|
import os |
|
import datasets |
|
from datasets import DatasetBuilder, SplitGenerator, DownloadConfig, load_dataset, DownloadManager, DatasetInfo, GeneratorBasedBuilder |
|
from rdflib import Graph, URIRef, Literal, BNode |
|
from rdflib.namespace import RDF, RDFS, OWL, XSD, Namespace, NamespaceManager |
|
from datasets.features import Features, Value |
|
|
|
SCHEMA = Namespace('http://schema.org/') |
|
|
|
YAGO = Namespace('http://yago-knowledge.org/resource/') |
|
|
|
class YAGO45DatasetBuilder(GeneratorBasedBuilder): |
|
VERSION = "1.0.1" |
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
description="A subset of the YAGO 4.5 dataset maintaining only English labels", |
|
citation="@article{suchanek2023integrating,title={Integrating the Wikidata Taxonomy into YAGO},author={Suchanek, Fabian M and Alam, Mehwish and Bonald, Thomas and Paris, Pierre-Henri and Soria, Jules},journal={arXiv preprint arXiv:2308.11884},year={2023}}", |
|
homepage="https://yago-knowledge.org/", |
|
license="https://creativecommons.org/licenses/by-sa/3.0/", |
|
features=Features({ |
|
'subject': Value('string'), |
|
'predicate': Value('string'), |
|
'object': Value('string') |
|
}) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
facts, taxonomy = dl_manager.download_and_extract(["facts.tar.gz", "yago-taxonomy.ttl"]) |
|
|
|
facts = os.path.join(facts, "facts/") |
|
|
|
|
|
chunk_paths = [os.path.join(facts, chunk) for chunk in os.listdir(facts) if chunk.endswith('.nt')] + [taxonomy] |
|
return [SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={'chunk_paths': chunk_paths})] |
|
|
|
def _generate_examples(self, chunk_paths): |
|
|
|
|
|
id_ = 0 |
|
for chunk_path in chunk_paths: |
|
graph = Graph(bind_namespaces="core") |
|
graph.parse(chunk_path) |
|
|
|
|
|
for (s, p, o) in graph.triples((None, None, None)): |
|
yield id_, { |
|
'subject': s.n3(), |
|
'predicate': p.n3(), |
|
'object': o.n3() |
|
} |
|
id_ += 1 |
|
|
|
from rdflib.util import from_n3 |
|
|
|
def triples(features): |
|
try: |
|
subject_node = from_n3(features['subject']) |
|
predicate_node = from_n3(features['predicate']) |
|
object_node = from_n3(features['object']) |
|
return (subject_node, predicate_node, object_node) |
|
except Exception as e: |
|
print(f"Error transforming features {features}: {e}") |
|
return (None, None, None) |
|
|