# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import textwrap import pandas as pd import datasets LANGUAGES = ['malay', 'hindi', 'japanese', 'german', 'italian', 'english', 'portuguese', 'french', 'spanish', 'chinese', 'indonesian', 'arabic' ] class MultilingualSentimentsConfig(datasets.BuilderConfig): """BuilderConfig for Multilingual Sentiments""" def __init__( self, text_features, label_column, label_classes, train_url, valid_url, test_url, citation, **kwargs, ): """BuilderConfig for Multilingual Sentiments. Args: text_features: `dict[string, string]`, map from the name of the feature dict for each text field to the name of the column in the txt/csv/tsv file label_column: `string`, name of the column in the txt/csv/tsv file corresponding to the label label_classes: `list[string]`, the list of classes if the label is categorical train_url: `string`, url to train file from valid_url: `string`, url to valid file from test_url: `string`, url to test file from citation: `string`, citation for the data set **kwargs: keyword arguments forwarded to super. """ super(MultilingualSentimentsConfig, self).__init__( version=datasets.Version("1.0.0", ""), **kwargs) self.text_features = text_features self.label_column = label_column self.label_classes = label_classes self.train_url = train_url self.valid_url = valid_url self.test_url = test_url self.citation = citation class MultilingualSentiments(datasets.GeneratorBasedBuilder): """Multilingual Sentiments benchmark""" BUILDER_CONFIGS = [] BUILDER_CONFIGS.append( MultilingualSentimentsConfig( name="all", description=textwrap.dedent( f"""\ All datasets.""" ), text_features={"text": "text", "language": "language"}, label_classes=["positive", "neutral", "negative"], label_column="label", train_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/all/train.csv", valid_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/all/valid.csv", test_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/all/test.csv", citation=textwrap.dedent( f"""\ All citation""" ), ), ) for lang in LANGUAGES: BUILDER_CONFIGS.append( MultilingualSentimentsConfig( name=lang, description=textwrap.dedent( f"""\ {lang} dataset.""" ), text_features={"text": "text"}, label_classes=["positive", "neutral", "negative"], label_column="label", train_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/{lang}/train.csv", valid_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/{lang}/valid.csv", test_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/{lang}/test.csv", citation=textwrap.dedent( f"""\ {lang} citation""" ), ), ) def _info(self): features = {text_feature: datasets.Value( "string") for text_feature in self.config.text_features} features["label"] = datasets.features.ClassLabel( names=self.config.label_classes) return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(features), citation=self.config.citation, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_path = dl_manager.download_and_extract(self.config.train_url) valid_path = dl_manager.download_and_extract(self.config.valid_url) test_path = dl_manager.download_and_extract(self.config.test_url) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": valid_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path}), ] def _generate_examples(self, filepath): # with open(filepath, encoding="utf-8") as f: # reader = csv.reader(f, quoting=csv.QUOTE_NONE) df = pd.read_csv(filepath) # next(reader, None) # skip the headers for id_, row in df.iterrows(): if self.config.name != "all": text, label = row["text"], row["label"] yield id_, {"text": text, "label": label} else: text, label, language = row["text"], row["label"], row["language"] yield id_, {"text": text, "label": label, "language": language}