Datasets:

ArXiv:
File size: 15,545 Bytes
fa70f1c
cb12b19
300113f
 
fa70f1c
7d7cc9e
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa70f1c
5218ddd
7d7cc9e
 
 
 
 
 
 
 
fa70f1c
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5218ddd
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa70f1c
7d7cc9e
 
 
 
 
 
 
 
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7cc9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa70f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import uuid
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import field
from typing import Any, Dict, Generator, List, Optional

import evaluate
import nltk
import numpy

from .operator import (
    MultiStreamOperator,
    SingleStreamOperator,
    StreamingOperator,
    StreamInstanceOperator,
)
from .operators import CopyFields
from .stream import MultiStream, Stream

nltk.download("punkt")


def absrtact_factory():
    return {}


def abstract_field():
    return field(default_factory=absrtact_factory)


class UpdateStream(StreamInstanceOperator):
    update: dict

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        instance.update(self.update)
        return instance


# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(ABC):
    @property
    @abstractmethod
    def main_score(self):
        pass


class GlobalMetric(SingleStreamOperator, Metric):
    def process(self, stream: Stream, stream_name: str = None) -> Generator:
        references = []
        predictions = []
        global_score = {}

        instances = []

        for instance in stream:
            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            refs, pred = instance["references"], instance["prediction"]

            instance_score = self._compute([refs], [pred])
            instance["score"]["instance"].update(instance_score)

            references.append(refs)
            predictions.append(pred)
            instances.append(instance)

        result = self._compute(references, predictions)

        global_score.update(result)

        for instance in instances:
            instance["score"]["global"] = global_score
            yield instance

    def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        result = self.compute(references, predictions)
        result["score"] = result[self.main_score]
        return result

    @abstractmethod
    def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        pass


class InstanceMetric(SingleStreamOperator, Metric):
    implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])

    @property
    @abstractmethod
    def reduction_map(self) -> dict:
        pass

    def process(self, stream: Stream, stream_name: str = None) -> Generator:
        global_score = {}
        instances = []

        for instance in stream:
            refs, pred = instance["references"], instance["prediction"]

            instance_score = self._compute(refs, pred)

            if "score" not in instance:
                instance["score"] = {"global": global_score, "instance": {}}
            else:
                global_score = instance["score"]["global"]

            instance["score"]["instance"].update(instance_score)

            instances.append(instance)

        for reduction, fields in self.reduction_map.items():
            assert (
                reduction in self.implemented_reductions
            ), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"

            if reduction == "mean":
                from statistics import mean

                for field in fields:
                    global_score[field] = mean([instance["score"]["instance"][field] for instance in instances])
                    if field == self.main_score:
                        global_score["score"] = global_score[field]

        for instance in instances:
            yield instance

    def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        result = self.compute(references=references, predictions=predictions)
        result["score"] = result[self.main_score]
        return result

    @abstractmethod
    def compute(self, references: List[str], prediction: str) -> dict:
        pass


class Squad(GlobalMetric):
    _metric = None
    reduction_map = {"mean": ["f1"]}
    main_score = "f1"
    metric = "squad"

    def prepare(self):
        super(Squad, self).prepare()
        self._metric = evaluate.load(self.metric)

    def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
        formatted_predictions = [
            {"prediction_text": prediction, "id": ids[i]} for i, prediction in enumerate(predictions)
        ]
        formatted_references = [
            {"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
            for i, reference in enumerate(references)
        ]

        return self._metric.compute(predictions=formatted_predictions, references=formatted_references)


class SingleReferenceInstanceMetric(InstanceMetric):
    def _compute(self, references: List[str], prediction: str) -> dict:
        result = self.compute(references[0], prediction)
        result["score"] = result[self.main_score]
        return result

