Datasets:

ArXiv:
File size: 62,253 Bytes
175a9b7
 
fa70f1c
2cd825f
300113f
 
201fa0b
175a9b7
7d7cc9e
fa70f1c
 
8559937
 
fa70f1c
8559937
175a9b7
954708b
fa70f1c
 
 
 
 
 
 
8559937
fa70f1c
954708b
fa70f1c
954708b
8559937
 
 
 
 
7d7cc9e
230105d
7d7cc9e
 
 
 
230105d
7d7cc9e
 
 
 
 
8559937
 
 
7d7cc9e
 
 
fa70f1c
5218ddd
8559937
7d7cc9e
 
 
 
 
 
8559937
 
 
 
 
954708b
8559937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954708b
8559937
 
 
 
 
 
 
 
 
 
 
 
 
 
954708b
 
 
 
8559937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954708b
8559937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7cc9e
 
8559937
7d7cc9e
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
 
7d7cc9e
8559937
 
 
 
4ebbd89
8559937
 
 
 
 
4ebbd89
7254de6
 
8559937
4ebbd89
 
7d7cc9e
 
8559937
7d7cc9e
 
 
8559937
 
 
 
 
 
7d7cc9e
 
 
 
8559937
 
 
 
 
 
 
7d7cc9e
7254de6
7d7cc9e
 
 
8559937
 
 
 
 
 
7d7cc9e
 
 
8559937
 
175a9b7
 
 
 
 
8559937
175a9b7
 
 
 
 
8559937
 
 
 
 
 
 
175a9b7
 
8559937
 
 
 
 
175a9b7
8559937
 
 
 
 
175a9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
 
 
 
175a9b7
 
8559937
954708b
8559937
 
 
175a9b7
 
 
 
8559937
 
 
 
 
2cd825f
175a9b7
 
 
8559937
 
 
7d7cc9e
 
 
 
 
 
 
8559937
7d7cc9e
 
 
 
 
8559937
 
 
7d7cc9e
8559937
 
 
 
 
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
 
 
7254de6
7d7cc9e
8559937
954708b
8559937
 
 
7d7cc9e
 
 
 
8559937
 
 
7d7cc9e
 
 
fa70f1c
 
 
 
 
 
8559937
fa70f1c
 
8559937
 
 
 
 
 
fa70f1c
 
8559937
 
fa70f1c
 
 
 
 
 
8559937
 
 
 
7d7cc9e
 
8559937
7d7cc9e
 
 
8559937
 
 
 
 
 
 
 
 
 
 
fa70f1c
 
954708b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa70f1c
 
 
8559937
 
 
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
fa70f1c
 
 
175a9b7
 
8559937
 
 
175a9b7
 
 
954708b
175a9b7
954708b
 
 
 
 
 
 
175a9b7
fa70f1c
954708b
 
 
 
 
 
 
 
 
 
 
 
fa70f1c
 
8559937
 
 
fa70f1c
8559937
 
 
 
 
 
954708b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
954708b
 
 
 
8559937
175a9b7
 
 
fa70f1c
8559937
 
 
175a9b7
8559937
 
 
175a9b7
 
 
 
 
 
8559937
 
 
fa70f1c
 
 
 
175a9b7
 
 
 
 
954708b
175a9b7
 
 
 
 
8559937
 
 
 
 
 
954708b
 
 
 
 
 
 
 
 
 
 
8559937
954708b
 
 
 
8559937
175a9b7
 
 
 
 
 
 
 
 
 
 
fa70f1c
 
 
 
 
 
 
8559937
fa70f1c
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
fa70f1c
 
230105d
fa70f1c
 
8559937
 
 
 
 
 
 
fa70f1c
 
8559937
 
 
 
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
fa70f1c
 
 
 
7254de6
954708b
fa70f1c
 
8559937
954708b
fa70f1c
 
8559937
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
fa70f1c
 
8559937
954708b
230105d
8559937
7254de6
8559937
 
 
7254de6
 
 
 
 
 
fa70f1c
 
8559937
 
 
 
 
 
7254de6
 
 
 
 
 
 
 
 
fa70f1c
7254de6
 
 
 
fa70f1c
954708b
fa70f1c
 
954708b
 
 
 
fa70f1c
954708b
fa70f1c
954708b
fa70f1c
 
954708b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
175a9b7
fa70f1c
 
 
fac79d6
 
 
 
 
7254de6
 
8559937
 
 
 
 
7254de6
 
 
 
 
8559937
fac79d6
8559937
 
 
 
 
 
 
 
 
 
 
 
 
230105d
 
 
7254de6
8559937
7254de6
 
 
 
8559937
 
 
 
 
 
 
7254de6
8559937
230105d
 
8559937
7254de6
230105d
 
 
 
175a9b7
230105d
 
8559937
 
 
 
 
 
230105d
 
 
 
8559937
 
 
230105d
 
 
4ebbd89
175a9b7
4ebbd89
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebbd89
 
300113f
 
954708b
8559937
300113f
 
954708b
300113f
 
 
954708b
300113f
 
954708b
 
 
 
 
 
300113f
8559937
 
954708b
8559937
954708b
8559937
 
954708b
 
 
 
 
300113f
 
 
8559937
 
 
 
 
 
 
 
 
300113f
 
8559937
 
300113f
 
 
8559937
 
954708b
 
 
 
 
 
 
 
 
8559937
 
954708b
8559937
 
 
300113f
954708b
 
 
 
 
300113f
 
 
8559937
 
300113f
954708b
 
 
4ebbd89
954708b
8559937
954708b
 
 
 
 
 
 
8559937
 
 
300113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebbd89
300113f
8559937
 
 
300113f
 
 
 
 
 
 
8559937
 
 
 
 
 
954708b
8559937
 
 
4ebbd89
 
8559937
 
300113f
8559937
 
 
 
 
 
 
300113f
8559937
 
954708b
300113f
4ebbd89
 
 
 
8559937
 
 
 
 
 
 
 
300113f
 
 
 
954708b
300113f
 
954708b
300113f
175a9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954708b
175a9b7
8559937
 
 
 
 
 
 
 
 
 
175a9b7
8559937
 
 
175a9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954708b
175a9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
2cd825f
175a9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
175a9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
175a9b7
 
 
 
8559937
 
 
 
 
2cd825f
175a9b7
 
 
 
 
 
 
 
 
 
 
8559937
 
2cd825f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201fa0b
 
 
 
 
 
2cd825f
 
 
 
 
 
 
 
 
 
 
 
201fa0b
2cd825f
 
201fa0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd825f
 
 
 
 
 
 
 
 
 
