Datasets:

ArXiv:
File size: 24,602 Bytes
4654b39
 
55c22b4
 
 
fb1bd40
55c22b4
4654b39
 
 
 
 
 
 
 
 
 
 
fb1bd40
2f710b1
4654b39
55c22b4
2f710b1
fb1bd40
2f710b1
55c22b4
2f710b1
 
55c22b4
fb1bd40
 
2f710b1
55c22b4
fb1bd40
55c22b4
021d88d
2f710b1
 
 
021d88d
 
 
 
 
 
55c22b4
2f710b1
 
 
 
55c22b4
 
 
 
 
 
 
 
 
 
 
 
 
021d88d
55c22b4
2f710b1
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
55c22b4
 
 
 
2f710b1
55c22b4
2f710b1
55c22b4
 
 
2f710b1
 
 
021d88d
 
 
 
 
 
 
55c22b4
021d88d
 
55c22b4
2f710b1
021d88d
2f710b1
 
 
021d88d
 
 
 
 
 
55c22b4
2f710b1
55c22b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f58297
 
55c22b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654b39
7f58297
 
 
 
 
 
 
4654b39
 
55c22b4
 
 
 
 
 
 
 
 
 
4654b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
 
 
 
 
 
 
 
 
 
 
4654b39
 
 
 
 
 
630b4f5
 
 
 
 
 
 
 
 
 
 
 
4654b39
 
 
 
630b4f5
4654b39
 
630b4f5
 
 
4654b39
 
 
 
 
 
 
 
 
 
 
630b4f5
4654b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
 
 
 
 
 
 
2f710b1
 
55c22b4
 
 
 
 
 
 
 
021d88d
 
 
55c22b4
 
 
 
 
 
 
 
 
021d88d
 
55c22b4
 
 
021d88d
2f710b1
 
55c22b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f710b1
021d88d
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
7f58297
021d88d
 
 
 
 
 
 
 
55c22b4
7f58297
2f710b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f58297
 
 
 
 
 
2f710b1
 
 
 
 
021d88d
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
021d88d
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021d88d
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021d88d
 
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c22b4
 
 
2f710b1
 
 
 
 
021d88d
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
021d88d
 
 
 
 
 
 
 
55c22b4
2f710b1
 
 
 
 
 
 
 
 
 
 
 
 
021d88d
55c22b4
021d88d
 
 
 
 
 
 
55c22b4
021d88d
 
55c22b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
import importlib
import inspect
import uuid
from abc import abstractmethod
from copy import deepcopy
from dataclasses import field
from itertools import zip_longest
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Optional,
    Tuple,
    Union,
)

from .artifact import Artifact, fetch_artifact
from .dataclass import NonPositionalField
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath
from .operator import (
    MultiStream,
    MultiStreamOperator,
    PagedStreamOperator,
    SingleStreamOperator,
    SingleStreamReducer,
    StreamingOperator,
    StreamInitializerOperator,
    StreamInstanceOperator,
)
from .random_utils import random
from .stream import MultiStream, Stream
from .text_utils import nested_tuple_to_string
from .utils import flatten_dict


class FromIterables(StreamInitializerOperator):
    """
    Creates a MultiStream from iterables.

    Args:
        iterables (Dict[str, Iterable]): A dictionary where each key-value pair represents a stream name and its corresponding iterable.
    """

    def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
        return MultiStream.from_iterables(iterables)


class MapInstanceValues(StreamInstanceOperator):
    """A class used to map instance values into a stream.

    This class is a type of StreamInstanceOperator,
    it maps values of instances in a stream using predefined mappers.

