File size: 11,662 Bytes
063834c 63d3ef3 50eeb1b 063834c 1ec0bfb 6b26378 eb86bdf 1ec0bfb eb86bdf 1ec0bfb 63d3ef3 6b26378 63d3ef3 6b26378 63d3ef3 6b26378 63d3ef3 6b26378 63d3ef3 3e48723 063834c 63d3ef3 eb86bdf 63d3ef3 eb86bdf 63d3ef3 063834c 63d3ef3 50eeb1b 63d3ef3 eb86bdf 063834c eb86bdf 63d3ef3 eb86bdf 63d3ef3 50eeb1b 63d3ef3 eb86bdf 6b26378 3e48723 6b26378 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 063834c 50eeb1b 63d3ef3 eb86bdf 63d3ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import json
from abc import ABC, abstractmethod
from dataclasses import field
from typing import Any, Dict, List, Optional, Union
from .artifact import Artifact
from .dataclass import NonPositionalField
from .instructions import Instruction, TextualInstruction
from .operator import InstanceOperatorWithGlobalAccess, StreamInstanceOperator
from .random_utils import random
from .text_utils import split_words
class Renderer(ABC):
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class Template(Artifact):
is_multi_target: bool = NonPositionalField(default=False)
is_multi_reference: bool = NonPositionalField(default=False)
@abstractmethod
def process_inputs(self, inputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class RenderFormatTemplate(Renderer, StreamInstanceOperator):
template: Template = None
random_reference: bool = False
def verify(self):
assert isinstance(self.template, Template), "Template must be an instance of Template"
assert self.template is not None, "Template must be specified"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return self.render(instance)
def render(self, instance: Dict[str, Any]) -> Dict[str, Any]:
inputs = instance.pop("inputs")
outputs = instance.pop("outputs")
source = self.template.process_inputs(inputs)
targets = self.template.process_outputs(outputs)
if self.template.is_multi_reference:
references = targets
if self.random_reference:
target = random.choice(references)
else:
if len(references) == 0:
raise ValueError("No references found")
target = references[0]
else:
references = [targets]
target = targets
return {
**instance,
"source": source,
"target": target,
"references": references,
}
def get_postprocessors(self) -> List[str]:
return self.template.get_postprocessors()
class RenderAutoFormatTemplate(RenderFormatTemplate):
def prepare(self):
if self.template is None:
self.template = AutoInputOutputTemplate()
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
try:
if not self.template.is_complete():
self.template.infer_missing(instance["inputs"], instance["outputs"])
except:
pass
inputs = {key: value for key, value in instance["inputs"].items()}
return super().render({**instance, "inputs": inputs})
class CharacterSizeLimiter(Artifact):
limit: int = 1000
def check(self, text: str) -> bool:
return len(text) <= self.limit
class RenderTemplatedICL(RenderAutoFormatTemplate):
instruction: Instruction = None
input_prefix: str = ""
output_prefix: str = ""
target_prefix: str = " "
instruction_prefix: str = ""
demos_field: str = None
size_limiter: Artifact = None
input_output_separator: str = "\n"
demo_separator: str = "\n\n"
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
demos = instance.pop(self.demos_field, [])
source = ""
example = super().render(instance)
input_str = self.input_prefix + example["source"] + self.input_output_separator + self.output_prefix
if self.instruction is not None:
source += self.instruction_prefix + self.instruction() + self.demo_separator
for demo_instance in demos:
demo_example = super().render(demo_instance)
demo_str = (
self.input_prefix
+ demo_example["source"]
+ self.input_output_separator
+ self.output_prefix
+ self.target_prefix
+ demo_example["target"]
+ self.demo_separator
)
if self.size_limiter is not None:
if not self.size_limiter.check(source + demo_str + input_str + example["target"]):
continue
source += demo_str
source += input_str
return {
**example,
"source": source,
}
class InputOutputTemplate(Template):
input_format: str = None
output_format: str = None
postprocessors: List[str] = field(default_factory=lambda: ["processors.to_string"])
def process_template(self, template: str, data: Dict[str, object]) -> str:
data = {k: ", ".join(v) if isinstance(v, list) else v for k, v in data.items()}
return template.format(**data)
def process_inputs(self, inputs: Dict[str, object]) -> str:
try:
return self.process_template(self.input_format, inputs)
except KeyError as e:
raise KeyError(
f"Available inputs are {inputs.keys()} but input format requires a different one: {self.input_format}"
)
def process_outputs(self, outputs: Dict[str, object]) -> str:
try:
return self.process_template(self.output_format, outputs)
except KeyError as e:
raise KeyError(
f"Available inputs are {outputs.keys()} but output format requires a different one: {self.output_format}"
)
def get_postprocessors(self) -> List[str]:
return self.postprocessors