 
201fa0b
 
 
2cd825f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8559937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954708b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
import re
import string
import uuid
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import field
from statistics import mean
from typing import Any, Dict, Generator, List, Optional, Tuple

import evaluate
import numpy
import numpy as np
from scipy.stats import bootstrap

from .artifact import Artifact
from .dataclass import InternalField, OptionalField
from .logging_utils import get_logger
from .operator import (
    MultiStreamOperator,
    SingleStreamOperator,
    StreamingOperator,
    StreamInstanceOperator,
)
from .operators import CopyFields
from .random_utils import get_seed
from .stream import MultiStream, Stream
from .type_utils import isoftype

logger = get_logger()
# The default number of resamples used to estimate the confidence intervals
# global and instances metrics. Use None to disable confidence interval computation by default.
_N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS = 1000
_N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS = 100


def abstract_factory():
    return {}


def abstract_field():
    return field(default_factory=abstract_factory)


class UpdateStream(StreamInstanceOperator):
    update: dict

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        instance.update(self.update)
        return instance


# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(Artifact):
    @property
    @abstractmethod
    def main_score(self):
        pass


class MetricWithConfidenceInterval(Metric):
    # The number of resamples used to estimate the confidence intervals of this metric.
    # Use None to disable confidence interval computation.
    n_resamples: int = None
    confidence_level: float = 0.95
    ci_scores: List[str] = None

    @staticmethod
    def new_random_generator():
        # The np.random.default_rng expects a 32-bit int, while hash(..) can return a 64-bit integer.
        # So use '& MAX_32BIT' to get a 32-bit seed.
        _max_32bit = 2**32 - 1
        return np.random.default_rng(hash(get_seed()) & _max_32bit)

    def disable_confidence_interval_calculation(self):
        self.n_resamples = None

    def _can_compute_confidence_intervals(self, num_predictions):
        return (
            self.n_resamples is not None
            and self.n_resamples > 1
            and num_predictions > 1
        )

    def score_based_confidence_interval(self, instances):
        """Compute confidence intervals based on existing scores, already computed on the input instances.

        score_names: List[str]
            Compute a confidence interval for each score_name from this list.
        instances:
            The instances for which the confidence intervals are computed.
        """
        from statistics import mean

        result = {}

        if not self._can_compute_confidence_intervals(num_predictions=len(instances)):
            return result

        score_names = (
            self.ci_scores if self.ci_scores is not None else [self.main_score]
        )

        for score_name in score_names:
            scores = [
                instance["score"]["instance"][score_name] for instance in instances
            ]
            ci = bootstrap(
                (scores,),
                statistic=mean,
                n_resamples=self.n_resamples,
                confidence_level=self.confidence_level,
                random_state=self.new_random_generator(),
            ).confidence_interval
            result[f"{score_name}_ci_low"] = ci.low
            result[f"{score_name}_ci_high"] = ci.high
            if score_name == self.main_score:
                result["score_ci_low"] = ci.low
                result["score_ci_high"] = ci.high
        return result

    def compute_global_confidence_intervals(
        self, references, predictions, additional_inputs, score_name
    ):
        """Computed confidence intervals for a set of references and predictions."""
        random_gen = self.new_random_generator()

        def statistic(arr, axis):
            # arr is a 2d array where each row is a resampling, so we
            # iterate over the rows and compute the metric on each resampling
            def metric(sample_refs, sample_preds, sample_additional_inputs):
                try:
                    return self._compute(
                        references=sample_refs,
                        predictions=sample_preds,
                        additional_inputs=sample_additional_inputs,
                    )["score"]
                except Exception as e:
                    # this happens in edge cases, for example, when the sampling creates a
                    # sample where all strings are empty and this fails bleu.
                    logger.info(f"Warning in {self.__class__.__name__}", e)
                    return np.nan

            scores = numpy.apply_along_axis(
                lambda x: metric(
                    sample_refs=[references[i] for i in x],
                    sample_preds=[predictions[i] for i in x],
                    sample_additional_inputs=[additional_inputs[i] for i in x],
                ),
                axis=axis,
                arr=arr,
            )

            # when running with bca interval (default), the statistic is called twice: with the
            # original data and with the resamples. here we want to focus only on the latter.
            if scores.size > 1:
                # here we deal with samples on which the metric could not be computed. These are
                # edge cases - for example, when the sample contains only empty strings.
                # CI is about the distribution around the statistic (e.g. mean), it doesn't deal with
                # cases in which the metric is not computable. Therefore, we ignore these edge cases
                # as part of the computation of CI. The question is how to implement this policy.
                # Options:
                # 1. skip the errors and return a shorter array => this fails because Scipy demans
                # this callback (i.e. the statistic() callback) to return an array of the same size
                # as the number of resamples
                # 2. Put np.nan for the errors => this fails because in such case the ci itself
                # becomes np.nan. So one edge case can fail the whole CI computation.
                # 3. Replace the errors with a sampling from the successful cases => this is what
                # is implemented.
                error_indices = numpy.isnan(scores)
                n_errors = sum(error_indices)
                if n_errors > 0:
                    new_scores = random_gen.choice(scores, n_errors, replace=True)
                    scores = scores[~error_indices]
                    scores = np.concatenate([scores, new_scores])

            return scores

        result = {}
        num_predictions = len(predictions)
        if self._can_compute_confidence_intervals(num_predictions=num_predictions):
            identifiers = list(range(num_predictions))
            ci = bootstrap(
                (identifiers,),
                statistic=statistic,
                n_resamples=self.n_resamples,
                confidence_level=self.confidence_level,
                random_state=random_gen,
            ).confidence_interval
            result["score_ci_low"] = ci.low
            result["score_ci_high"] = ci.high
            result[f"{score_name}_ci_low"] = ci.low
            result[f"{score_name}_ci_high"] = ci.high
        return result


class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
    """A class for computing metrics that require joint calculations over all instances and are not just aggregation of scores of individuals instances.

