File size: 4,564 Bytes
ca10b7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
#####
# imports for hf system:
#####
from .artifact import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .common import __file__ as _
from .file_utils import __file__ as _
# from .fusion import __file__
from .generator_utils import __file__ as _
from .instructions import __file__ as _
from .loaders import __file__ as _
from .load import __file__ as _
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import __file__ as _
from .operators import __file__ as _
from .processors import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .splitters import __file__ as _
from .split_utils import __file__ as _
from .stream import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .schema import __file__ as _
# from .utilize import __file__ as _
# from .validate import __file__ as _
#############
from .stream import MultiStream, Stream
from .operator import SequntialOperator, SequntialOperatorInitilizer, MultiStreamOperator, StreamInitializerOperator
from .operators import (
ApplyValueOperatorsField,
ApplyStreamOperatorsField,
SplitByValue,
MergeStreams,
FlattenInstances,
)
import evaluate
import datasets
from datasets import (
Features,
Value,
Sequence,
)
from dataclasses import field
from typing import List, Union, Dict, Optional, Generator, Any, Iterable
class MultiStreamScoreMean(MultiStreamOperator):
def aggegate_results(self, multi_stream: MultiStream):
scores = []
for stream in multi_stream.values():
instance = stream.peak()
scores.append(instance["score"]["global"]["score"])
from statistics import mean
return mean(scores)
def spread_results(self, stream: Stream, score: float):
for instance in stream:
instance["score"]["global"]["groups_mean_score"] = score
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
mean_score = self.aggegate_results(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
result[stream_name] = Stream(self.spread_results, gen_kwargs={"stream": stream, "score": mean_score})
return MultiStream(result)
class FromPredictionsAndOriginalData(StreamInitializerOperator):
def zip(self, predictions, references):
for prediction, original in zip(predictions, references):
yield {**original, "prediction": prediction}
def process(self, predictions: List[str], references: Iterable, split_name: str = "all") -> MultiStream:
return MultiStream(
{split_name: Stream(self.zip, gen_kwargs={"predictions": predictions, "references": references})}
)
from .schema import UNITXT_DATASET_SCHEMA
class MetricRecipe(SequntialOperatorInitilizer):
def prepare(self):
self.steps = [
FromPredictionsAndOriginalData(),
ApplyValueOperatorsField(
value_field="prediction", operators_field="processors", default_operators=["to_string"]
),
SplitByValue(["group"]),
ApplyStreamOperatorsField(
"metrics",
reversed=True,
),
MultiStreamScoreMean(),
MergeStreams(),
]
UNITXT_METRIC_SCHEMA = Features({"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)})
# @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UnitextMetric(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description="_DESCRIPTION",
citation="_CITATION",
# inputs_description=_KWARGS_DESCRIPTION,
features=UNITXT_METRIC_SCHEMA,
codebase_urls=["https://"],
reference_urls=[
"https://",
"https://",
],
)
def _compute(self, predictions: List[str], references: Iterable, flatten: bool = False, split_name: str = "all"):
recipe = MetricRecipe()
multi_stream = recipe(predictions=predictions, references=references, split_name=split_name)
if flatten:
operator = FlattenInstances()
multi_stream = operator(multi_stream)
stream = multi_stream[split_name]
return list(stream)
|