class OutputQuantizingTemplate(InputOutputTemplate):
quantum: float = 0.1
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
quantized_outputs = {
key: round(input_float / self.quantum) * self.quantum for key, input_float in outputs.items()
}
return super().process_outputs(quantized_outputs)
class MultiLabelTemplate(InputOutputTemplate):
labels_field: str = "labels"
labels_seprator: str = ", "
postprocessors = ["processors.to_list_by_comma"]
output_format = "{labels}"
empty_label = "None"
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
labels = outputs[self.labels_field]
if len(labels) == 0:
labels = [self.empty_label]
labels_str = self.labels_seprator.join(labels)
return super().process_outputs({"labels": labels_str})
def escape_chars(s, chars_to_escape):
for char in chars_to_escape:
s = s.replace(char, f"\\{char}")
return s
class SpanLabelingBaseTemplate(MultiLabelTemplate):
spans_starts_field: str = "spans_starts"
spans_ends_field: str = "spans_ends"
text_field: str = "text"
labels_support: list = None
def extract_span_label_pairs(self, outputs):
spans_starts = outputs[self.spans_starts_field]
spans_ends = outputs[self.spans_ends_field]
text = outputs[self.text_field]
labels = outputs[self.labels_field]
spans = []
for span_start, span_end, label in zip(spans_starts, spans_ends, labels):
if self.labels_support is None or label in self.labels_support:
spans.append((span_start, span_end, text[span_start:span_end], label))
for span in sorted(spans):
if self.labels_support is None or span[3] in self.labels_support:
yield span[2], span[3]
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
span_lables_pairs = self.extract_span_label_pairs(outputs)
targets = self.span_label_pairs_to_targets(span_lables_pairs)
return super().process_outputs({"labels": targets})
@abstractmethod
def span_label_pairs_to_targets(self, pairs):
pass
class SpanLabelingTemplate(SpanLabelingBaseTemplate):
span_label_format: str = "{span}: {label}"
escape_characters: List[str] = [":", ","]
postprocessors = ["processors.to_span_label_pairs"]
def span_label_pairs_to_targets(self, span_label_pairs):
targets = []
for span, label in span_label_pairs:
if self.escape_characters is not None:
span = escape_chars(span, self.escape_characters)
target = self.span_label_format.format(span=span, label=label)
targets.append(target)
return targets
class SpanLabelingJsonTemplate(SpanLabelingBaseTemplate):
postprocessors = ["processors.load_json", "processors.dict_of_lists_to_value_key_pairs"]
def span_label_pairs_to_targets(self, span_label_pairs):
groups = {}
for span, label in span_label_pairs:
if label not in groups:
groups[label] = list()
groups[label].append(span)
if len(groups) > 0:
targets = [json.dumps(groups)]
else:
targets = []
return targets
class AutoInputOutputTemplate(InputOutputTemplate):
def infer_input_format(self, inputs):
input_format = ""
for key in inputs.keys():
name = " ".join(word.lower().capitalize() for word in split_words(key) if word != " ")
input_format += name + ": " + "{" + key + "}" + "\n"
self.input_format = input_format
def infer_output_format(self, outputs):
self.output_format = "{" + next(iter(outputs.keys())) + "}"
def infer_missing(self, inputs, outputs):
if self.input_format is None:
self.infer_input_format(inputs)
if self.output_format is None:
self.infer_output_format(outputs)
def is_complete(self):
return self.input_format is not None and self.output_format is not None
from .collections import ListCollection
class TemplatesList(ListCollection):
def verify(self):
for template in self.items:
assert isinstance(template, Template)
def outputs_inputs2templates(inputs: Union[str, List], outputs: Union[str, List]) -> TemplatesList:
"""
combines input and output formats into their dot product
:param inputs: list of input formats (or one)
:param outputs: list of output formats (or one)
:return: TemplatesList of InputOutputTemplate
"""
templates = []
if isinstance(inputs, str):
inputs = [inputs]
if isinstance(outputs, str):
outputs = [outputs]
for input in inputs:
for output in outputs:
templates.append(
InputOutputTemplate(
input_format=input.strip(),
output_format=output.strip(),
),
)
return TemplatesList(templates)
def instructions2templates(
instructions: List[TextualInstruction], templates: List[InputOutputTemplate]
) -> TemplatesList:
"""
Insert instructions into per demonstration templates
:param instructions:
:param templates: strings containing {instuction} where the instruction should be placed
:return:
"""
res_templates = []
for instruction in instructions:
for template in templates:
res_templates.append(
InputOutputTemplate(
input_format=template.input_format.replace("{instruction}", instruction.text),
output_format=template.output_format,
)
)
return TemplatesList(templates)
class TemplatesDict(Dict):
def verify(self):
for key, template in self.items():
assert isinstance(template, Template)
|