    For example, macro_F1 requires
    calculation requires calculation of recall and precision per class, so all instances of the class
    need to be considered.  Accuracy, on the other hand, is just an average of the accuracy of all the instances.
    """

    n_resamples = _N_RESAMPLES_DEFAULT_FOR_GLOBAL_METRICS

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        references = []
        predictions = []
        additional_inputs = []
        global_score = {}

        instances = []

        for instance in stream:
            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            instance_references, instance_prediction = (
                instance["references"],
                instance["prediction"],
            )
            references.append(instance_references)
            predictions.append(instance_prediction)
            instances.append(instance)

            instance_additional_inputs = (
                instance["additional_inputs"] if "additional_inputs" in instance else {}
            )
            additional_inputs.append(instance_additional_inputs)
            try:
                instance_score = self._compute(
                    [instance_references],
                    [instance_prediction],
                    [instance_additional_inputs],
                )
            except:
                instance_score = {"score": None, "score_name": self.main_score}

                if isinstance(self.main_score, str):
                    instance_score[self.main_score] = None

            instance["score"]["instance"].update(instance_score)

        result = self._compute(references, predictions, additional_inputs)

        global_score.update(result)

        score_name = global_score["score_name"]
        confidence_interval = self.compute_global_confidence_intervals(
            references, predictions, additional_inputs, score_name
        )
        global_score.update(confidence_interval)

        for instance in instances:
            instance["score"]["global"] = global_score
            yield instance

    def _compute(
        self,
        references: List[List[str]],
        predictions: List[str],
        additional_inputs: List[Any],
    ) -> dict:
        result = self.compute(references, predictions, additional_inputs)
        result["score"] = result[self.main_score]
        result["score_name"] = self.main_score
        return result

    @abstractmethod
    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Any],
    ) -> dict:
        pass


class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
    n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS
    main_score: str
    reduction_map: Dict[str, List[str]]

    implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        global_score = {}
        instances = []

        # consume the stream
        references, predictions = map(
            list,
            zip(
                *[
                    (instance["references"], instance["prediction"])
                    for instance in stream
                ]
            ),
        )

        additional_inputs = [
            instance["additional_inputs"] if "additional_inputs" in instance else {}
            for instance in stream
        ]

        # compute the metric over all refs and preds
        instance_scores = self.compute(
            references=references,
            predictions=predictions,
            additional_inputs=additional_inputs,
        )

        # add the score and score_name fields
        for instance_score in instance_scores:
            instance_score["score"] = instance_score[self.main_score]
            instance_score["score_name"] = self.main_score

        for instance, score in zip(stream, instance_scores):
            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            instance["score"]["instance"].update(score)

            instances.append(instance)

        for reduction, fields in self.reduction_map.items():
            assert (
                reduction in self.implemented_reductions
            ), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"

            if reduction == "mean":
                from statistics import mean

                for field_name in fields:
                    global_score[field_name] = mean(
                        [
                            instance["score"]["instance"][field_name]
                            for instance in instances
                        ]
                    )
                    if field_name == self.main_score:
                        global_score["score"] = global_score[field_name]
                        global_score["score_name"] = self.main_score

                confidence_interval = self.score_based_confidence_interval(
                    instances=instances
                )
                global_score.update(confidence_interval)

        for instance in instances:
            yield instance

    @abstractmethod
    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Dict],
    ) -> List[Dict[str, Any]]:
        pass


class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
    n_resamples = _N_RESAMPLES_DEFAULT_FOR_INSTANCE_METRICS

    implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])

    @property
    @abstractmethod
    def reduction_map(self) -> dict:
        pass

    def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
        global_score = {}
        instances = []

        for instance in stream:
            refs, pred = instance["references"], instance["prediction"]
            additional_inputs = (
                instance["additional_inputs"] if "additional_inputs" in instance else {}
            )

            instance_score = self.compute(
                references=refs, prediction=pred, additional_inputs=additional_inputs
            )
            instance_score["score"] = instance_score[self.main_score]
            instance_score["score_name"] = self.main_score
            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            instance["score"]["instance"].update(instance_score)

            instances.append(instance)

        for reduction, fields in self.reduction_map.items():
            assert (
                reduction in self.implemented_reductions
            ), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"

            if reduction == "mean":
                from statistics import mean

                for field_name in fields:
                    scores = [
                        instance["score"]["instance"][field_name]
                        for instance in instances
                    ]
                    global_score[field_name] = mean(scores)
                    if field_name == self.main_score:
                        global_score["score"] = global_score[field_name]
                        global_score["score_name"] = self.main_score

                confidence_interval = self.score_based_confidence_interval(
                    instances=instances
                )
                global_score.update(confidence_interval)

        for instance in instances:
            yield instance

    @abstractmethod
    def compute(
        self, references: List[Any], prediction: Any, additional_inputs: Dict
    ) -> dict:
        pass


class Squad(GlobalMetric):
    _metric = None
    main_score = "f1"
    metric = "squad"

    def prepare(self):
        super().prepare()
        self._metric = evaluate.load(self.metric)

    def compute(
        self,
        references: List[List[str]],
        predictions: List[str],
        additional_inputs: List[Dict],
    ) -> dict:
        ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
        formatted_predictions = [
            {"prediction_text": prediction, "id": ids[i]}
            for i, prediction in enumerate(predictions)
        ]
        formatted_references = [
            {"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
            for i, reference in enumerate(references)
        ]

        return self._metric.compute(
            predictions=formatted_predictions,
            references=formatted_references,
        )


class Accuracy(InstanceMetric):
    reduction_map = {"mean": ["accuracy"]}
    main_score = "accuracy"

    def compute(
        self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
    ) -> dict:
        result = {
            self.main_score: float(
                str(prediction) in [str(reference) for reference in references]
            )
        }
        result["score"] = result[self.main_score]
        result["score_name"] = self.main_score
        return result


class StringContainment(InstanceMetric):
    reduction_map = {"mean": ["string_containment"]}
    main_score = "string_containment"

    def compute(
        self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
    ) -> dict:
        result = {
            self.main_score: float(
                any(str(reference) in prediction for reference in references)
            )
        }
        result["score"] = result[self.main_score]
        result["score_name"] = self.main_score
        return result


class MetricPipeline(MultiStreamOperator, Metric):
    main_score: str = None
    preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
    postpreprocess_steps: Optional[List[StreamingOperator]] = field(
        default_factory=list
    )
    metric: Metric = None

    def verify(self):
        assert self.main_score is not None, "main_score is not set"

    def prepare(self):
        super().prepare()
        self.prepare_score = CopyFields(
            field_to_field=[
                [f"score/instance/{self.main_score}", "score/instance/score"],
                [f"score/global/{self.main_score}", "score/global/score"],
            ],
            use_query=True,
        )

    def process(self, multi_stream: MultiStream) -> MultiStream:
        for step in self.preprocess_steps:
            multi_stream = step(multi_stream)
        multi_stream = self.metric(multi_stream)
        for step in self.postpreprocess_steps:
            multi_stream = step(multi_stream)
        return self.prepare_score(multi_stream)


class HuggingfaceMetric(GlobalMetric):
    hf_metric_name: str = None
    main_score: str = None  # The main score returned from the metric
    hf_main_score: str = (
        None  # USed if HF returns uses a different score name for the main metric
    )

    scale: float = 1.0  # optional scaling of main results
    scaled_fields: list = None
    # This are fixed arguments  passed to compute method
    hf_compute_args: Dict[str, Any] = OptionalField(default_factory=dict)
    # These are additional input fields passed to HF compute method (a list with one value per instance)
    hf_additional_input_fields: List = OptionalField(default_factory=list)
    # These are additional input fields that are passed as one value
    hf_additional_input_fields_pass_one_value: List = OptionalField(
        default_factory=list
    )

    experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))

    def verify(self):
        assert (
            self.hf_additional_input_fields is None
            or isoftype(self.hf_additional_input_fields, List[str])
        ), f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
        assert (
            self.hf_additional_input_fields_pass_one_value is None
            or isoftype(self.hf_additional_input_fields_pass_one_value, List[str])
        ), f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."