    Attributes:
        mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values.
            Keys are the names of the fields to be mapped, and values are dictionaries
            that define the mapping from old values to new values.
        strict (bool): If True, the mapping is applied strictly. That means if a value
            does not exist in the mapper, it will raise a KeyError. If False, values
            that are not present in the mapper are kept as they are.
    """

    mappers: Dict[str, Dict[str, str]]
    strict: bool = True
    use_query = False

    def verify(self):
        # make sure the mappers are valid
        for key, mapper in self.mappers.items():
            assert isinstance(mapper, dict), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
            for k, v in mapper.items():
                assert isinstance(k, str), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        for key, mapper in self.mappers.items():
            value = dict_get(instance, key, use_dpath=self.use_query)
            if value is not None:
                value = str(value)  # make sure the value is a string
                if self.strict:
                    dict_set(instance, key, mapper[value], use_dpath=self.use_query)
                else:
                    if value in mapper:
                        dict_set(instance, key, mapper[value], use_dpath=self.use_query)
        return instance


class FlattenInstances(StreamInstanceOperator):
    """
    Flattens each instance in a stream, making nested dictionary entries into top-level entries.

    Args:
        parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
        sep (str): The separator to use when concatenating nested keys. Defaults to "_".
    """

    parent_key: str = ""
    sep: str = "_"

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)


class AddFields(StreamInstanceOperator):
    """
    Adds specified fields to each instance in a stream.

    Args:
        fields (Dict[str, object]): The fields to add to each instance.
    """

    fields: Dict[str, object]
    use_query: bool = False
    use_deepcopy: bool = False

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        if self.use_query:
            for key, value in self.fields.items():
                if self.use_deepcopy:
                    value = deepcopy(value)
                dict_set(instance, key, value, use_dpath=self.use_query)
        else:
            if self.use_deepcopy:
                self.fields = deepcopy(self.fields)
            instance.update(self.fields)
        return instance


class FieldOperator(StreamInstanceOperator):
    """
    A general stream that processes the values of a field (or multiple ones
    Args:
        field (Optional[str]): The field to process, if only a single one is passed Defaults to None
        to_field (Optional[str]): Field name to save, if only one field is to be saved, if None is passed the operator would happen in-place and replace "field" Defaults to None
        field_to_field (Optional[Union[List[Tuple[str, str]], Dict[str, str]]]): Mapping from fields to process to their names after this process, duplicates are allowed. Defaults to None
        process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False
        use_query (bool): Whether to use dpath style queries. Defaults to False
    """

    field: Optional[str] = None
    to_field: Optional[str] = None
    field_to_field: Optional[Union[List[Tuple[str, str]], Dict[str, str]]] = None
    process_every_value: bool = False
    use_query: bool = False
    get_default: Any = None
    not_exist_ok: bool = False

    def verify(self):
        super().verify()

        assert self.field is not None or self.field_to_field is not None, "Must supply a field to work on"
        assert (
            self.to_field is None or self.field_to_field is None
        ), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}"
        assert (
            self.field is None or self.field_to_field is None
        ), f"Can not apply operator both on {self.field} and on the mapping from fields to fields {self.field_to_field}"
        assert self._field_to_field, f"the from and to fields must be defined got: {self._field_to_field}"

    @abstractmethod
    def process_value(self, value: Any) -> Any:
        pass

    def prepare(self):
        if self.to_field is None:
            self.to_field = self.field
        if self.field_to_field is None:
            self._field_to_field = [(self.field, self.to_field)]
        else:
            try:
                self._field_to_field = [(k, v) for k, v in self.field_to_field.items()]
            except AttributeError:
                self._field_to_field = self.field_to_field

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        for from_field, to_field in self._field_to_field:
            try:
                old_value = dict_get(
                    instance,
                    from_field,
                    use_dpath=self.use_query,
                    default=self.get_default,
                    not_exist_ok=self.not_exist_ok,
                )
            except TypeError as e:
                raise TypeError(f"Failed to get {from_field} from {instance}")
            if self.process_every_value:
                new_value = [self.process_value(value) for value in old_value]
            else:
                new_value = self.process_value(old_value)
            if self.use_query and is_subpath(from_field, to_field):
                dict_delete(instance, from_field)
            dict_set(instance, to_field, new_value, use_dpath=self.use_query, not_exist_ok=True)
        return instance


class RenameFields(FieldOperator):
    """
    Renames fields
    """

    def process_value(self, value: Any) -> Any:
        return value

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        res = super().process(instance=instance, stream_name=stream_name)
        vals = [x[1] for x in self._field_to_field]
        for key, _ in self._field_to_field:
            if self.use_query and "/" in key:
                continue
            if key not in vals:
                res.pop(key)
        return res


