|
import collections |
|
import importlib |
|
import inspect |
|
import uuid |
|
from abc import abstractmethod |
|
from copy import deepcopy |
|
from dataclasses import field |
|
from itertools import zip_longest |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Generator, |
|
Iterable, |
|
List, |
|
Optional, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
from .artifact import Artifact, fetch_artifact |
|
from .dataclass import NonPositionalField, OptionalField |
|
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath |
|
from .operator import ( |
|
MultiStream, |
|
MultiStreamOperator, |
|
PagedStreamOperator, |
|
SingleStreamOperator, |
|
SingleStreamReducer, |
|
StreamingOperator, |
|
StreamInitializerOperator, |
|
StreamInstanceOperator, |
|
StreamSource, |
|
) |
|
from .random_utils import random |
|
from .stream import MultiStream, Stream |
|
from .text_utils import nested_tuple_to_string |
|
from .utils import flatten_dict |
|
|
|
|
|
class FromIterables(StreamInitializerOperator): |
|
""" |
|
Creates a MultiStream from iterables. |
|
|
|
Args: |
|
iterables (Dict[str, Iterable]): A dictionary where each key-value pair represents a stream name and its corresponding iterable. |
|
""" |
|
|
|
def process(self, iterables: Dict[str, Iterable]) -> MultiStream: |
|
return MultiStream.from_iterables(iterables) |
|
|
|
|
|
class IterableSource(StreamSource): |
|
iterables: Dict[str, Iterable] |
|
|
|
def __call__(self) -> MultiStream: |
|
return MultiStream.from_iterables(self.iterables) |
|
|
|
|
|
class MapInstanceValues(StreamInstanceOperator): |
|
"""A class used to map instance values into a stream. |
|
|
|
This class is a type of StreamInstanceOperator, |
|
it maps values of instances in a stream using predefined mappers. |
|
|
|
Attributes: |
|
mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values. |
|
Keys are the names of the fields to be mapped, and values are dictionaries |
|
that define the mapping from old values to new values. |
|
strict (bool): If True, the mapping is applied strictly. That means if a value |
|
does not exist in the mapper, it will raise a KeyError. If False, values |
|
that are not present in the mapper are kept as they are. |
|
""" |
|
|
|
mappers: Dict[str, Dict[str, str]] |
|
strict: bool = True |
|
use_query = False |
|
|
|
def verify(self): |
|
|
|
for key, mapper in self.mappers.items(): |
|
assert isinstance(mapper, dict), f"Mapper for given field {key} should be a dict, got {type(mapper)}" |
|
for k, v in mapper.items(): |
|
assert isinstance(k, str), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}' |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
for key, mapper in self.mappers.items(): |
|
value = dict_get(instance, key, use_dpath=self.use_query) |
|
if value is not None: |
|
value = str(value) |
|
if self.strict: |
|
dict_set(instance, key, mapper[value], use_dpath=self.use_query) |
|
else: |
|
if value in mapper: |
|
dict_set(instance, key, mapper[value], use_dpath=self.use_query) |
|
return instance |
|
|
|
|
|
class FlattenInstances(StreamInstanceOperator): |
|
""" |
|
Flattens each instance in a stream, making nested dictionary entries into top-level entries. |
|
|
|
Args: |
|
parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string. |
|
sep (str): The separator to use when concatenating nested keys. Defaults to "_". |
|
""" |
|
|
|
parent_key: str = "" |
|
sep: str = "_" |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep) |
|
|
|
|
|
class AddFields(StreamInstanceOperator): |
|
""" |
|
Adds specified fields to each instance in a stream. |
|
|
|
Args: |
|
fields (Dict[str, object]): The fields to add to each instance. |
|
""" |
|
|
|
fields: Dict[str, object] |
|
use_query: bool = False |
|
use_deepcopy: bool = False |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
if self.use_query: |
|
for key, value in self.fields.items(): |
|
if self.use_deepcopy: |
|
value = deepcopy(value) |
|
dict_set(instance, key, value, use_dpath=self.use_query) |
|
else: |
|
if self.use_deepcopy: |
|
self.fields = deepcopy(self.fields) |