        return super().verify()

    def prepare(self):
        super().prepare()
        self.metric = evaluate.load(
            self.hf_metric_name, experiment_id=self.experiment_id
        )

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Dict],
    ) -> dict:
        passed_additional_inputs = {}
        for additional_input_field in self.hf_additional_input_fields:
            assert (
                additional_input_field in additional_inputs[0]
            ), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
            passed_additional_inputs[additional_input_field] = [
                additional_input[additional_input_field]
                for additional_input in additional_inputs
            ]
        for additional_input_field in self.hf_additional_input_fields_pass_one_value:
            assert (
                additional_input_field in additional_inputs[0]
            ), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"

            values = {
                additional_input[additional_input_field]
                for additional_input in additional_inputs
            }
            assert (
                len(values) == 1
            ), f"Values of '{additional_input_field}' field required by {__class__.__name__}  should all be the same, but have multiple values {values}"

            passed_additional_inputs[additional_input_field] = next(iter(values))

        # add check that all required fields in self.metrics are in passed_additional_inputs       print(passed_additional_inputs)
        result = self.metric.compute(
            predictions=predictions,
            references=references,
            **passed_additional_inputs,
            **self.hf_compute_args,
        )
        if self.hf_main_score:
            result[self.main_score] = result[self.hf_main_score]
            del result[self.hf_main_score]
        if self.scale != 1.0:
            assert (
                self.scaled_fields is not None
            ), f"Scaling factor was set to {self.scale}, but no fields specified"
            for key in self.scaled_fields:
                assert (
                    key in result
                ), f"Trying to scale field '{key}' which is not in results of metrics: {result}"
                if isinstance(result[key], list):
                    assert all(
                        isinstance(v, float) for v in result[key]
                    ), "Not all scaled field '{key}' values are floats: {result[key]}"
                    result[key] = [v / self.scale for v in result[key]]
                else:
                    assert isinstance(
                        result[key], float
                    ), "Scaled field '{key}' is not float: {result[key]}"
                    result[key] /= self.scale
        return result


class HuggingfaceBulkMetric(BulkInstanceMetric):
    hf_metric_name: str

    hf_metric_fields: List[str]
    hf_compute_args: dict = {}
    hf_additional_input_fields: List = OptionalField(default_factory=list)

    def prepare(self):
        super().prepare()
        self.metric = evaluate.load(self.hf_metric_name)

    def compute(
        self,
        references: List[List[str]],
        predictions: List[str],
        additional_inputs: List[Any],
    ) -> List[Dict[str, Any]]:
        passed_additional_inputs = {}
        for additional_input_field in self.hf_additional_input_fields:
            assert (
                additional_input_field in additional_inputs[0]
            ), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in additional inputs: {additional_inputs[0]}"
            passed_additional_inputs[additional_input_field] = [
                additional_input[additional_input_field]
                for additional_input in additional_inputs
            ]
        # add check that all required fields in self.metrics are in passed_additional_inputs

        scores = self.metric.compute(
            predictions=predictions,
            references=references,
            **passed_additional_inputs,
            **self.hf_compute_args,
        )

        # convert dict of lists to a list of dicts
        results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
        for key in self.hf_metric_fields:
            values = scores[key]
            for result_id, result in enumerate(results):
                result[key] = values[result_id]

        return results


class F1(GlobalMetric):
    _metric = None
    main_score = "f1_macro"
    average = None  # Report per class then aggregate by mean
    metric = "f1"

    def prepare(self):
        super().prepare()
        self._metric = evaluate.load(self.metric)

    def get_str_id(self, str):
        if str not in self.str_to_id:
            id = len(self.str_to_id)
            self.str_to_id[str] = id
            self.id_to_str[id] = str
        return self.str_to_id[str]

    def compute(
        self,
        references: List[List[str]],
        predictions: List[str],
        additional_inputs: List[Dict],
    ) -> dict:
        assert all(
            len(reference) == 1 for reference in references
        ), "Only a single reference per prediction is allowed in F1 metric"
        self.str_to_id = {}
        self.id_to_str = {}
        formatted_references = [
            self.get_str_id(reference[0]) for reference in references
        ]
        self.str_to_id.keys()
        formatted_predictions = [
            self.get_str_id(prediction) for prediction in predictions
        ]
        labels = list(set(formatted_references))
        result = self._metric.compute(
            predictions=formatted_predictions,
            references=formatted_references,
            labels=labels,
            average=self.average,
        )
        if isinstance(result["f1"], numpy.ndarray):
            from statistics import mean

            final_result = {self.main_score: mean(result["f1"])}
            for i, label in enumerate(labels):
                final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
        else:
            final_result = {self.main_score: result["f1"]}
        return final_result


class F1Micro(F1):
    main_score = "f1_micro"
    average = "micro"


class F1Macro(F1):
    main_score = "f1_macro"


class F1Weighted(F1):
    main_score = "f1_weighted"
    average = "weighted"


class F1MultiLabel(GlobalMetric):
    _metric = None
    main_score = "f1_macro"
    average = None  # Report per class then aggregate by mean
    classes_to_ignore = ["none"]
    metric = "f1"

    def prepare(self):
        super().prepare()
        self._metric = evaluate.load(self.metric, "multilabel")

    def add_str_to_id(self, str):
        if str not in self.str_to_id:
            id = len(self.str_to_id)
            self.str_to_id[str] = id
            self.id_to_str[id] = str
        return

    def get_one_hot_vector(self, labels: List[str]):
        result = [0] * len(self.str_to_id)
        for label in labels:
            if label in self.str_to_id:
                result[self.str_to_id[label]] = 1
        return result

    def compute(
        self,
        references: List[List[str]],
        predictions: List[List[str]],
        additional_inputs: List[Dict],
    ) -> dict:
        self.str_to_id = {}
        self.id_to_str = {}

        self._validate_references_and_prediction(references, predictions)
        references = [reference[0] for reference in references]

        labels = [
            lbl
            for lbl in {label for reference in references for label in reference}
            if lbl not in self.classes_to_ignore
        ]
        # if no classes are left then F1 is not defined
        # (e.g. only "none" in references)
        if len(labels) == 0:
            return {self.main_score: float("nan")}

        for label in labels:
            self.add_str_to_id(label)
        formatted_references = [
            self.get_one_hot_vector(reference) for reference in references
        ]
        formatted_predictions = [
            self.get_one_hot_vector(prediction) for prediction in predictions
        ]

