                    "image": Image.open(os.path.join(image_dir, entry.file_name)),
                    "art_style": entry.art_style,
                    "painting": entry.painting,
                    "text": entry.text,
                    "emotion": None,
                    'language': None,
                }
                yield (uid, result)
        elif name == 'wecia-cap':
            for uid, entry in zip(uids, df.itertuples()):
                result = {
                    "uid": entry.uid,
                    "image": Image.open(os.path.join(image_dir, entry.file_name)),
                    "art_style": entry.art_style,
                    "painting": entry.painting,
                    "emotion": entry.emotion,
                    "language": entry.language,
                    "text": None,
                }
                yield (uid, result)
        else:
            for uid, entry in zip(uids, df.itertuples()):
                result = {
                    "uid": uid,
                    "image": Image.open(os.path.join(image_dir, entry.file_name)),
                    "art_style": entry.art_style,
                    "painting": entry.painting,
                    "emotion": entry.emotion,
                    "language": entry.language,
                    "text": entry.text,
                }
                yield (uid, result)