import os import datasets from datasets import DatasetBuilder, SplitGenerator, DownloadConfig, load_dataset, DownloadManager, DatasetInfo, GeneratorBasedBuilder from rdflib import Graph, URIRef, Literal, BNode from rdflib.namespace import RDF, RDFS, OWL, XSD, Namespace, NamespaceManager from datasets.features import Features, Value SCHEMA = Namespace('http://schema.org/') YAGO = Namespace('http://yago-knowledge.org/resource/') class YAGO45DatasetBuilder(GeneratorBasedBuilder): VERSION = "1.0.1" def _info(self): return DatasetInfo( description="A subset of the YAGO 4.5 dataset maintaining only English labels", citation="@article{suchanek2023integrating,title={Integrating the Wikidata Taxonomy into YAGO},author={Suchanek, Fabian M and Alam, Mehwish and Bonald, Thomas and Paris, Pierre-Henri and Soria, Jules},journal={arXiv preprint arXiv:2308.11884},year={2023}}", homepage="https://yago-knowledge.org/", license="https://creativecommons.org/licenses/by-sa/3.0/", features=Features({ 'subject': Value('string'), 'predicate': Value('string'), 'object': Value('string') }) ) def _split_generators(self, dl_manager): # Download and extract the dataset # Define splits for each chunk of your dataset. # Download and extract the dataset files facts, taxonomy = dl_manager.download_and_extract(["facts.tar.gz", "yago-taxonomy.ttl"]) facts = os.path.join(facts, "facts/") # Define splits for each chunk of your dataset. chunk_paths = [os.path.join(facts, chunk) for chunk in os.listdir(facts) if chunk.endswith('.nt')] + [taxonomy] return [SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'chunk_paths': chunk_paths})] def _generate_examples(self, chunk_paths): # Load the chunks into an rdflib graph # Yield individual triples from the graph id_ = 0 for chunk_path in chunk_paths: graph = Graph(bind_namespaces="core") graph.parse(chunk_path) # Yield individual triples from the graph as N3 for (s, p, o) in graph.triples((None, None, None)): yield id_, { 'subject': s.n3(), 'predicate': p.n3(), 'object': o.n3() } id_ += 1 from rdflib.util import from_n3 def triples(features): try: subject_node = from_n3(features['subject']) predicate_node = from_n3(features['predicate']) object_node = from_n3(features['object']) return (subject_node, predicate_node, object_node) except Exception as e: print(f"Error transforming features {features}: {e}") return (None, None, None)