        # There is odd behavior in scikit-learn that when passing a one-hot vector with a single
        # element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
        # to this class.
        if len(labels) == 1:
            labels_param = [1]
        else:
            labels_param = None

        result = self._metric.compute(
            predictions=formatted_predictions,
            references=formatted_references,
            average=self.average,
            labels=labels_param,
        )
        if isinstance(result[self.metric], numpy.ndarray):
            from statistics import mean

            assert (
                len(result[self.metric]) == len(labels)
            ), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
            final_result = {self.main_score: mean(result[self.metric])}
            for i, label in enumerate(labels):
                final_result[self.metric + "_" + label] = result[self.metric][i]
        else:
            final_result = {self.main_score: result[self.metric]}
        return final_result

    def _validate_references_and_prediction(self, references, predictions):
        for reference in references:
            if not len(reference) == 1:
                raise ValueError(
                    f"Only a single reference per prediction is allowed in F1 multi label metric. Received reference: {reference}"
                )
            if not isoftype(reference[0], List[str]):
                raise ValueError(
                    f"Each reference is expected to be a list of strings in F1 multi label metric. Received reference: '{reference[0]}'"
                )

        for prediction in predictions:
            if not isoftype(prediction, List[str]):
                raise ValueError(
                    f"Each prediction is expected to be a list of strings in F1 multi label metric. Received prediction: '{prediction}'"
                )


class PrecisionMacroMultiLabel(F1MultiLabel):
    main_score = "precision_macro"
    metric = "precision"
    average = "macro"


class PrecisionMicroMultiLabel(F1MultiLabel):
    main_score = "precision_micro"
    metric = "precision"
    average = "micro"


class RecallMacroMultiLabel(F1MultiLabel):
    main_score = "recall_macro"
    metric = "recall"
    average = "macro"


class RecallMicroMultiLabel(F1MultiLabel):
    main_score = "recall_micro"
    metric = "recall"
    average = "micro"


class F1MicroMultiLabel(F1MultiLabel):
    main_score = "f1_micro"
    average = "micro"


class F1MacroMultiLabel(F1MultiLabel):
    main_score = "f1_macro"
    average = None


class Rouge(HuggingfaceMetric):
    hf_metric_name = "rouge"
    main_score = "rougeL"
    scale = 1.0

    use_aggregator: bool = True
    rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]

    sent_split_newline: bool = True

    def prepare(self):
        super().prepare()

        self.hf_compute_args.update(
            {"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
        )

        import nltk

        nltk.download("punkt")
        self.sent_tokenize = nltk.sent_tokenize

    def compute(self, references, predictions, additional_inputs: List[Dict]):
        if self.sent_split_newline:
            predictions = [
                "\n".join(self.sent_tokenize(prediction.strip()))
                for prediction in predictions
            ]
            references = [
                ["\n".join(self.sent_tokenize(r.strip())) for r in reference]
                for reference in references
            ]
        return super().compute(references, predictions, additional_inputs)


# Computes char edit distance, ignoring whitespace
class CharEditDistanceAccuracy(InstanceMetric):
    reduction_map = {"mean": ["char_edit_dist_accuracy"]}
    main_score = "char_edit_dist_accuracy"

    def prepare(self):
        super().prepare()
        import editdistance

        self.eval = editdistance.eval

    def compute(
        self, references, prediction: str, additional_inputs: List[Dict]
    ) -> dict:
        assert (
            len(references) == 1
        ), f"Expected only one reference , but received: {references}"

        formatted_prediction = "".join(prediction.split())
        formatted_reference = "".join(references[0].split())
        max_length = max(len(formatted_reference), len(formatted_prediction))
        if max_length == 0:
            return {"char_edit_dist_accuracy": 0.0}
        edit_dist = self.eval(formatted_reference, formatted_prediction)
        return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}


class Wer(HuggingfaceMetric):
    hf_metric_name = "wer"
    main_score = "wer"

    def compute(
        self,
        references: List[List[str]],
        predictions: List[str],
        additional_inputs: List[Dict],
    ) -> dict:
        assert all(
            len(reference) == 1 for reference in references
        ), "Only single reference per prediction is allowed in wer metric"
        formatted_references = [reference[0] for reference in references]
        result = self.metric.compute(
            predictions=predictions, references=formatted_references
        )
        return {self.main_score: result}


class MatthewsCorrelation(HuggingfaceMetric):
    hf_metric_name = "matthews_correlation"
    main_score = "matthews_correlation"
    str_to_id: dict = InternalField(default_factory=dict)

    def get_str_id(self, str):
        if str not in self.str_to_id:
            id = len(self.str_to_id)
            self.str_to_id[str] = id
        return self.str_to_id[str]

    def compute(
        self,
        references: List[List[str]],
        predictions: List[str],
        additional_inputs: List[Dict],
    ) -> dict:
        formatted_references = [
            self.get_str_id(reference[0]) for reference in references
        ]
        formatted_predictions = [
            self.get_str_id(prediction) for prediction in predictions
        ]
        return self.metric.compute(
            predictions=formatted_predictions, references=formatted_references
        )


class CustomF1(GlobalMetric):
    main_score = "f1_micro"
    groups = None
    zero_division = 0.0

    @abstractmethod
    def get_element_group(self, element, additional_input):
        pass

    @abstractmethod
    def get_element_representation(self, element, additional_input):
        pass

    def should_ignore_element(self, element, additional_input):
        return False

    def group_elements(self, elements_list, additional_input):
        if not isinstance(elements_list, list):
            elements_list = [elements_list]
        return {
            k: Counter(
                [
                    self.get_element_representation(value, additional_input)
                    for value in elements_list
                    if self.get_element_group(value, additional_input) == k
                ]
            )
            for k in {
                self.get_element_group(e, additional_input)
                for e in elements_list
                if not self.should_ignore_element(e, additional_input)
            }
        }

    def calculate_groups_ratio(self, actual_group, total_group):
        return sum(
            [min(actual_group[k], total_group[k]) for k in actual_group.keys()]
        ), sum(actual_group.values())

    def precision(self, pn, pd, rn, rd):
        return self.zero_division if pn == 0 and pd == 0 else pn / pd

    def recall(self, pn, pd, rn, rd):
        return self.zero_division if rn == 0 and rd == 0 else rn / rd

    def f1(self, pn, pd, rn, rd):
        precision = self.precision(pn, pd, rn, rd)
        recall = self.recall(pn, pd, rn, rd)
        try:
            return 2 * precision * recall / (precision + recall)
        except ZeroDivisionError:
            return self.zero_division

    def get_groups(self, elements, additional_inputs):
        groups = set()
        for sublist, additional_input in zip(elements, additional_inputs):
            for e in sublist:
                if self.should_ignore_element(e, additional_input):
                    continue
                groups.add(self.get_element_group(e, additional_input))
        return groups