class AddConstant(FieldOperator):
    """
    Adds a number, similar to field + add
    Args:
        add (float): sum to add
    """

    add: float

    def process_value(self, value: Any) -> Any:
        return value + self.add


class ShuffleFieldValues(FieldOperator):
    """
    Shuffles an iterable value
    """

    def process_value(self, value: Any) -> Any:
        res = list(value)
        random.shuffle(res)
        return res


class JoinStr(FieldOperator):
    """
    Joins a list of strings (contents of a field), similar to str.join()
    Args:
        separator (str): text to put between values
    """

    separator: str = ","

    def process_value(self, value: Any) -> Any:
        return self.separator.join(str(x) for x in value)


class Apply(StreamInstanceOperator):
    __allow_unexpected_arguments__ = True
    function: Callable = NonPositionalField(required=True)
    to_field: str = NonPositionalField(required=True)

    def function_to_str(self, function: Callable) -> str:
        parts = []

        if hasattr(function, "__module__"):
            parts.append(function.__module__)
        if hasattr(function, "__qualname__"):
            parts.append(function.__qualname__)
        else:
            parts.append(function.__name__)

        result = ".".join(parts)

        return result

    def str_to_function(self, function_str: str) -> Callable:
        splitted = function_str.split(".", 1)
        if len(splitted) == 1:
            return __builtins__[module_name]
        else:
            module_name, function_name = splitted
            if module_name in __builtins__:
                obj = __builtins__[module_name]
            elif module_name in globals():
                obj = globals()[module_name]
            else:
                obj = importlib.import_module(module_name)
            for part in function_name.split("."):
                obj = getattr(obj, part)
            return obj

    def prepare(self):
        super().prepare()
        if isinstance(self.function, str):
            self.function = self.str_to_function(self.function)
        self._init_dict["function"] = self.function_to_str(self.function)

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        argv = [instance[arg] for arg in self._argv]
        kwargs = {key: instance[val] for key, val in self._kwargs}

        result = self.function(*argv, **kwargs)

        instance[self.to_field] = result
        return instance


class ListFieldValues(StreamInstanceOperator):
    """
    Concatanates values of multiple fields into a list to list(fields)
    """

    fields: str
    to_field: str
    use_query: bool = False

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        values = []
        for field in self.fields:
            values.append(dict_get(instance, field, use_dpath=self.use_query))
        instance[self.to_field] = values
        return instance


class ZipFieldValues(StreamInstanceOperator):
    """
    Zips values of multiple fields similar to list(zip(*fields))
    """

    fields: str
    to_field: str
    longest: bool = False
    use_query: bool = False

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        values = []
        for field in self.fields:
            values.append(dict_get(instance, field, use_dpath=self.use_query))
        if self.longest:
            zipped = zip_longest(*values)
        else:
            zipped = zip(*values)
        instance[self.to_field] = list(zipped)
        return instance


class IndexOf(StreamInstanceOperator):
    """
    Finds the location of one value in another (iterable) value similar to to_field=search_in.index(index_of)
    """

    search_in: str
    index_of: str
    to_field: str
    use_query: bool = False

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        lst = dict_get(instance, self.search_in, use_dpath=self.use_query)
        item = dict_get(instance, self.index_of, use_dpath=self.use_query)
        instance[self.to_field] = lst.index(item)
        return instance


class TakeByField(StreamInstanceOperator):
    """
    Takes value from one field based on another field similar to field[index]
    """

    field: str
    index: str
    to_field: str = None
    use_query: bool = False

    def prepare(self):
        if self.to_field is None:
            self.to_field = self.field

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        value = dict_get(instance, self.field, use_dpath=self.use_query)
        index_value = dict_get(instance, self.index, use_dpath=self.use_query)
        instance[self.to_field] = value[index_value]
        return instance


class CopyFields(FieldOperator):
    """
    Copies specified fields from one field to another.

    Args:
        field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.
        use_dpath (bool): Whether to use dpath for accessing fields. Defaults to False.
    """

    def process_value(self, value: Any) -> Any:
        return value


class AddID(StreamInstanceOperator):
    id_field_name: str = "id"

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "")
        return instance


class CastFields(StreamInstanceOperator):
    """
    Casts specified fields to specified types.