|
instance.update(self.fields) |
|
return instance |
|
|
|
|
|
class RemoveFields(StreamInstanceOperator): |
|
""" |
|
Adds specified fields to each instance in a stream. |
|
|
|
Args: |
|
fields (Dict[str, object]): The fields to add to each instance. |
|
""" |
|
|
|
fields: List[str] |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
for field in self.fields: |
|
del instance[field] |
|
return instance |
|
|
|
|
|
class FieldOperator(StreamInstanceOperator): |
|
""" |
|
A general stream that processes the values of a field (or multiple ones |
|
Args: |
|
field (Optional[str]): The field to process, if only a single one is passed Defaults to None |
|
to_field (Optional[str]): Field name to save, if only one field is to be saved, if None is passed the operator would happen in-place and replace "field" Defaults to None |
|
field_to_field (Optional[Union[List[Tuple[str, str]], Dict[str, str]]]): Mapping from fields to process to their names after this process, duplicates are allowed. Defaults to None |
|
process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False |
|
use_query (bool): Whether to use dpath style queries. Defaults to False |
|
""" |
|
|
|
field: Optional[str] = None |
|
to_field: Optional[str] = None |
|
field_to_field: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None |
|
process_every_value: bool = False |
|
use_query: bool = False |
|
get_default: Any = None |
|
not_exist_ok: bool = False |
|
|
|
def verify(self): |
|
super().verify() |
|
|
|
assert self.field is not None or self.field_to_field is not None, "Must supply a field to work on" |
|
assert ( |
|
self.to_field is None or self.field_to_field is None |
|
), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}" |
|
assert ( |
|
self.field is None or self.field_to_field is None |
|
), f"Can not apply operator both on {self.field} and on the mapping from fields to fields {self.field_to_field}" |
|
assert self._field_to_field, f"the from and to fields must be defined got: {self._field_to_field}" |
|
|
|
@abstractmethod |
|
def process_value(self, value: Any) -> Any: |
|
pass |
|
|
|
def prepare(self): |
|
if self.to_field is None: |
|
self.to_field = self.field |
|
if self.field_to_field is None: |
|
self._field_to_field = [(self.field, self.to_field)] |
|
else: |
|
try: |
|
self._field_to_field = [(k, v) for k, v in self.field_to_field.items()] |
|
except AttributeError: |
|
self._field_to_field = self.field_to_field |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
for from_field, to_field in self._field_to_field: |
|
try: |
|
old_value = dict_get( |
|
instance, |
|
from_field, |
|
use_dpath=self.use_query, |
|
default=self.get_default, |
|
not_exist_ok=self.not_exist_ok, |
|
) |
|
except TypeError as e: |
|
raise TypeError(f"Failed to get {from_field} from {instance}") |
|
if self.process_every_value: |
|
new_value = [self.process_value(value) for value in old_value] |
|
else: |
|
new_value = self.process_value(old_value) |
|
if self.use_query and is_subpath(from_field, to_field): |
|
dict_delete(instance, from_field) |
|
dict_set(instance, to_field, new_value, use_dpath=self.use_query, not_exist_ok=True) |
|
return instance |
|
|
|
|
|
class RenameFields(FieldOperator): |
|
""" |
|
Renames fields |
|
""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return value |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
res = super().process(instance=instance, stream_name=stream_name) |
|
vals = [x[1] for x in self._field_to_field] |
|
for key, _ in self._field_to_field: |
|
if self.use_query and "/" in key: |
|
continue |
|
if key not in vals: |
|
res.pop(key) |
|
return res |
|
|
|
|
|
class AddConstant(FieldOperator): |
|
""" |
|
Adds a number, similar to field + add |
|
Args: |
|
add (float): sum to add |
|
""" |
|
|
|
add: float |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return value + self.add |
|
|
|
|
|
class ShuffleFieldValues(FieldOperator): |
|
""" |
|
Shuffles an iterable value |
|
""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
res = list(value) |
|
random.shuffle(res) |
|
return res |