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Dict],
    ) -> dict:
        # in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
        if (
            isinstance(references[0], list)
            and len(references[0]) > 0
            and isinstance(references[0][0], list)
        ):
            references = [element[0] for element in references]

        assert len(references) == len(predictions), (
            f"references size ({len(references)})"
            f" doesn't mach predictions sise ({len(references)})."
        )

        if self.groups is None:
            groups = self.get_groups(references, additional_inputs)
        else:
            groups = self.groups
        groups_statistics = {}
        for references_batch, predictions_batch, additional_input in zip(
            references, predictions, additional_inputs
        ):
            grouped_references = self.group_elements(references_batch, additional_input)
            grouped_predictions = self.group_elements(
                predictions_batch, additional_input
            )
            all_groups = set(grouped_references.keys()).union(
                grouped_predictions.keys()
            )
            for group in all_groups:
                if group not in groups_statistics:
                    groups_statistics[group] = {
                        "precision_numerator": 0,
                        "precision_denominator": 0,
                        "recall_numerator": 0,
                        "recall_denominator": 0,
                    }
                references_by_group = grouped_references.get(group, Counter([]))
                predictions_by_group = grouped_predictions.get(group, Counter([]))
                pn, pd = self.calculate_groups_ratio(
                    actual_group=predictions_by_group, total_group=references_by_group
                )
                rn, rd = self.calculate_groups_ratio(
                    actual_group=references_by_group, total_group=predictions_by_group
                )
                groups_statistics[group]["precision_numerator"] += pn
                groups_statistics[group]["precision_denominator"] += pd
                groups_statistics[group]["recall_numerator"] += rn
                groups_statistics[group]["recall_denominator"] += rd

        num_of_unknown_class_predictions = 0
        pn_total = pd_total = rn_total = rd_total = 0
        f1_result = {}
        recall_result = {}
        precision_result = {}
        for group in groups_statistics.keys():
            pn, pd, rn, rd = (
                groups_statistics[group]["precision_numerator"],
                groups_statistics[group]["precision_denominator"],
                groups_statistics[group]["recall_numerator"],
                groups_statistics[group]["recall_denominator"],
            )
            pn_total, pd_total, rn_total, rd_total = (
                pn_total + pn,
                pd_total + pd,
                rn_total + rn,
                rd_total + rd,
            )
            if group in groups:
                f1_result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
                recall_result[f"recall_{group}"] = self.recall(pn, pd, rn, rd)
                precision_result[f"precision_{group}"] = self.precision(pn, pd, rn, rd)
            else:
                num_of_unknown_class_predictions += pd

        result = f1_result
        try:
            result["f1_macro"] = sum(f1_result.values()) / len(result.keys())
            result["recall_macro"] = sum(recall_result.values()) / len(
                recall_result.keys()
            )
            result["precision_macro"] = sum(precision_result.values()) / len(
                precision_result.keys()
            )
        except ZeroDivisionError:
            result["f1_macro"] = self.zero_division
            result["recall_macro"] = self.zero_division
            result["precision_macro"] = self.zero_division

        amount_of_predictions = pd_total
        if amount_of_predictions == 0:
            result["in_classes_support"] = 1.0
        else:
            result["in_classes_support"] = (
                1.0 - num_of_unknown_class_predictions / amount_of_predictions
            )
        result["f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
        result["recall_micro"] = self.recall(pn_total, pd_total, rn_total, rd_total)
        result["precision_micro"] = self.precision(
            pn_total, pd_total, rn_total, rd_total
        )
        return result


class NER(CustomF1):
    def get_element_group(self, element, additional_input):
        return element[1]

    def get_element_representation(self, element, additional_input):
        return str(element)


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


class TokenOverlap(InstanceMetric):
    reduction_map = {"mean": ["f1", "precision", "recall"]}
    main_score = "f1"
    ci_scores = ["f1", "precision", "recall"]

    def compute(
        self, references: List[Any], prediction: Any, additional_inputs: List[Dict]
    ) -> dict:
        results = [
            self._compute_single_ref(reference, prediction) for reference in references
        ]
        return {
            measure: max(r[i] for r in results)
            for i, measure in enumerate(["precision", "recall", "f1"])
        }

    def _compute_single_ref(
        self, reference: Any, prediction: Any
    ) -> Tuple[float, float, float]:
        prediction_tokens = normalize_answer(prediction).split()
        reference_tokens = normalize_answer(reference).split()
        common = Counter(prediction_tokens) & Counter(reference_tokens)
        num_same = sum(common.values())
        if num_same == 0:
            pr, rc, f1 = 0, 0, 0
        else:
            pr = 1.0 * num_same / len(prediction_tokens)
            rc = 1.0 * num_same / len(reference_tokens)
            f1 = (2 * pr * rc) / (pr + rc)
        return pr, rc, f1


class BertScore(HuggingfaceBulkMetric):
    hf_metric_name = "bertscore"
    main_score = "f1"
    reduction_map = {"mean": ["f1", "precision", "recall"]}
    hf_metric_fields = ["f1", "precision", "recall"]
    ci_scores = ["f1", "precision", "recall"]
    model_name: str

    def prepare(self):
        super().prepare()
        self.hf_compute_args = {"model_type": self.model_name}


class SentenceBert(BulkInstanceMetric):
    reduction_map = {"mean": ["score"]}
    main_score = "score"
    batch_size: int = 32

    model_name: str

    def prepare(self):
        super().prepare()
        from sentence_transformers import SentenceTransformer
        from sentence_transformers import util as sbert_util

        self.model = SentenceTransformer(self.model_name)
        self.util = sbert_util

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Dict],
    ) -> List[Dict[str, Any]]:
        scores = []

        # we are in a multi-reference case (each prediction may have multiple
        # references), so we need to flatten the refs in order to compute the
        # embeddings in one batch, but first we have to store the spans of
        # reference groups, so we can recover it later on.
        ref_group_boundaries = []
        count = 0
        for ref_group in references:
            ref_group_boundaries.append((count, count + len(ref_group)))
            count += len(ref_group)

        # compute s-bert embeddings
        preds_emb = self.model.encode(predictions)
        refs_emb = self.model.encode(
            [ref for ref_group in references for ref in ref_group]
        )

        # for each candidate, pick the reference with the highest score
        for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
            refs_group_emb = refs_emb[ref_group_bounds[0] : ref_group_bounds[1]]
            scores.append(self.util.cos_sim(pred_emb, refs_group_emb).max().item())

        return [{"score": score} for score in scores]


class Reward(BulkInstanceMetric):
    reduction_map = {"mean": ["score"]}
    main_score = "score"
    batch_size: int = 32

    model_name: str

    def prepare(self):
        super().prepare()
        from transformers import pipeline

        self.pipe = pipeline("text-classification", model=self.model_name)