    Args:
        types (Dict[str, str]): A dictionary mapping fields to their new types.
        nested (bool): Whether to cast nested fields. Defaults to False.
        fields (Dict[str, str]): A dictionary mapping fields to their new types.
        defaults (Dict[str, object]): A dictionary mapping types to their default values for cases of casting failure.
    """

    types = {
        "int": int,
        "float": float,
        "str": str,
        "bool": bool,
    }
    fields: Dict[str, str] = field(default_factory=dict)
    failure_defaults: Dict[str, object] = field(default_factory=dict)
    use_nested_query: bool = False
    cast_multiple: bool = False

    def _cast_single(self, value, type, field):
        try:
            return self.types[type](value)
        except:
            if field not in self.failure_defaults:
                raise ValueError(
                    f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.'
                )
            return self.failure_defaults[field]

    def _cast_multiple(self, values, type, field):
        values = [self._cast_single(value, type, field) for value in values]

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        for field, type in self.fields.items():
            value = dict_get(instance, field, use_dpath=self.use_nested_query)
            if self.cast_multiple:
                casted_value = self._cast_multiple(value, type, field)
            else:
                casted_value = self._cast_single(value, type, field)
            dict_set(instance, field, casted_value, use_dpath=self.use_nested_query)
        return instance


def recursive_divide(instance, divisor, strict=False):
    if isinstance(instance, dict):
        for key, value in instance.items():
            instance[key] = recursive_divide(value, divisor, strict=strict)
    elif isinstance(instance, list):
        for i, value in enumerate(instance):
            instance[i] = recursive_divide(value, divisor, strict=strict)
    elif isinstance(instance, float):
        instance /= divisor
    elif strict:
        raise ValueError(f"Cannot divide instance of type {type(instance)}")
    return instance


class DivideAllFieldsBy(StreamInstanceOperator):
    divisor: float = 1.0
    strict: bool = False
    recursive: bool = True

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        return recursive_divide(instance, self.divisor, strict=self.strict)


class ArtifactFetcherMixin:
    """
    Provides a way to fetch and cache artifacts in the system.

    Args:
        cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
    """

    cache: Dict[str, Artifact] = {}

    @classmethod
    def get_artifact(cls, artifact_identifier: str) -> Artifact:
        if artifact_identifier not in cls.cache:
            artifact, artifactory = fetch_artifact(artifact_identifier)
            cls.cache[artifact_identifier] = artifact
        return cls.cache[artifact_identifier]


class ApplyOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
    """
    Applies value operators to each instance in a stream based on specified fields.

    Args:
        value_field (str): The field containing the value to be operated on.
        operators_field (str): The field containing the operators to be applied.
        default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
    """

    inputs_fields: str
    operators_field: str
    default_operators: List[str] = None

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        operator_names = instance.get(self.operators_field)
        if operator_names is None:
            assert (
                self.default_operators is not None
            ), f"No operators found in {self.field} field and no default operators provided"
            operator_names = self.default_operators

        if isinstance(operator_names, str):
            operator_names = [operator_names]

        for name in operator_names:
            operator = self.get_artifact(name)
            for field in self.inputs_fields:
                value = instance[field]
                if isinstance(value, list):
                    instance[field] = [operator.process(v) for v in value]
                else:
                    instance[field] = operator.process(instance[field])

        return instance


class FilterByValues(SingleStreamOperator):
    """
    Filters a stream, yielding only instances that match specified values.

    Args:
        values (Dict[str, Any]): The values that instances should match to be included in the output.
    """

    values: Dict[str, Any]

    def process(self, stream: Stream, stream_name: str = None) -> Generator:
        for instance in stream:
            if all(instance[key] == value for key, value in self.values.items()):
                yield instance


class Unique(SingleStreamReducer):
    """
    Reduces a stream to unique instances based on specified fields.