|
|
|
|
|
class JoinStr(FieldOperator): |
|
""" |
|
Joins a list of strings (contents of a field), similar to str.join() |
|
Args: |
|
separator (str): text to put between values |
|
""" |
|
|
|
separator: str = "," |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return self.separator.join(str(x) for x in value) |
|
|
|
|
|
class Apply(StreamInstanceOperator): |
|
__allow_unexpected_arguments__ = True |
|
function: Callable = NonPositionalField(required=True) |
|
to_field: str = NonPositionalField(required=True) |
|
|
|
def function_to_str(self, function: Callable) -> str: |
|
parts = [] |
|
|
|
if hasattr(function, "__module__"): |
|
parts.append(function.__module__) |
|
if hasattr(function, "__qualname__"): |
|
parts.append(function.__qualname__) |
|
else: |
|
parts.append(function.__name__) |
|
|
|
result = ".".join(parts) |
|
|
|
return result |
|
|
|
def str_to_function(self, function_str: str) -> Callable: |
|
splitted = function_str.split(".", 1) |
|
if len(splitted) == 1: |
|
return __builtins__[module_name] |
|
else: |
|
module_name, function_name = splitted |
|
if module_name in __builtins__: |
|
obj = __builtins__[module_name] |
|
elif module_name in globals(): |
|
obj = globals()[module_name] |
|
else: |
|
obj = importlib.import_module(module_name) |
|
for part in function_name.split("."): |
|
obj = getattr(obj, part) |
|
return obj |
|
|
|
def prepare(self): |
|
super().prepare() |
|
if isinstance(self.function, str): |
|
self.function = self.str_to_function(self.function) |
|
self._init_dict["function"] = self.function_to_str(self.function) |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
argv = [instance[arg] for arg in self._argv] |
|
kwargs = {key: instance[val] for key, val in self._kwargs} |
|
|
|
result = self.function(*argv, **kwargs) |
|
|
|
instance[self.to_field] = result |
|
return instance |
|
|
|
|
|
class ListFieldValues(StreamInstanceOperator): |
|
""" |
|
Concatanates values of multiple fields into a list to list(fields) |
|
""" |
|
|
|
fields: str |
|
to_field: str |
|
use_query: bool = False |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
values = [] |
|
for field in self.fields: |
|
values.append(dict_get(instance, field, use_dpath=self.use_query)) |
|
instance[self.to_field] = values |
|
return instance |
|
|
|
|
|
class ZipFieldValues(StreamInstanceOperator): |
|
""" |
|
Zips values of multiple fields similar to list(zip(*fields)) |
|
""" |
|
|
|
fields: str |
|
to_field: str |
|
longest: bool = False |
|
use_query: bool = False |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
values = [] |
|
for field in self.fields: |
|
values.append(dict_get(instance, field, use_dpath=self.use_query)) |
|
if self.longest: |
|
zipped = zip_longest(*values) |
|
else: |
|
zipped = zip(*values) |
|
instance[self.to_field] = list(zipped) |
|
return instance |
|
|
|
|
|
class IndexOf(StreamInstanceOperator): |
|
""" |
|
Finds the location of one value in another (iterable) value similar to to_field=search_in.index(index_of) |
|
""" |
|
|
|
search_in: str |
|
index_of: str |
|
to_field: str |
|
use_query: bool = False |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
lst = dict_get(instance, self.search_in, use_dpath=self.use_query) |
|
item = dict_get(instance, self.index_of, use_dpath=self.use_query) |
|
instance[self.to_field] = lst.index(item) |
|
return instance |
|
|
|
|
|
class TakeByField(StreamInstanceOperator): |
|
""" |
|
Takes value from one field based on another field similar to field[index] |
|
""" |
|
|
|
field: str |
|
index: str |
|
to_field: str = None |
|
use_query: bool = False |
|
|
|
def prepare(self): |
|
if self.to_field is None: |
|
self.to_field = self.field |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
value = dict_get(instance, self.field, use_dpath=self.use_query) |
|
index_value = dict_get(instance, self.index, use_dpath=self.use_query) |
|
instance[self.to_field] = value[index_value] |
|
return instance |
|
|
|
|
|
class CopyFields(FieldOperator): |
|
""" |
|
Copies specified fields from one field to another. |
|
|
|
Args: |