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Dict],
    ) -> List[Dict[str, Any]]:
        # treat the references as the questions and the predictions as answers
        # assume a single reference
        questions = [refs[0] for refs in references]
        answers = predictions

        # prepare for computation
        inputs = [{"text": q, "text_pair": a} for q, a in zip(questions, answers)]

        # compute the metric
        # add function_to_apply="none" to disable sigmoid
        return self.pipe(inputs, batch_size=self.batch_size)


class Perplexity(BulkInstanceMetric):
    """Computes the likelihood of generating text Y after text X - P(Y|X)."""

    main_score = "perplexity"
    reduction_map = {"mean": ["perplexity"]}

    perplexity_prompt: str

    batch_size: int = 32
    model_name: str

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Dict],
    ) -> List[Dict[str, Any]]:
        """Computes the likelihood of generating text Y after text X - P(Y|X).

        :param references: the list of Y texts as a list of singletons.
        :param predictions: the list of X texts as a plain list of strings

        :return: the likelihood of generating text Y_i after text X_i = P(Y_i|X_i) for every i.
        """
        sources = []
        targets = []
        for prediction, instance_references in zip(predictions, references):
            for instance_reference in instance_references:
                sources.append(f"{self.perplexity_prompt} {prediction}")
                targets.append(instance_reference)

        from transformers import AutoConfig

        config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
        lm = (
            self.EncoderDecoderLM(model_name=self.model_name)
            if config.is_encoder_decoder is True
            else self.DecoderOnlyLM(model_name=self.model_name)
        )

        # compute P(Q|P) and store in queue
        scores = lm.compute_lm(
            source=sources, target=targets, batch_size=self.batch_size
        )

        index = 0
        all_instances_scores = []
        for instance_references in references:
            instance_scores = {}
            instance_scores_list = []
            for _ in range(len(instance_references)):
                instance_scores_list.append(scores[index])
                index += 1
            instance_scores["reference_scores"] = instance_scores_list
            instance_scores[self.main_score] = mean(instance_scores_list)

            instance_scores[self.main_score] = mean(instance_scores_list)
            all_instances_scores.append(instance_scores)

        return all_instances_scores

    class AbstractLM(ABC):
        def __init__(self, model_name):
            import torch
            from transformers import AutoTokenizer

            self.model_name = model_name
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            self.model = self.model_class().from_pretrained(self.model_name)
            self.is_cuda = torch.cuda.is_available()

        def compute_lm(
            self, source: List[str], target: List[str], batch_size: int
        ) -> List[float]:
            import torch

            scores = []

            with torch.no_grad():
                # break the documents to batches
                n_batches = int(len(source) / batch_size)
                batch_range = range(n_batches + 1)
                for batch in batch_range:
                    batch_source = source[batch * batch_size : (batch + 1) * batch_size]
                    batch_target = target[batch * batch_size : (batch + 1) * batch_size]
                    if len(batch_source) > 0:
                        # tokenize the source and target
                        tokens_source = self.tokenizer(
                            batch_source, padding=True, return_tensors="pt"
                        )
                        tokens_target = self.tokenizer(
                            batch_target, padding=True, return_tensors="pt"
                        )

                        # compute the logits
                        logits, labels = self.compute_batch(
                            tokens_source, tokens_target
                        )

                        # the model returns mean over all batch. We run the CE again without reduction
                        # and extarct the mean for each document
                        loss_fct = torch.nn.CrossEntropyLoss(
                            ignore_index=-100, reduction="none"
                        )
                        loss = loss_fct(
                            logits.view(-1, logits.size(-1)), labels.view(-1)
                        )
                        loss = loss.view(len(batch_source), -1)

                        # for each document, do mean only over the non zero values (sum(labels>0))
                        batch_loss = torch.sum(loss, dim=1) / torch.sum(
                            labels > 0, dim=1
                        )

                        # append the batch scores to the list of all scores
                        scores.append(batch_loss)

            return torch.cat(scores, dim=0).tolist()

        @abstractmethod
        def model_class(self):
            pass

        @abstractmethod
        def compute_batch(self, tokens_source, tokens_target):
            pass

    class EncoderDecoderLM(AbstractLM):
        def model_class(self):
            from transformers import AutoModelForSeq2SeqLM

            return AutoModelForSeq2SeqLM

        def compute_batch(self, tokens_source, tokens_target):
            tokens_docs_ids = tokens_source["input_ids"]
            attention = tokens_source["attention_mask"]
            labels = tokens_target["input_ids"]

            if self.is_cuda:
                tokens_docs_ids, attention, labels = (
                    tokens_docs_ids.cuda(),
                    attention.cuda(),
                    labels.cuda(),
                )

            logits = self.model(
                input_ids=tokens_docs_ids.long(),
                attention_mask=attention.long(),
                labels=labels.long(),
            ).logits

            # replace the padding token in the labels by -100
            labels[labels == self.tokenizer.pad_token_id] = -100

            return logits, labels

    class DecoderOnlyLM(AbstractLM):
        def model_class(self):
            from transformers import AutoModelForCausalLM

            return AutoModelForCausalLM

        def compute_batch(self, tokens_source, tokens_target):
            import torch

            tokens = torch.cat(
                [tokens_source["input_ids"], tokens_target["input_ids"]], dim=1
            )
            attention = torch.cat(
                [tokens_source["attention_mask"], tokens_target["attention_mask"]],
                dim=1,
            )
            labels = torch.cat(
                [
                    torch.zeros_like(tokens_source["input_ids"]).fill_(-100),
                    tokens_target["input_ids"],
                ],
                dim=1,
            )

            # replace the padding token in the labels by -100
            labels[labels == self.tokenizer.pad_token_id] = -100

            if self.is_cuda:
                tokens, attention, labels = (
                    tokens.cuda(),
                    attention.cuda(),
                    labels.cuda(),
                )

            # no need to pass labels as we calculate the loss below per document
            model_output = self.model(
                input_ids=tokens.long(), attention_mask=attention.long()
            )
            logits = model_output.logits

            # in decoder only, the first token is not being generated, it is taken from the input,
            # so the model is generating from token 2 to n+1. therefore, we need to skip the last
            # logit and the first label.
            shifted_logits = logits[..., :-1, :].contiguous()
            shifted_labels = labels[..., 1:].contiguous()

            return shifted_logits, shifted_labels


class NDCG(GlobalMetric):
    """Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.

