schutz / pubmed.py
MHoubre's picture
getting prmu and reordering present keyphrases
8763e71
"""Inspec benchmark dataset for keyphrase extraction an generation."""
import csv
import json
import os
import datasets
# You can copy an official description
_DESCRIPTION = """\
PubMed benchmark dataset for keyphrase extraction and generation.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "[schutz-2008]: https://github.com/snkim/AutomaticKeyphraseExtraction/blob/master/Schutz2008.tar.gz"
_LICENSE = ""
_CITATION = """@MasterThesis{Schutz:2008,
author = {Alexander Thorsten Schutz},
title = {Keyphrase Extraction from Single Documents in the Open Domain Exploiting Linguistic and Statistical Methods},
booktitle = {National University of Ireland},
year = {2008}
}"""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"test": "data.jsonl",
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Pubmed(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data."),
]
DEFAULT_CONFIG_NAME = "raw" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "raw": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
"keyphrases": datasets.features.Sequence(datasets.Value("string")),
"prmu": datasets.features.Sequence(datasets.Value("string"))
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir["test"]),
"split": "test"
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
# Yields examples as (key, example) tuples
yield key, {
"id": data["id"],
"title": data["title"],
"text": data["text"],
"keyphrases": data["keyphrases"],
"prmu": data["prmu"]
}