|
field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields. |
|
use_dpath (bool): Whether to use dpath for accessing fields. Defaults to False. |
|
""" |
|
|
|
def process_value(self, value: Any) -> Any: |
|
return value |
|
|
|
|
|
class AddID(StreamInstanceOperator): |
|
id_field_name: str = "id" |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "") |
|
return instance |
|
|
|
|
|
class CastFields(StreamInstanceOperator): |
|
""" |
|
Casts specified fields to specified types. |
|
|
|
Args: |
|
types (Dict[str, str]): A dictionary mapping fields to their new types. |
|
nested (bool): Whether to cast nested fields. Defaults to False. |
|
fields (Dict[str, str]): A dictionary mapping fields to their new types. |
|
defaults (Dict[str, object]): A dictionary mapping types to their default values for cases of casting failure. |
|
""" |
|
|
|
types = { |
|
"int": int, |
|
"float": float, |
|
"str": str, |
|
"bool": bool, |
|
} |
|
fields: Dict[str, str] = field(default_factory=dict) |
|
failure_defaults: Dict[str, object] = field(default_factory=dict) |
|
use_nested_query: bool = False |
|
cast_multiple: bool = False |
|
|
|
def _cast_single(self, value, type, field): |
|
try: |
|
return self.types[type](value) |
|
except: |
|
if field not in self.failure_defaults: |
|
raise ValueError( |
|
f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.' |
|
) |
|
return self.failure_defaults[field] |
|
|
|
def _cast_multiple(self, values, type, field): |
|
values = [self._cast_single(value, type, field) for value in values] |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
for field, type in self.fields.items(): |
|
value = dict_get(instance, field, use_dpath=self.use_nested_query) |
|
if self.cast_multiple: |
|
casted_value = self._cast_multiple(value, type, field) |
|
else: |
|
casted_value = self._cast_single(value, type, field) |
|
dict_set(instance, field, casted_value, use_dpath=self.use_nested_query) |
|
return instance |
|
|
|
|
|
def recursive_divide(instance, divisor, strict=False): |
|
if isinstance(instance, dict): |
|
for key, value in instance.items(): |
|
instance[key] = recursive_divide(value, divisor, strict=strict) |
|
elif isinstance(instance, list): |
|
for i, value in enumerate(instance): |
|
instance[i] = recursive_divide(value, divisor, strict=strict) |
|
elif isinstance(instance, float): |
|
instance /= divisor |
|
elif strict: |
|
raise ValueError(f"Cannot divide instance of type {type(instance)}") |
|
return instance |
|
|
|
|
|
class DivideAllFieldsBy(StreamInstanceOperator): |
|
divisor: float = 1.0 |
|
strict: bool = False |
|
recursive: bool = True |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
return recursive_divide(instance, self.divisor, strict=self.strict) |
|
|
|
|
|
class ArtifactFetcherMixin: |
|
""" |
|
Provides a way to fetch and cache artifacts in the system. |
|
|
|
Args: |
|
cache (Dict[str, Artifact]): A cache for storing fetched artifacts. |
|
""" |
|
|
|
cache: Dict[str, Artifact] = {} |
|
|
|
@classmethod |
|
def get_artifact(cls, artifact_identifier: str) -> Artifact: |
|
if artifact_identifier not in cls.cache: |
|
artifact, artifactory = fetch_artifact(artifact_identifier) |
|
cls.cache[artifact_identifier] = artifact |
|
return cls.cache[artifact_identifier] |
|
|
|
|
|
class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin): |
|
""" |
|
Applies value operators to each instance in a stream based on specified fields. |
|
|
|
Args: |
|
value_field (str): The field containing the value to be operated on. |
|
operators_field (str): The field containing the operators to be applied. |
|
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance. |
|
""" |
|
|
|
inputs_fields: str |
|
|
|
operators_field: str |
|
default_operators: List[str] = None |
|
fields_to_treat_as_list: List[str] = NonPositionalField(default_factory=list) |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
operator_names = instance.get(self.operators_field) |
|
if operator_names is None: |
|
assert ( |
|
self.default_operators is not None |
|