    As this measures ranking, it is a global metric that can only be calculated over groups of instances. In the
    common use case where the instances are grouped by different queries, i.e., where the task is to provide a
    relevance score for a search result w.r.t. a query, an nDCG score is calculated per each query (specified in the
    "query" input field of an instance) and the final score is the average across all queries.
    Note that the expected scores are relevance scores (i.e., higher is better) and not rank indices. The absolute
    value of the scores is only meaningful for the reference scores; for the predictions, only the ordering of the
    scores affects the outcome - for example, predicted scores of [80, 1, 2] and [0.8, 0.5, 0.6] will receive
    the same nDCG score w.r.t. a given set of reference scores.

    See also https://en.wikipedia.org/wiki/Discounted_cumulative_gain
    """

    main_score = "nDCG"

    def prepare(self):
        from sklearn.metrics import ndcg_score

        super().prepare()
        self.eval = ndcg_score

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        additional_inputs: List[Any],
    ) -> dict:
        from collections import defaultdict
        from statistics import mean

        query_to_predictions_and_references = defaultdict(lambda: [[], []])
        for reference, pred, inputs_dict in zip(
            references, predictions, additional_inputs
        ):
            query = inputs_dict.get("query")
            query_to_predictions_and_references[query][0].append(pred)
            query_to_predictions_and_references[query][1].append(reference)

        scores = []
        for q_predictions, q_references in query_to_predictions_and_references.values():
            if len(q_references) == 1:
                continue

            if (
                None in q_predictions
            ):  # model failed to predict numeric scores for some instances
                numeric_predictions = [
                    pred for pred in q_predictions if pred is not None
                ]
                if len(numeric_predictions) <= 1:  # no meaningful ranking
                    scores.append(0)
                    continue
                # consider non-numeric model predictions as ranked last
                min_value = min(numeric_predictions)
                q_predictions = [
                    1 + (pred - min_value) if pred is not None else 0
                    for pred in q_predictions
                ]
            scores.append(self.eval([q_references], [q_predictions]))
        return {self.main_score: mean(scores) if len(scores) > 0 else np.nan}


class RetrievalMetric(InstanceMetric):
    def compute(
        self, references: List[Any], prediction: Any, additional_inputs: Dict
    ) -> dict:
        # digest input
        pred_ids: List[Any] = prediction
        ref_ids: List[Any] = list(dict.fromkeys(references))

        # relevance_at_k: 1-based dictionary of indicators (0/1), telling whether
        # the doc id retrieved at position k (assuming it is 1-based, so k starts
        # from 1) is in the gold doc ids or not.
        # For example, assuming that in the retrieved docs we have correct predictions
        # at positions 2, 4 and 5 (1-based), the dict will look like:
        # {1: 0, 2: 1, 3: 0, 4: 1, 5: 1, ...}
        relevance_at_k = {
            k + 1: 1 if doc_id in ref_ids else 0 for k, doc_id in enumerate(pred_ids)
        }

        # relevance_sum_at_k: 1-based dictionary of counts, where the value at k determines
        # how many gold doc ids have been observed up to index k.
        relevance_sum_at_k = {}
        for k, value in relevance_at_k.items():
            relevance_sum_at_k[k] = relevance_sum_at_k.get(k - 1, 0) + value

        # precision_at_k: the precision of the top k retrieved documents. For example,
        # assuming that only 1 out of the first 4 retrieved documents is correct, the
        # value at 4 will be 1/4.
        precision_at_k = {k: value / k for k, value in relevance_sum_at_k.items()}

        # recall_at_k: the recall of the top k retrieved documents. For example,
        # assuming that only 2 out of the 3 gold documents are in the top 5 results,
        # the value at 5 will be 2/3.
        n_refs = len(ref_ids)
        recall_at_k = {
            k: value / n_refs if n_refs > 0 else 0
            for k, value in relevance_sum_at_k.items()
        }

        # rank - the 1-based index of the first hit of a gold doc id. So 1
        # means first position.
        rank = 0
        for k, relevance in relevance_at_k.items():
            if relevance == 1:
                rank = k
                break

        # match_at_k: whether we have a match at the top k retrieved documents
        match_at_k = {
            k: 1.0 if value > 0 else 0.0 for k, value in relevance_sum_at_k.items()
        }

        return self._compute(
            relevance_at_k,
            relevance_sum_at_k,
            precision_at_k,
            recall_at_k,
            match_at_k,
            rank,
        )

    @abstractmethod
    def _compute(
        self,
        relevance_at_k,
        relevance_sum_at_k,
        precision_at_k,
        recall_at_k,
        match_at_k,
        rank,
    ) -> dict:
        pass


class MRR(RetrievalMetric):
    reduction_map = {"mean": ["mrr"]}
    main_score = "mrr"

    def _compute(
        self,
        relevance_at_k,
        relevance_sum_at_k,
        precision_at_k,
        recall_at_k,
        match_at_k,
        rank,
    ) -> dict:
        return {self.main_score: 1 / rank if rank > 0 else 0}


class MAP(RetrievalMetric):
    reduction_map = {"mean": ["map"]}
    main_score = "map"

    def _compute(
        self,
        relevance_at_k,
        relevance_sum_at_k,
        precision_at_k,
        recall_at_k,
        match_at_k,
        rank,
    ) -> dict:
        result = 0
        if len(relevance_at_k) > 0:
            total = sum(relevance_at_k.values())
            if total > 0:
                dot = sum(relevance_at_k[k] * precision_at_k[k] for k in relevance_at_k)
                result = dot / total
        return {self.main_score: result}


class RetrievalAtK(RetrievalMetric):
    k_list: List[int]
    main_score: str = None
    reduction_map: Dict[str, List[str]] = None

    def prepare(self):
        super().prepare()
        self.main_score = self.score_name("match", self.k_list[0])
        self.ci_scores = [
            self.score_name(measure, k)
            for measure in ["precision", "recall", "match"]
            for k in self.k_list
        ]
        self.reduction_map = {"mean": self.ci_scores}

    @staticmethod
    def score_name(measure: str, k: int):
        return f"{measure}_at_{k}"

    def _compute(
        self,
        relevance_at_k,
        relevance_sum_at_k,
        precision_at_k,
        recall_at_k,
        match_at_k,
        rank,
    ) -> dict:
        result = {}
        for measure_array, measure_name in [
            (precision_at_k, "precision"),
            (recall_at_k, "recall"),
            (match_at_k, "match"),
        ]:
            max_k = max(measure_array.keys())
            for k in self.k_list:
                result[self.score_name(measure_name, k)] = measure_array[min(k, max_k)]
        return result


class KPA(CustomF1):
    def get_element_group(self, element, additional_input):
        return additional_input["keypoint"]

    def get_element_representation(self, element, additional_input):
        return additional_input["keypoint"]

    def should_ignore_element(self, element, additional_input):
        return element == "none"