    Args:
        fields (List[str]): The fields that should be unique in each instance.
    """

    fields: List[str] = field(default_factory=list)

    @staticmethod
    def to_tuple(instance: dict, fields: List[str]) -> tuple:
        result = []
        for field in fields:
            value = instance[field]
            if isinstance(value, list):
                value = tuple(value)
            result.append(value)
        return tuple(result)

    def process(self, stream: Stream) -> Stream:
        seen = set()
        for instance in stream:
            values = self.to_tuple(instance, self.fields)
            if values not in seen:
                seen.add(values)
        return list(seen)


class SplitByValue(MultiStreamOperator):
    """
    Splits a MultiStream into multiple streams based on unique values in specified fields.

    Args:
        fields (List[str]): The fields to use when splitting the MultiStream.
    """

    fields: List[str] = field(default_factory=list)

    def process(self, multi_stream: MultiStream) -> MultiStream:
        uniques = Unique(fields=self.fields)(multi_stream)

        result = {}

        for stream_name, stream in multi_stream.items():
            stream_unique_values = uniques[stream_name]
            for unique_values in stream_unique_values:
                filtering_values = {field: value for field, value in zip(self.fields, unique_values)}
                filtered_streams = FilterByValues(values=filtering_values)._process_single_stream(stream)
                filtered_stream_name = stream_name + "_" + nested_tuple_to_string(unique_values)
                result[filtered_stream_name] = filtered_streams

        return MultiStream(result)


class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
    """
    Applies stream operators to a stream based on specified fields in each instance.

    Args:
        field (str): The field containing the operators to be applied.
        reversed (bool): Whether to apply the operators in reverse order.
    """

    field: str
    reversed: bool = False

    def process(self, stream: Stream, stream_name: str = None) -> Generator:
        first_instance = stream.peak()

        operators = first_instance.get(self.field, [])
        if isinstance(operators, str):
            operators = [operators]

        if self.reversed:
            operators = list(reversed(operators))

        for operator_name in operators:
            operator = self.get_artifact(operator_name)
            assert isinstance(operator, StreamingOperator), f"Operator {operator_name} must be a SingleStreamOperator"

            stream = operator(MultiStream({"tmp": stream}))["tmp"]

        yield from stream


class AddFieldNamePrefix(StreamInstanceOperator):
    """
    Adds a prefix to each field name in each instance of a stream.

    Args:
        prefix_dict (Dict[str, str]): A dictionary mapping stream names to prefixes.
    """

    prefix_dict: Dict[str, str]

    def prepare(self):
        return super().prepare()

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        return {self.prefix_dict[stream_name] + key: value for key, value in instance.items()}


class MergeStreams(MultiStreamOperator):
    """
    Merges multiple streams into a single stream.

    Args:
        new_stream_name (str): The name of the new stream resulting from the merge.
        add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
        origin_stream_name_field_name (str): The field name for the origin stream name.
    """

    new_stream_name: str = "all"
    add_origin_stream_name: bool = True
    origin_stream_name_field_name: str = "origin"

    def merge(self, multi_stream):
        for stream_name, stream in multi_stream.items():
            for instance in stream:
                if self.add_origin_stream_name:
                    instance[self.origin_stream_name_field_name] = stream_name
                yield instance

    def process(self, multi_stream: MultiStream) -> MultiStream:
        return MultiStream({self.new_stream_name: Stream(self.merge, gen_kwargs={"multi_stream": multi_stream})})


class Shuffle(PagedStreamOperator):
    """
    Shuffles the order of instances in each page of a stream.

    Args:
        page_size (int): The size of each page in the stream. Defaults to 1000.
    """

    def process(self, page: List[Dict], stream_name: str = None) -> Generator:
        random.shuffle(page)
        yield from page


class EncodeLabels(StreamInstanceOperator):
    """
    Encode labels of specified fields together a into integers.

    Args:
        fields (List[str]): The fields to encode together.
    """

    fields: List[str]

    def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
        self.encoder = {}
        return super()._process_multi_stream(multi_stream)

    def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
        for field in self.fields:
            values = dict_get(instance, field, use_dpath=True)
            if not isinstance(values, list):
                values = [values]
            for value in values:
                if value not in self.encoder:
                    self.encoder[value] = len(self.encoder)
            new_values = [self.encoder[value] for value in values]
            dict_set(instance, field, new_values, use_dpath=True, set_multiple=True)

        return instance