Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
dardem commited on
Commit
5f3af00
1 Parent(s): 91e77ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -0
README.md CHANGED
@@ -8,6 +8,7 @@ language:
8
  - am
9
  - ar
10
  - hi
 
11
  license: openrail++
12
  size_categories:
13
  - 1K<n<10K
@@ -64,3 +65,17 @@ configs:
64
  - split: hi
65
  path: data/hi-*
66
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - am
9
  - ar
10
  - hi
11
+ - es
12
  license: openrail++
13
  size_categories:
14
  - 1K<n<10K
 
65
  - split: hi
66
  path: data/hi-*
67
  ---
68
+ **MultiParaDetox**
69
+
70
+ This is the multilingual parallel dataset for text detoxification prepared for [CLEF TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) shared task.
71
+ For each of 9 languages, we collected 1k pairs of toxic<->detoxified instances splitted into two parts: dev (400 pairs) and test (600 pairs). **Dev set references and test set toxic sentences will be released later!**
72
+
73
+ The list of the sources for the original toxic sentences:
74
+ * English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
75
+ * Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
76
+ * Ukrainian: [Ukrainian Twitter texts](https://github.com/saganoren/ukr-twi-corpus)
77
+ * Spanish: TBD
78
+ * German: [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
79
+ * Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
80
+ * Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
81
+ * Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)