), f"No operators found in {self.field} field and no default operators provided" |
|
operator_names = self.default_operators |
|
|
|
if isinstance(operator_names, str): |
|
operator_names = [operator_names] |
|
|
|
for name in operator_names: |
|
operator = self.get_artifact(name) |
|
for field in self.inputs_fields: |
|
value = instance[field] |
|
if field in self.fields_to_treat_as_list: |
|
instance[field] = [operator.process(v) for v in value] |
|
else: |
|
instance[field] = operator.process(instance[field]) |
|
|
|
return instance |
|
|
|
|
|
class FilterByValues(SingleStreamOperator): |
|
""" |
|
Filters a stream, yielding only instances that match specified values. |
|
|
|
Args: |
|
values (Dict[str, Any]): The values that instances should match to be included in the output. |
|
""" |
|
|
|
values: Dict[str, Any] |
|
|
|
def process(self, stream: Stream, stream_name: str = None) -> Generator: |
|
for instance in stream: |
|
if all(instance[key] == value for key, value in self.values.items()): |
|
yield instance |
|
|
|
|
|
class Unique(SingleStreamReducer): |
|
""" |
|
Reduces a stream to unique instances based on specified fields. |
|
|
|
Args: |
|
fields (List[str]): The fields that should be unique in each instance. |
|
""" |
|
|
|
fields: List[str] = field(default_factory=list) |
|
|
|
@staticmethod |
|
def to_tuple(instance: dict, fields: List[str]) -> tuple: |
|
result = [] |
|
for field in fields: |
|
value = instance[field] |
|
if isinstance(value, list): |
|
value = tuple(value) |
|
result.append(value) |
|
return tuple(result) |
|
|
|
def process(self, stream: Stream) -> Stream: |
|
seen = set() |
|
for instance in stream: |
|
values = self.to_tuple(instance, self.fields) |
|
if values not in seen: |
|
seen.add(values) |
|
return list(seen) |
|
|
|
|
|
class SplitByValue(MultiStreamOperator): |
|
""" |
|
Splits a MultiStream into multiple streams based on unique values in specified fields. |
|
|
|
Args: |
|
fields (List[str]): The fields to use when splitting the MultiStream. |
|
""" |
|
|
|
fields: List[str] = field(default_factory=list) |
|
|
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
uniques = Unique(fields=self.fields)(multi_stream) |
|
|
|
result = {} |
|
|
|
for stream_name, stream in multi_stream.items(): |
|
stream_unique_values = uniques[stream_name] |
|
for unique_values in stream_unique_values: |
|
filtering_values = {field: value for field, value in zip(self.fields, unique_values)} |
|
filtered_streams = FilterByValues(values=filtering_values)._process_single_stream(stream) |
|
filtered_stream_name = stream_name + "_" + nested_tuple_to_string(unique_values) |
|
result[filtered_stream_name] = filtered_streams |
|
|
|
return MultiStream(result) |
|
|
|
|
|
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin): |
|
""" |
|
Applies stream operators to a stream based on specified fields in each instance. |
|
|
|
Args: |
|
field (str): The field containing the operators to be applied. |
|
reversed (bool): Whether to apply the operators in reverse order. |
|
""" |
|
|
|
field: str |
|
reversed: bool = False |
|
|
|
def process(self, stream: Stream, stream_name: str = None) -> Generator: |
|
first_instance = stream.peak() |
|
|
|
operators = first_instance.get(self.field, []) |
|
if isinstance(operators, str): |
|
operators = [operators] |
|
|
|
if self.reversed: |
|
operators = list(reversed(operators)) |
|
|
|
for operator_name in operators: |
|
operator = self.get_artifact(operator_name) |
|
assert isinstance(operator, StreamingOperator), f"Operator {operator_name} must be a SingleStreamOperator" |
|
|
|
stream = operator(MultiStream({"tmp": stream}))["tmp"] |
|
|
|
yield from stream |
|
|
|
|
|
class AddFieldNamePrefix(StreamInstanceOperator): |
|
""" |
|
Adds a prefix to each field name in each instance of a stream. |
|
|
|
Args: |
|
prefix_dict (Dict[str, str]): A dictionary mapping stream names to prefixes. |
|
""" |
|
|
|
prefix_dict: Dict[str, str] |
|
|
|
def prepare(self): |
|
return super().prepare() |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
