{ "timestamp": "2024-08-03T01:43:11.402Z", "image": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAYAAAD0eNT6AAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Xu45mO9P/D3zMKcZwwzxCXn3UkHCdkqFWUnyqmmtBHpR20pSa5i2ymbuqRSsoudCDs1JRSxFUplC0kHnbbDOFzEDGOYI9bM7/esyk9pWPdaz1rP89zf1/e65i/3977vz+tzu+Y9az3P9ztmxYoVK+IiQIAAAQIEGiUwRgBoVL8VS4AAAQIEBgQEAAeBAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDTlUyAAAECBAQAZ4AAAQIECDRQQABoYNOVTIAAAQIEBABngAABAgQINFBAAGhg05VMgAABAgQEAGeAAAECBAg0UEAAaGDT217yihV/PeWYMW1fwoQECBAg0F4BAaC9ntXNtuLhh/PYH/6Qx269Nf23357+u+5K/x//mOX33pvl8+dnxYMPZsWSJVmxbNlA7WPGjcuYCRMyZvXVM3b69Ixde+30PeMZ6VtvvfRtsEFW2XjjrPKsZ2XMlCnVWSmIAAECvSQgAPRSt0Zhr62/5B+94YY8+otf5NFf/zqP3XRT+u+5p60r962zTlbZbLOs+vznZ9UXvSirbrHFQDhwESBAgMDoCQgAo2fdtSs9euONeeTqq//055prsnzevFHd69gZM7LaNttktW23Hfiz6uabj+r6FiNAgEATBQSAJnY9Sf8dd2TZ5Zdn2RVX5JGrrsryBQu6QmLstGlZbbvtMm777TNuhx3St/76XbGvGjexIn/92Y0x8dmNGvusJgIrExAAGnY2Hrnuuiy7+OIsveSSPPb733d19as8+9kZv9NOGbfzzlltq626eq/dtrmHsiS/y925NffltszNnbk/d2d+7s2CPJBFeTCLsiSPZGkeHdj6+KyaCVktq2dS1sikrJ1pWTfT88ysmY0yMxtnrTwn62ZqJnRbqfZDgMAQBQSAIcL12m2tf+UvufDCLP32t7N87tye2v7YmTMz/o1vzIRddx346YDryQJzMjfX59b8PLfnl7kjv8qdA3/ht/NqBYIX5Jl5YdbPi7NBtszG2TAz27mEuQgQGEUBAWAUsTux1KPXX58ls2dnyTe+MfCp/V6+Wt8qmPDmN2fCrFlZdcste7mUtuz9hszJj/K7/CR/yE/y+8zNw22Zd7CTzMyUvCzPzsvyrLwiz8kW2XCwtxpHgEAXCAgAXdCEkdhC/513Zsm552bxueem/7bbRmKJjs3Zt9FGmbjXXpnwtrcNfL2wSdftmZfL8st8P7/OFflNFmRxV5Q/LROzfZ6X1+T52TEvzAaZ0RX7sgkCBFYuIABUeDqWnHdelpx1Vpb98IcVVvf/Sxr3yldmwr77ZsKee1ZdZ6u4a3JzvpMbclFuyG9zd1fX+9ysm12yRd6QLbJNNu3qvdocgSYLCAAVdb/1sJ7FZ5yRxWeemdYDfJpwtR4oNHG//TJx//0HHjJU23VlfpNv5bqcn+tyXx7qqfLWytTsnq2yR7bKq/O8ntq7zRJogoAAUEmXl112WRadeurAV/uaeLW+MjjpoIMybscdqyj/2tySc3N1zs3/5IEs7Oma1sjk7JV/zF7ZNltnk56uxeYJ1CQgAFTQzdZf/Iu+8IX0z5lTQTVDL6Fvww0z6d3vHggCvXrdkftzdn6Uc/Lj3JL7erWMv7vvTbJW9s7Ls09ekfWzZlW1KYZALwoIAL3YtT/vefn992fRySdn4cknJ/39PVxJG7fe15fJhxySSYcckrFr9tZfMrNzTU7PD9L6sX/NV+vXAQfkVZmVbWouU20Eul5AAOj6Fv39DbZ+37/opJOy+KyzerSCkd32xH33zaRDD+2JzwXcnHvzpVw58Kf1AJ8mXK0HCr0zrx74s2nWbkLJaiTQdQICQNe15Ok31HpJz8ITT8zSCy54+sENHjF+t90y+fDDB1461K3XJflFTslluSy/6tYtjui+dswLcnB2zE550YiuY3ICBJ4sIAD02KlovaVv4QknZOnFF/fYzjuz3fE775zJRxwx8NbBbrtOyffyufx3bqvsd/2lzhtlrbw3/5SD89rSW40nQGAYAgLAMPBG+9aBf/kff3yWfve7o710T683/vWvz+Qjj+yanwTcn4fz6VyST+e76c/ynrZt1+b7MjaH5fU5LDtlzUxp17TmIUDgKQQEgB45Hq3f+T987LFZev75PbLj7trm+N13z5Sjj+74ZwJav+//ZC7KGan7IU1D7f7+eWU+mF18LmCogO4jUCAgABRgdWpo69P+Dx9zTBaffXantlDFuhP32SdTjjmmY98OaL2g5/hcmPNybRWeI1XEntk6R2bXgRcPuQgQGDkBAWDkbNs2c+sv/4UnndS2+Zo80eRDDx0IAaN9/TxzclwuzLfzs9FeuifXe2NekqOya17sBUM92T+b7g0BAaDL+7TotNPy0Ic/7Hv+7epTX1+mfvzjmXTgge2a8Wnnaf3L/5icN/Asf9fgBVrvEjgme/pJwODJjCRQJCAAFHGN7uBll16aBR/6UOOf8Ndu9dYTA6d94hMZ97rXtXvqJ83X+p3/v+Wb+WZ+OuJr1bjAm/LSfCxv8pmAGpurpo4LCAAdb8Hf30Drsb4LPvCBxj7bf6Tb0np3wLRPfSqtMDBSV+vT/kdmtg/8DRO49cHA4zPLtwOG6eh2An8rIAB06Zl46OijBx7z6xo5gdbjgqcee+yILXBUZg984t81fIHWNwOOy6zhT2QGAgQeFxAAuvAwLDnvvCw45JCsWLy4C3dXz5bGTJyYaSefnAl77tn2oloP+Tk8/+V7/m2SbT0n4MT8s4cFtcnTNARaAgJAl52D/rvuyoL3vCfLfvCDLttZndsZ96pXDYSAvme27ytnF+fGHJZzGv+Ev3afmNYTAz+dvbNzNm/31OYj0EgBAaDL2t56zO/Dxx/fZbuqeztTjjxy4HHB7bhuy9wckjMb+2z/dhg+1RytdwecnP2yUWaO9FLmJ1C9gADQRS1+5Npr8+BBB6X/ttu6aFf1b6Vvo42y+qmnZrWttx52sR/K1wYe8esaOYHWI4M/kbeO3AJmJtAQAQGgixr90BFHpPW9f9foC7SeCzD1hBOGtfDsXJODcnoWZdmw5nHzUwtMyricmgMyK9ugIkBgGAICwDDw2nnrI1ddlfnveEeWz5vXzmnNNUiBsTNmZPqXv5zVtttukHf89bA7cn8OypdyeW4a0v1uKhPYIZvl1Lwz62