    @abstractmethod
    def compute(self, reference, prediction: str) -> dict:
        pass


class Accuracy(SingleReferenceInstanceMetric):
    reduction_map = {"mean": ["accuracy"]}
    main_score = "accuracy"

    def compute(self, reference, prediction: str) -> dict:
        return {"accuracy": float(str(reference) == str(prediction))}


class MetricPipeline(MultiStreamOperator, Metric):
    main_score: str = None
    preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
    postpreprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
    metric: Metric = None

    def verify(self):
        assert self.main_score is not None, "main_score is not set"

    def prepare(self):
        super().prepare()
        self.prepare_score = CopyFields(
            field_to_field=[
                [f"score/instance/{self.main_score}", "score/instance/score"],
                [f"score/global/{self.main_score}", "score/global/score"],
            ],
            use_query=True,
        )

    def process(self, multi_stream: MultiStream) -> MultiStream:
        for step in self.preprocess_steps:
            multi_stream = step(multi_stream)
        multi_stream = self.metric(multi_stream)
        for step in self.postpreprocess_steps:
            multi_stream = step(multi_stream)
        multi_stream = self.prepare_score(multi_stream)
        return multi_stream


class HuggingfaceMetric(GlobalMetric):
    metric_name: str = None
    main_score: str = None
    scale: float = 1.0

    def prepare(self):
        super().prepare()
        self.metric = evaluate.load(self.metric_name)

    def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        result = self.metric.compute(predictions=predictions, references=references)
        if self.scale != 1.0:
            for key in result:
                if isinstance(result[key], float):
                    result[key] /= self.scale
        return result


class F1(GlobalMetric):
    _metric = None
    main_score = "f1_macro"
    average = None  # Report per class then aggregate by mean
    metric = "f1"

    def prepare(self):
        super(F1, self).prepare()
        self._metric = evaluate.load(self.metric)

    def get_str_id(self, str):
        if str not in self.str_to_id:
            id = len(self.str_to_id)
            self.str_to_id[str] = id
            self.id_to_str[id] = str
        return self.str_to_id[str]

    def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        assert all(
            len(reference) == 1 for reference in references
        ), "One single reference per predictition are allowed in F1 metric"
        self.str_to_id = {}
        self.id_to_str = {}
        formatted_references = [self.get_str_id(reference[0]) for reference in references]
        unique_labels = self.str_to_id.keys()
        formatted_predictions = [self.get_str_id(prediction) for prediction in predictions]
        labels = list(set(formatted_references))
        result = self._metric.compute(
            predictions=formatted_predictions, references=formatted_references, labels=labels, average=self.average
        )
        if isinstance(result["f1"], numpy.ndarray):
            from statistics import mean

            final_result = {self.main_score: mean(result["f1"])}
            for i, label in enumerate(labels):
                final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
        else:
            final_result = {self.main_score: result["f1"]}
        return final_result


class F1Micro(F1):
    main_score = "f1_micro"
    average = "micro"


class F1Macro(F1):
    main_score = "f1_macro"


class F1MultiLabel(GlobalMetric):
    _metric = None
    main_score = "f1_macro"
    average = None  # Report per class then aggregate by mean
    seperator = ","

    def prepare(self):
        super(F1MultiLabel, self).prepare()
        self._metric = evaluate.load("f1", "multilabel")

    def add_str_to_id(self, str):
        if not str in self.str_to_id:
            id = len(self.str_to_id)
            self.str_to_id[str] = id
            self.id_to_str[id] = str
        return

    def get_one_hot_vector(self, labels: List[str]):
        result = [0] * len(self.str_to_id)
        for label in labels:
            if label in self.str_to_id:
                result[self.str_to_id[label]] = 1
        return result

    def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
        self.str_to_id = {}
        self.id_to_str = {}
        labels = list(set([label for reference in references for label in reference]))
        for label in labels:
            assert (
                not self.seperator in label
            ), "Reference label (f{label}) can not contain multi label seperator (f{self.seperator}) "
            self.add_str_to_id(label)
        formatted_references = [self.get_one_hot_vector(reference) for reference in references]
        split_predictions = [
            [label.strip() for label in prediction.split(self.seperator)] for prediction in predictions
        ]
        formatted_predictions = [self.get_one_hot_vector(prediction) for prediction in split_predictions]
        result = self._metric.compute(
            predictions=formatted_predictions, references=formatted_references, average=self.average
        )
        if isinstance(result["f1"], numpy.ndarray):
            from statistics import mean