return {self.prefix_dict[stream_name] + key: value for key, value in instance.items()} |
|
|
|
|
|
class MergeStreams(MultiStreamOperator): |
|
""" |
|
Merges multiple streams into a single stream. |
|
|
|
Args: |
|
new_stream_name (str): The name of the new stream resulting from the merge. |
|
add_origin_stream_name (bool): Whether to add the origin stream name to each instance. |
|
origin_stream_name_field_name (str): The field name for the origin stream name. |
|
""" |
|
|
|
new_stream_name: str = "all" |
|
add_origin_stream_name: bool = True |
|
origin_stream_name_field_name: str = "origin" |
|
|
|
def merge(self, multi_stream): |
|
for stream_name, stream in multi_stream.items(): |
|
for instance in stream: |
|
if self.add_origin_stream_name: |
|
instance[self.origin_stream_name_field_name] = stream_name |
|
yield instance |
|
|
|
def process(self, multi_stream: MultiStream) -> MultiStream: |
|
return MultiStream({self.new_stream_name: Stream(self.merge, gen_kwargs={"multi_stream": multi_stream})}) |
|
|
|
|
|
class Shuffle(PagedStreamOperator): |
|
""" |
|
Shuffles the order of instances in each page of a stream. |
|
|
|
Args: |
|
page_size (int): The size of each page in the stream. Defaults to 1000. |
|
""" |
|
|
|
def process(self, page: List[Dict], stream_name: str = None) -> Generator: |
|
random.shuffle(page) |
|
yield from page |
|
|
|
|
|
class EncodeLabels(StreamInstanceOperator): |
|
""" |
|
Encode labels of specified fields together a into integers. |
|
|
|
Args: |
|
fields (List[str]): The fields to encode together. |
|
""" |
|
|
|
fields: List[str] |
|
|
|
def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream: |
|
self.encoder = {} |
|
return super()._process_multi_stream(multi_stream) |
|
|
|
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]: |
|
for field in self.fields: |
|
values = dict_get(instance, field, use_dpath=True) |
|
if not isinstance(values, list): |
|
values = [values] |
|
for value in values: |
|
if value not in self.encoder: |
|
self.encoder[value] = len(self.encoder) |
|
new_values = [self.encoder[value] for value in values] |
|
dict_set(instance, field, new_values, use_dpath=True, set_multiple=True) |
|
|
|
return instance |
|
|
|
|
|
class StreamRefiner(SingleStreamOperator): |
|
max_instances: int = None |
|
|
|
def process(self, stream: Stream, stream_name: str = None) -> Generator: |
|
if self.max_instances is not None: |
|
yield from stream.take(self.max_instances) |
|
else: |
|
yield from stream |
|
|
|
|
|
class DeterministicBalancer(StreamRefiner): |
|
""" |
|
A class used to balance streams deterministically. |
|
|
|
Attributes: |
|
fields (List[str]): A list of field names to be used in determining the signature of an instance. |
|
streams (List[str]): A list of stream names to be processed by the balancer. |
|
|
|
Usage: |
|
balancer = DeterministicBalancer(fields=["field1", "field2"], streams=["stream1", "stream2"]) |
|
balanced_stream = balancer.process(stream) |
|
""" |
|
|
|
fields: List[str] |
|
|
|
def signature(self, instance): |
|
return str(tuple(dict_get(instance, field, use_dpath=True) for field in self.fields)) |
|
|
|
def process(self, stream: Stream, stream_name: str = None) -> Generator: |
|
counter = collections.Counter() |
|
|
|
for instance in stream: |
|
counter[self.signature(instance)] += 1 |
|
|
|
lowest_count = counter.most_common()[-1][-1] |
|
|
|
max_total_instances_per_sign = lowest_count |
|
if self.max_instances is not None: |
|
max_total_instances_per_sign = min(lowest_count, self.max_instances // len(counter)) |
|
|
|
counter = collections.Counter() |
|
|
|
for instance in stream: |
|
sign = self.signature(instance) |
|
if counter[sign] < max_total_instances_per_sign: |
|
counter[sign] += 1 |
|
yield instance |
|
|
|
|
|
class LengthBalancer(DeterministicBalancer): |
|
segments_boundaries: List[int] |
|
|
|
def signature(self, instance): |
|
total_len = 0 |
|
for field in self.fields: |
|
total_len += len(dict_get(instance, field, use_dpath=True)) |
|
for i, val in enumerate(self.segments_boundaries): |
|
if total_len < val: |
|
return i |
|
return i + 1 |
|
|