Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
File size: 5,324 Bytes
cb715ae
 
 
 
 
 
 
 
 
 
 
 
 
 
84a48e2
 
 
 
 
 
 
 
cb715ae
 
 
84a48e2
cb715ae
 
84a48e2
 
 
 
cb715ae
 
84a48e2
 
 
 
cb715ae
84a48e2
 
cb715ae
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
84a48e2
cb715ae
 
 
 
84a48e2
 
cb715ae
 
 
 
 
 
 
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
84a48e2
 
cb715ae
84a48e2
cb715ae
84a48e2
cb715ae
84a48e2
cb715ae
 
84a48e2
cb715ae
 
 
 
 
 
 
 
84a48e2
cb715ae
 
 
84a48e2
cb715ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
task_categories:
  - text-generation
language:
  - en
  - de
  - fr
  - es
  - it
pretty_name: Red Pajama V2 Data Foundation
---

### Getting Started

The full RedPajama-V2 dataset is a data foundation that includes a over 100B text documents coming from 84 CommonCrawl
snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are
30B documents in the corpus that additionally come with quality signals.

Check out our [blog post](XXXXX) for more details on the build process, dataset structure and schema.

To familiarize yourself with the dataset, you can load the sample dataset with the following command:

```python
from datasets import load_dataset

ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample") 
```

Alternatively, you can also directly download the files using the following instructions, using english data from the
`2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in the dataset
is given in `_CC_SNAPSHOT_IDS`, and the available partitions are `tail`, `head_middle`. The available language tags are
`en`, `de`, `fr`, `es`, `it`.

```bash
CC_SNAPSHOT="2023-06"
LANG="en"
PARTITION="head_middle"
BASE_URL="https://data.together.xyz/redpajama-data-v2/v1.0.0/"

listings_file="${LANG}-${CC_SNAPSHOT}-${PARTITION}.txt"
wget "${BASE_URL}/listings/${listings_file}"

# download documents
while read line; do
  url="${BASE_URL}/documents/${line}.json.gz"
  dest="documents/${line}.json.gz"
  mkdir -p $(dirname $dest)
  wget "$line" -O "$dest"
done <"${LANG}-${CC_SNAPSHOT}-${PARTITION}.txt"

# download other components
COMPS=("quality_signals" "minhash" "duplicates")
for comp in "${COMPS[@]}"; do
  while read line; do
    url="${BASE_URL}/${comp}/${line}.${comp}.json.gz"
    dest="${comp}/${line}.${comp}.json.gz"
    mkdir -p $(dirname $dest)
    wget "$line" -O "$dest"
  done <"${LANG}-${CC_SNAPSHOT}-${PARTITION}.txt"
done

```

A full set of scripts to recreate the dataset including the quality signals can be
found [here](https://github.com/togethercomputer/RedPajama-Data).

### Dataset Summary

RedPajama-V2 is a data foundation for which includes over 100B text documents, out of which 30B documents come with
quality annotations.

### Languages

English, German, French, Italian, Spanish

## Dataset Structure

The datset is structure into four components, each following the same key structure:

```
β”œβ”€β”€ documents
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.json.gz
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.json.gz
β”œβ”€β”€ quality_signals
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.signals.json.gz
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.json.gz
β”œβ”€β”€ duplicates
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.duplicates.parquet
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.duplicates.parquet
β”œβ”€β”€ minhash
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.minhash.parquet
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.minhash.parquet
```

Documents files, which contain the text, folow the schema defined by CCNet, and the quality signals follow the schema

```json
{
  "id": "2018-43/0000/en_head.json.gz/0",
  "id_int": 7972430436813205988,
  "metadata": {
    "cc_segment": "crawl-data/...",
    "cc_net_source": "2018-43/0000/en_head.json.gz",
    "url": "...",
    "source_domain": "...",
    "language": "en",
    "snapshot_id": "2018-43"
  },
  "quality_signals": {
    "ccnet_original_length": [
      [
        0,
        7033,
        8711.0
      ]
    ],
    ...,
    "rps_doc_stop_word_fraction": [
      [
        0,
        7033,
        0.45121107
      ]
    ],
    "rps_lines_num_words": [
      [
        0,
        25,
        2
      ],
      ...,
      [
        6980,
        7033,
        10
      ]
    ]
  }
}
```

where signal scores are encoded as list of tuple `(start, end, score)`, where `start` and `end` are the locations in the
`raw_content` string where the `score` applies.

## Dataset Creation

The dataset is based on 84 snapshots provided by CommonCrawl.

To cite RedPajama-V2, please use:

```
@software{together2023redpajama-v2,
  author = {Together Computer},
  title = {RedPajama-Data-v2: a living data foundation for training open LLM models},
  month = October,
  year = 2023,
  url = {https://github.com/togethercomputer/RedPajama-Data}
}
```

### License ---- TODO ----

Please refer to the licenses of the data subsets you use.

* [Common Crawl Foundation Terms of Use](https://commoncrawl.org/terms-of-use)

<!--
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
-->