File size: 8,573 Bytes
63d3ef3 eb86bdf 1ec0bfb eb86bdf 1ec0bfb eb86bdf 1ec0bfb 63d3ef3 eb86bdf 63d3ef3 eb86bdf 63d3ef3 eb86bdf 63d3ef3 eb86bdf 63d3ef3 eb86bdf 63d3ef3 eb86bdf 63d3ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Union
from .artifact import Artifact
from .instructions import Instruction, TextualInstruction
from .operator import InstanceOperatorWithGlobalAccess, StreamInstanceOperator
from .random_utils import random
from .text_utils import split_words
class Renderer(ABC):
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class Template(Artifact):
@abstractmethod
def process_inputs(self, inputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class RenderFormatTemplate(Renderer, StreamInstanceOperator):
template: Template = None
random_reference: bool = False
def verify(self):
assert isinstance(self.template, Template), "Template must be an instance of Template"
assert self.template is not None, "Template must be specified"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return self.render(instance)
def render(self, instance: Dict[str, Any]) -> Dict[str, Any]:
inputs = instance.pop("inputs")
outputs = instance.pop("outputs")
source = self.template.process_inputs(inputs)
key, targets = next(iter(outputs.items()))
if not isinstance(targets, list):
targets = [targets]
references = [self.template.process_outputs({key: target}) for target in targets]
if self.random_reference:
target = random.choice(references)
else:
if len(references) == 0:
raise ValueError("No references found")
target = references[0] # what
return {
**instance,
"source": source,
"target": target,
"references": references,
}
def get_postprocessors(self) -> List[str]:
return self.template.get_postprocessors()
class RenderAutoFormatTemplate(RenderFormatTemplate):
def prepare(self):
if self.template is None:
self.template = AutoInputOutputTemplate()
elif isinstance(self.template, InputOutputTemplate):
self.template = AutoInputOutputTemplate(
input_format=self.template.input_format,
output_format=self.template.output_format,
)
else:
raise ValueError(
f"Template must be an instance of InputOutputTemplate or AutoInputOutputTemplate, got {type(self.template)}"
)
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
if not self.template.is_complete():
self.template.infer_missing(instance["inputs"], instance["outputs"])
inputs = {key: value for key, value in instance["inputs"].items()}
return super().render({**instance, "inputs": inputs})
class CharacterSizeLimiter(Artifact):
limit: int = 1000
def check(self, text: str) -> bool:
return len(text) <= self.limit
class RenderTemplatedICL(RenderAutoFormatTemplate):
instruction: Instruction = None
input_prefix: str = "Input: "
output_prefix: str = "Output: "
instruction_prefix: str = ""
demos_field: str = None
size_limiter: Artifact = None
input_output_separator: str = "\n"
demo_separator: str = "\n\n"
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
demos = instance.pop(self.demos_field, [])
source = ""
example = super().render(instance)
input_str = self.input_prefix + example["source"] + self.input_output_separator + self.output_prefix
if self.instruction is not None:
source += self.instruction_prefix + self.instruction() + self.demo_separator
for demo_instance in demos:
demo_example = super().render(demo_instance)
demo_str = (
self.input_prefix
+ demo_example["source"]
+ self.input_output_separator
+ self.output_prefix
+ demo_example["target"]
+ self.demo_separator
)
if self.size_limiter is not None:
if not self.size_limiter.check(source + demo_str + input_str + example["target"]):
continue
source += demo_str
source += input_str
return {
**example,
"source": source,
}
class InputOutputTemplate(Template):
input_format: str = None
output_format: str = None
def process_template(self, template: str, data: Dict[str, object]) -> str:
return template.format(**data)
def process_inputs(self, inputs: Dict[str, object]) -> str:
try:
return self.process_template(self.input_format, inputs)
except KeyError as e:
raise KeyError(
f"Available inputs are {inputs.keys()} but input format requires a different one: {self.input_format}"
)
def process_outputs(self, outputs: Dict[str, object]) -> str:
try:
return self.process_template(self.output_format, outputs)
except KeyError as e:
raise KeyError(
f"Available inputs are {outputs.keys()} but output format requires a different one: {self.output_format}"
)
def get_postprocessors(self) -> List[str]:
return ["to_string"]
class OutputQuantizingTemplate(InputOutputTemplate):
quantum: float = 0.1
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
quantized_outputs = {
key: round(input_float / self.quantum) * self.quantum for key, input_float in outputs.items()
}
return super().process_outputs(quantized_outputs)
class AutoInputOutputTemplate(InputOutputTemplate):
def infer_input_format(self, inputs):
input_format = ""
for key in inputs.keys():
name = " ".join(word.lower().capitalize() for word in split_words(key) if word != " ")
input_format += name + ": " + "{" + key + "}" + "\n"
self.input_format = input_format
def infer_output_format(self, outputs):
self.output_format = "{" + next(iter(outputs.keys())) + "}"
def infer_missing(self, inputs, outputs):
if self.input_format is None:
self.infer_input_format(inputs)
if self.output_format is None:
self.infer_output_format(outputs)
def is_complete(self):
return self.input_format is not None and self.output_format is not None
from .collections import ListCollection
class TemplatesList(ListCollection):
def verify(self):
for template in self.items:
assert isinstance(template, Template)
def outputs_inputs2templates(inputs: Union[str, List], outputs: Union[str, List]) -> TemplatesList:
"""
combines input and output formats into their dot product
:param inputs: list of input formats (or one)
:param outputs: list of output formats (or one)
:return: TemplatesList of InputOutputTemplate
"""
templates = []
if isinstance(inputs, str):
inputs = [inputs]
if isinstance(outputs, str):
outputs = [outputs]
for input in inputs:
for output in outputs:
templates.append(
InputOutputTemplate(
input_format=input.strip(),
output_format=output.strip(),
),
)
return TemplatesList(templates)
def instructions2templates(
instructions: List[TextualInstruction], templates: List[InputOutputTemplate]
) -> TemplatesList:
"""
Insert instructions into per demonstration templates
:param instructions:
:param templates: strings containing {instuction} where the instruction should be placed
:return:
"""
res_templates = []
for instruction in instructions:
for template in templates:
res_templates.append(
InputOutputTemplate(
input_format=template.input_format.replace("{instruction}", instruction.text),
output_format=template.output_format,
)
)
return TemplatesList(templates)
class TemplatesDict(Dict):
def verify(self):
for key, template in self.items():
assert isinstance(template, Template)
|