Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
intent-classification
Languages:
English
Size:
1K - 10K
License:
Commit
•
2f93a00
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +146 -0
- dataset_infos.json +1 -0
- dummy/plain_text/1.0.0/dummy_data.zip +3 -0
- sms_spam.py +91 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
- found
|
5 |
+
language_creators:
|
6 |
+
- crowdsourced
|
7 |
+
- found
|
8 |
+
languages:
|
9 |
+
- en
|
10 |
+
licenses:
|
11 |
+
- unknown
|
12 |
+
multilinguality:
|
13 |
+
- monolingual
|
14 |
+
size_categories:
|
15 |
+
- 1K<n<10K
|
16 |
+
source_datasets:
|
17 |
+
- extended|other-nus-sms-corpus
|
18 |
+
task_categories:
|
19 |
+
- text-classification
|
20 |
+
task_ids:
|
21 |
+
- intent-classification
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for [Dataset Name]
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
- [Dataset Description](#dataset-description)
|
28 |
+
- [Dataset Summary](#dataset-summary)
|
29 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
30 |
+
- [Languages](#languages)
|
31 |
+
- [Dataset Structure](#dataset-structure)
|
32 |
+
- [Data Instances](#data-instances)
|
33 |
+
- [Data Fields](#data-instances)
|
34 |
+
- [Data Splits](#data-instances)
|
35 |
+
- [Dataset Creation](#dataset-creation)
|
36 |
+
- [Curation Rationale](#curation-rationale)
|
37 |
+
- [Source Data](#source-data)
|
38 |
+
- [Annotations](#annotations)
|
39 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
40 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
41 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
42 |
+
- [Discussion of Biases](#discussion-of-biases)
|
43 |
+
- [Other Known Limitations](#other-known-limitations)
|
44 |
+
- [Additional Information](#additional-information)
|
45 |
+
- [Dataset Curators](#dataset-curators)
|
46 |
+
- [Licensing Information](#licensing-information)
|
47 |
+
- [Citation Information](#citation-information)
|
48 |
+
|
49 |
+
## Dataset Description
|
50 |
+
|
51 |
+
- **Homepage:** http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
|
52 |
+
- **Repository:**
|
53 |
+
- **Paper:** Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011.
|
54 |
+
- **Leaderboard:**
|
55 |
+
- **Point of Contact:**
|
56 |
+
|
57 |
+
### Dataset Summary
|
58 |
+
|
59 |
+
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research.
|
60 |
+
It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
|
61 |
+
|
62 |
+
### Supported Tasks and Leaderboards
|
63 |
+
|
64 |
+
[More Information Needed]
|
65 |
+
|
66 |
+
### Languages
|
67 |
+
|
68 |
+
English
|
69 |
+
|
70 |
+
## Dataset Structure
|
71 |
+
|
72 |
+
### Data Instances
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
### Data Fields
|
77 |
+
|
78 |
+
- sms: the sms message
|
79 |
+
- label: indicating if the sms message is ham or spam, ham means it is not spam
|
80 |
+
|
81 |
+
### Data Splits
|
82 |
+
|
83 |
+
[More Information Needed]
|
84 |
+
|
85 |
+
## Dataset Creation
|
86 |
+
|
87 |
+
### Curation Rationale
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
### Source Data
|
92 |
+
|
93 |
+
#### Initial Data Collection and Normalization
|
94 |
+
|
95 |
+
[More Information Needed]
|
96 |
+
|
97 |
+
#### Who are the source language producers?
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
### Annotations
|
102 |
+
|
103 |
+
#### Annotation process
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
#### Who are the annotators?
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
### Personal and Sensitive Information
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
## Considerations for Using the Data
|
116 |
+
|
117 |
+
### Social Impact of Dataset
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
### Discussion of Biases
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
### Other Known Limitations
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
## Additional Information
|
130 |
+
|
131 |
+
### Dataset Curators
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
### Licensing Information
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
### Citation Information
|
140 |
+
|
141 |
+
@inproceedings{Almeida2011SpamFiltering,
|
142 |
+
title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},
|
143 |
+
author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},
|
144 |
+
year={2011},
|
145 |
+
booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)",
|
146 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"plain_text": {"description": "The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research. \nIt has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.\n", "citation": "@inproceedings{Almeida2011SpamFiltering,\n title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},\n author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},\n year={2011},\n booktitle = \"Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)\",\n}\n", "homepage": "http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection", "license": "", "features": {"sms": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["ham", "spam"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "sms_spam", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 521756, "num_examples": 5574, "dataset_name": "sms_spam"}}, "download_checksums": {"http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip": {"num_bytes": 203415, "checksum": "1587ea43e58e82b14ff1f5425c88e17f8496bfcdb67a583dbff9eefaf9963ce3"}}, "download_size": 203415, "post_processing_size": null, "dataset_size": 521756, "size_in_bytes": 725171}}
|
dummy/plain_text/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:105b0e273e0da2af4b3dd786241ae4eb12bf36d1c41f67f7f82dd41e305ff77a
|
3 |
+
size 733
|
sms_spam.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""SMS Spam Collection Data Set"""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import os
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@inproceedings{Almeida2011SpamFiltering,
|
28 |
+
title={Contributions to the Study of SMS Spam Filtering: New Collection and Results},
|
29 |
+
author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami},
|
30 |
+
year={2011},
|
31 |
+
booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)",
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research.
|
37 |
+
It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DATA_URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
|
41 |
+
|
42 |
+
|
43 |
+
class SmsSpam(datasets.GeneratorBasedBuilder):
|
44 |
+
"""SMS Spam Collection Data Set"""
|
45 |
+
|
46 |
+
BUILDER_CONFIGS = [
|
47 |
+
datasets.BuilderConfig(
|
48 |
+
name="plain_text",
|
49 |
+
version=datasets.Version("1.0.0", ""),
|
50 |
+
description="Plain text import of SMS Spam Collection Data Set",
|
51 |
+
)
|
52 |
+
]
|
53 |
+
|
54 |
+
def _info(self):
|
55 |
+
return datasets.DatasetInfo(
|
56 |
+
description=_DESCRIPTION,
|
57 |
+
features=datasets.Features(
|
58 |
+
{
|
59 |
+
"sms": datasets.Value("string"),
|
60 |
+
"label": datasets.features.ClassLabel(names=["ham", "spam"]),
|
61 |
+
}
|
62 |
+
),
|
63 |
+
supervised_keys=("sms", "label"),
|
64 |
+
homepage="http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection",
|
65 |
+
citation=_CITATION,
|
66 |
+
)
|
67 |
+
|
68 |
+
def _split_generators(self, dl_manager):
|
69 |
+
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
70 |
+
return [
|
71 |
+
datasets.SplitGenerator(
|
72 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir, "SMSSpamCollection")}
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
def _generate_examples(self, filepath):
|
77 |
+
"""This function returns the examples in the raw (text) form."""
|
78 |
+
|
79 |
+
with open(filepath, encoding="utf-8") as sms_file:
|
80 |
+
for idx, line in enumerate(sms_file):
|
81 |
+
fields = line.split("\t")
|
82 |
+
|
83 |
+
if fields[0] == "ham":
|
84 |
+
label = 0
|
85 |
+
else:
|
86 |
+
label = 1
|
87 |
+
|
88 |
+
yield idx, {
|
89 |
+
"sms": fields[1],
|
90 |
+
"label": label,
|
91 |
+
}
|