fNshuNJkDgcQEBoEsOQ+s7/4tPP71LdtPMbUw84ICBZwMM5TouF+Sj+dZQbnXPEAU+kj1yVHYb4t1uI0BAAOiCM/DIT3+a+XvvneVz53bBbpq7hbEzZ2b6OedktZe+tAjhmtyc/fPF3JL7iu4zeHgCm2StnJF3ZZtsOryJ3E2goQICQBc03st+uqAJf97CUF4W9P6cndb3/l2jL3BwXpvPZJ/RX9iKBCoQEAA63MT+O+7IA295Sx777W87vBPLtwRWee5zs8bXv56+9dcfFMiV+U32zn9kbh4a1HiD2iswM1NzTv4lr87z2jux2Qg0QEAA6HCTF59xRha8//0d3oXlnygw7TOfycT99x8UyiH5Sk7N5YMaa9DICByUHXJy3j4yk5uVQMUCAkCHmzt/n32y9Dvf6fAuLP9EgfFveEOmn33206Jcnf/NrHw29/nX/9NajeSAtTI1s/O+bJt/GMllzE2gOgEBoIMtffTGG3P/LrtkxcKFHdyFpf9WYMzkyVnzoouy6uZP/chZL/vpnrPjZUHd0ws76R0BAaCDvVp0yil56KijOrgDS69MYOpxx2XSwQevFOj2zMtu+XRuyl0Qu0Bgs6yXC3JYNsiMLtiNLRDoDQEBoIN9an31b+lFXhfbwRasdOnxu+wy8JXAlV3/mStzcM7oxq03dk+nZP/8n7y6sfUrnECpgABQKtam8f233555O+6Y5ffe26YZTdNOgbFrr50Zl12Wvg02+LvTviWfy/m5vp1LmmuYArtny3w97x3mLG4n0BwBAaBDvV56wQWZv99+HVrdsoMRmH7mmRm/25OfNHdD5uQ1OT4Ls3Qw0xgzSgKTMz7fz5HZIhuO0oqWIdDbAgJAh/rn4T8dgi9YdmUPBfpsLs0H89WCmQwdLYFP5m15X143WstZh0BPCwgAHWrfA3vskWVXXNGh1S07GIFx22+fNb715Of7z8rncoEf/w+GcNTH7JYtM9uvAUbd3YK9KSAAdKBvy+fPz7xtt03/Pfd0YHVLDlagb511MuPqqzN2+vTHb5mTudkuH8sfs2Cw0xg3igLPyLRclX/Lhpk5iqtaikBvCggAHejboz/7WebtsEMHVrZkqcCMyy/Pqi95yeO3nZdrs1c+XzqN8aMocG7ekz2z9SiuaCkCvSkgAHSgb0tmz86DBx7YgZUtWSqw+mmnZcKsWY/f5uE/pYKjP95DgUbf3Iq9KSAAdKBvC088MQ//+793YGVLlgpM+dd/zeTDD3/8tp3zyXwvvyqdxvhRFHhtXpCL88FRXNFSBHpTQADoQN9aL/9pvQTI1f0CrZcCtV4O1LrmZ1FenCNzd+Z3/8YbvMN1Mz0/z/GZnkkNVlA6gacXEACe3qjtIx5461uz7NJL2z6vCdsvMO51r8saX/vawMTX5pa8PB9t/yJmbLvAj/ORbJ1N2j6vCQnUJCAAdKCbrQ8Atj4I6Op+gdYHAFsfBGxd5+bqvD1f7P5N22G+kndlr2xLggCBpxAQADpwPO7bfPP0z5nTgZUtWSrQt+GGWevGGwdu+3i+nY/km6VTGN8BgY/mTflw3tiBlS1JoHcEBIAO9OreTTfN8nnzOrCyJUsFxs6YkbVvvnngttbLf1ovAXJ1v0DrpUCtlwO5CBBYuYAA0IHT8ce1186KZcs6sLIlSwXGjBuXZ/z5hU2t