            final_result = {self.main_score: mean(result["f1"])}
            for i, label in enumerate(labels):
                final_result["f1_" + label] = result["f1"][i]
        else:
            final_result = {self.main_score: result["f1"]}
        return final_result


class F1MicroMultiLabel(F1MultiLabel):
    main_score = "f1_micro"
    average = "micro"


class F1MacroMultiLabel(F1MultiLabel):
    main_score = "f1_macro"
    average = None


class Rouge(HuggingfaceMetric):
    metric_name = "rouge"
    main_score = "rougeL"
    scale = 1.0

    def compute(self, references, predictions):
        predictions = ["\n".join(nltk.sent_tokenize(prediction.strip())) for prediction in predictions]
        references = [["\n".join(nltk.sent_tokenize(r.strip())) for r in reference] for reference in references]
        return super().compute(references, predictions)


class Bleu(HuggingfaceMetric):
    metric_name = "bleu"
    main_score = "bleu"
    scale = 1.0


class CustomF1(GlobalMetric):
    main_score = "f1_micro"

    @abstractmethod
    def get_element_group(self, element):
        pass

    @abstractmethod
    def get_element_representation(self, element):
        pass

    def group_elements(self, l):
        return {
            k: Counter([self.get_element_representation(value) for value in l if self.get_element_group(value) == k])
            for k in set([self.get_element_group(e) for e in l])
        }

    def calculate_groups_ratio(self, actual_group, total_group):
        return sum([min(actual_group[k], total_group[k]) for k in actual_group.keys()]), sum(actual_group.values())

    def f1(self, pn, pd, rn, rd):
        precision = 1.0 if pn == 0 and pd == 0 else pn / pd
        recall = 1.0 if rn == 0 and rd == 0 else rn / rd
        try:
            return 2 * precision * recall / (precision + recall)
        except ZeroDivisionError:
            return 0.0

    def compute(self, references: List[Any], predictions: List[Any]) -> dict:
        # in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
        if isinstance(references[0], list) and isinstance(references[0][0], list):
            references = [element[0] for element in references]

        assert len(references) == len(predictions), (
            f"references size ({len(references)})" f" doesn't mach predictions sise ({len(references)})."
        )
        groups_statistics = dict()
        for references_batch, predictions_batch in zip(references, predictions):
            grouped_references = self.group_elements(references_batch)
            grouped_predictions = self.group_elements(predictions_batch)
            all_groups = set(grouped_references.keys()).union(grouped_predictions.keys())
            for group in all_groups:
                if group not in groups_statistics:
                    groups_statistics[group] = {
                        "precision_numerator": 0,
                        "precision_denominator": 0,
                        "recall_numerator": 0,
                        "recall_denominator": 0,
                    }
                references_by_group = grouped_references.get(group, Counter([]))
                predictions_by_group = grouped_predictions.get(group, Counter([]))
                pn, pd = self.calculate_groups_ratio(
                    actual_group=predictions_by_group, total_group=references_by_group
                )
                rn, rd = self.calculate_groups_ratio(
                    actual_group=references_by_group, total_group=predictions_by_group
                )
                groups_statistics[group]["precision_numerator"] += pn
                groups_statistics[group]["precision_denominator"] += pd
                groups_statistics[group]["recall_numerator"] += rn
                groups_statistics[group]["recall_denominator"] += rd

        result = {}
        pn_total = pd_total = rn_total = rd_total = 0
        for group in groups_statistics.keys():
            pn, pd, rn, rd = (
                groups_statistics[group]["precision_numerator"],
                groups_statistics[group]["precision_denominator"],
                groups_statistics[group]["recall_numerator"],
                groups_statistics[group]["recall_denominator"],
            )
            result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
            pn_total, pd_total, rn_total, rd_total = pn_total + pn, pd_total + pd, rn_total + rn, rd_total + rd
        try:
            result["f1_macro"] = sum(result.values()) / len(result.keys())
        except ZeroDivisionError:
            result["f1_macro"] = 1.0

        result[f"f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
        return result


class NER(CustomF1):
    def get_element_group(self, element):
        return element[1]

    def get_element_representation(self, element):
        return str(element)