Datasets:

ArXiv:
File size: 3,887 Bytes
d02a8ac
 
40043eb
 
051e41a
 
 
 
 
2e29d8d
00d64b4
 
d36ee13
c819ab2
051e41a
2fc57b8
40043eb
051e41a
76095f4
051e41a
40043eb
5a6ef73
 
051e41a
00d64b4
051e41a
 
 
 
524f10c
051e41a
d36ee13
051e41a
 
 
5c42eb3
524f10c
 
051e41a
40043eb
2fc57b8
051e41a
524f10c
 
051e41a
 
 
76095f4
40043eb
524f10c
40043eb
2c26876
1993de0
051e41a
5a6ef73
524f10c
5a6ef73
d02a8ac
147bcf9
051e41a
 
524f10c
051e41a
 
 
 
524f10c
 
 
 
 
 
 
 
 
00d64b4
28ed41d
d02a8ac
5a6ef73
d02a8ac
 
5a6ef73
d02a8ac
 
 
 
051e41a
 
 
 
 
 
28ed41d
 
 
 
051e41a
 
 
28ed41d
d36ee13
28ed41d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os

import datasets

from .artifact import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .dataclass import __file__ as _
from .dataset_utils import __file__ as _
from .dataset_utils import get_dataset_artifact
from .dict_utils import __file__ as _
from .eval_utils import __file__ as _
from .file_utils import __file__ as _
from .formats import __file__ as _
from .fusion import __file__ as _
from .generator_utils import __file__ as _
from .hf_utils import __file__ as _
from .instructions import __file__ as _
from .loaders import __file__ as _
from .logging_utils import __file__ as _
from .logging_utils import get_logger
from .metric import __file__ as _
from .metric_utils import __file__ as _
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import __file__ as _
from .operators import __file__ as _
from .parsing_utils import __file__ as _
from .processors import __file__ as _
from .random_utils import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .schema import __file__ as _
from .settings_utils import __file__ as _
from .settings_utils import get_constants
from .span_lableing_operators import __file__ as _
from .split_utils import __file__ as _
from .splitters import __file__ as _
from .standard import __file__ as _
from .stream import __file__ as _
from .struct_data_operators import __file__ as _
from .system_prompts import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .type_utils import __file__ as _
from .utils import __file__ as _
from .utils import is_package_installed
from .validate import __file__ as _
from .version import __file__ as _
from .version import version

logger = get_logger()
constants = get_constants()


class Dataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = constants.version

    @property
    def generators(self):
        if not hasattr(self, "_generators") or self._generators is None:
            if is_package_installed("unitxt"):
                from unitxt.settings_utils import \
                    get_constants as installed_get_constants

                installed_package_constants = installed_get_constants()
                if installed_package_constants.version != self.VERSION:
                    raise ValueError(
                        f"Located installed unitxt version {installed_get_constants.version} that is different then unitxt dataset version {self.VERSION}. Please make sure the installed version is identical to the dataset version."
                    )
                from unitxt.dataset_utils import \
                    get_dataset_artifact as get_dataset_artifact_installed

                logger.info("Loading with installed unitxt library...")
                dataset = get_dataset_artifact_installed(self.config.name)
            else:
                logger.info("Loading with huggingface unitxt copy...")
                dataset = get_dataset_artifact(self.config.name)

            self._generators = dataset()

        return self._generators

    def _info(self):
        return datasets.DatasetInfo()

    def _split_generators(self, _):
        return [
            datasets.SplitGenerator(name=name, gen_kwargs={"split_name": name})
            for name in self.generators.keys()
        ]

    def _generate_examples(self, split_name):
        generator = self.generators[split_name]
        yield from enumerate(generator)

    def _download_and_prepare(
        self, dl_manager, verification_mode, **prepare_splits_kwargs
    ):
        return super()._download_and_prepare(
            dl_manager, "no_checks", **prepare_splits_kwargs
        )