1/9+N3/6aYCruwVen80HXg/sIkBAAOieM7BiRe6ZMSPp7++ePdnJygX6+rLO/fcP/PeX5aO5LrfQ6gGBrbJJfpKP9MBObZFA5wT8BGC07QWA0RYf3npPCADPzuG5LfcNbz53j4rARlkrv8+Jo7KWRQj0qoAA0IHO+RVAB9CHuOQTfwWwbg7OvDw8xJncNpoCMzIld+eU0VzSWgR6TkAA6EDLfAiwA+hDXPKJHwKcmgOyNI8OcSa3jabA+Kyah3L6aC5pLQI9JyAAdKBlvgbYAfQhLvmXrwGuyIpMzP7pz/IhzuS20RToy9gsyZmjuaS1CPScgADQgZZ5EFAH0Ie45F8eBCQADBGwQ7cJAB2Ct2xPCQgAHWiXRwF3AH2ISz7xUcB+BTBExA7c5lcAHUC3ZM8JCAAdaJmXAXUAfYhLPvFlQD4EOETEDtzmQ4AdQLdkzwkIAB1omdcBdwB9iEs+8XXAvgY4RMQO3OZrgB1At2TPCQgAHWjZktmz8+CBB3ZgZUuWCqx+2mmZMGvWwG0eBFSq17nxHgTUOXsr946AANCBXrXeBNj6IKCr+wVabwJsfRCwdXkUcPf36y879Cjg3umVnXZOQADogP3y+fMzb9tt03/PPR1Y3ZKDFehbZ53MuPrqjJ0+feAWLwMarFznx3kZUOd7YAfdLyAAdKhHD+yxR5ZdcUWHVrfsYATGbb991vjWtx4f6nXAg1HrjjFeB9wdfbCL7hYQADrUn4ePOSYLTzqpQ6tbdjACkw89NFOOOebxoefm6rw9XxzMrcZ0WOAreVf2yrYd3oXlCXS3gADQof4sveCCzN9vvw6tbtnBCEw/88yM3223x4dem1vy8nx0MLca02GBH+cj2TqbdHgXlifQ3QICQIf603/77Zm3445Z/ud3zXdoG5ZdicDYtdfOjMsuS98GGzw+Yn4W5cU5MndnPrcuFlg30/PzHJ/pmdTFu7Q1Ap0XEAA62IP5e++dpRdd1MEdWHplAuN32SXTzznnSf9553wy38uvwHWxwGvzglycD3bxDm2NQHcICAAd7MOiU07JQ0cd1cEdWHplAlOPOy6TDj74Sf/5qMzOJyO0dfPJ+WB2yXH507MbXAQIrFxAAOjg6Xj0xhtz/y67ZMXChR3chaX/VmDM5MlZ86KLsurmmz8J57xcm73yeWhdLHBu3pM9s3UX79DWCHSHgADQ4T7M32efLP3Odzq8C8s/UWD8G96Q6Wef/XdR5mRutsvH8scsgNaFAs/ItFyVf8uGmdmFu7MlAt0lIAB0uB+LzzgjrZcDubpHYNpnPpPWS4BWds3K53JBru+eDdvJ4wK7ZcvMznuJECAwCAEBYBBIIzmk/4478sBb3pLHfvvbkVzG3IMUWOW5z80aX/96+tZff6V3fDaX5oP56iBnNGw0BT6Zt+V9ed1oLmktAj0rIAB0Qes8FKgLmvDnLfztw3/+3s5uyJy8JsdnYZZ2z8btJJMzPt/PkdkiG9IgQGAQAgLAIJBGesgjP/1pWl8JXD537kgvZf6nEBg7c+bAV/9We+lLn9bpLflczvdrgKd1Gs0Bu2fLfN2P/0eT3Fo9LiAAdEkDF3zgA1l8+uldsptmbmPiAQdk2qc+Naji/zNXDrwcyNU9Aqdk/7ReAuQiQGBwAgLA4JxGfNQjV12V+e94R5bPmzfia1ngyQJjZ8zI9C9/Oattt92geG7PvIHXA9+UuwY13qCRFdgs6+WCHJYNMmNkFzI7gYoEBIAuauZDRxyRRaed1kU7as5WJh14YKaecEJRwR4KVMQ1ooM9/GdEeU1eqYAA0EWNfeTaa/PgQQel/7bbumhX9W+lb6ONsvqpp2a1rcseHnN1/jez8tncl4fqR+riCtfK1MzO+7Jt/qGLd2lrBLpPQADosp4sPOGEPHz88V22q7q3M+XIIzP5iCOGVOQh+UpOzeVDutdN7RE4KDvk5Ly9PZOZhUCDBASALmt2/513ZsEhh2TZD37QZTurczvjXvWqTPv859O33npDKvDK/CZ75z8y108BhuQ33JtmZmrOyb/k1XnecKdyP4HGCQgAXdjyJeedNxACVixe3IW7q2dLYyZOzLSTT86EPfccVlHvz9k5Jd8b1hxuHprAwXltPpN9hnazuwg0XEAA6NID8NDRR2fRySd36e7q2NakQw7J1GOPHXYx1+Tm7J8v5pbcN+y5TDB4gU2yVs7Iu7JNNh38TUYSIPC4gADQpYehf86ctJ4NsOxyv18eiRaN22GHge/8923YnqfGHZcL8tF8ayS2as6VCHwke+So7MaHAIEhCggAQ4QbjduWXXppFnzoQ2mFAVf7BFp/6U/7xCcy7nXte2b8Hbk/B+VLuTw3tW+jZlqpwA7ZLKfmnVk/a1IiQGCIAgLAEOFG67bWcwEe+vCHk/7+0Vqy7nX6+jL14x9P63v/7b5m55oclNOzKMvaPbX5niAwKeNyag7IrGzDhQCBYQgIAMPAG61bvSyofdKDednPcFb7UL6WT+e7w5nCvU8jcFhen0/krZwIEBimgAAwTMDRuH35/fenFQIWn332aCxX7RoT99knU445JmPXHLkfG9+WuTkkZ+ay/Kpax04WtmNekJOzXzbKzE5uw9oEqhAQAHqkjY/demsePvbYLD3//B7ZcXdtc/zuu2fK0UdnlY03HvGNXZwbc1jOyW2+FdBW642yVj6dvbNzNm/rvCYj0FQBAaCHOv/or3+dhccfn6Xf9SPmkraNf/3rM/nII7Pq859fctuwxraeC3B4/iv9WT6sedz8J4G+jM2J+ee0vvfvIkCgPQICQHscR22WR3/xi7QeF7z04otHbc1eXmj8zjsPPOZ31Re9aNTL8LKg9pF72U/7LM1E4C8CAkAPnoWBnwSceGKWXnBBD+5+9LY8frfdMvnww0f1X/5PrO7/fXIjR2Z2zsgPR6/oClfaP6/M8ZmVNTOlwuqURKBzAgJA5+yHtXLrMwGLTjopi886a1jz1HrzxH33zaRDDx2V3/k/leHNuTf/lm/mm/lprdQjWteb8tJ8LG/Kpll7RNcxOYEmCggAPdz11rcDWo8LXth6ZLDnBPypk319mXzIIWk95nckP+1fcmx+lTtzTM7Ld3JDyW2NH/uGbJFjsmdekGc23gIAgZEQEABGQnWU51x06qlZ9IUvNP6Jga0n/E1697sz6aCDRrkDT7/czzMnx+XCfDs/e/rBRuSNeUmOyq55cdrzqGakBAg8WUAAqORULLvssrSCQFPfHdB6tn/rL/5xO+7YtR1t/STg+FyY83Jt1+6xGza2Z7bOkdnVv/y7oRn2ULWAAFBRe1ufC1h8xhlZfOaZWfHwwxVVtvJSxkyZkon77ZeJ++/f8d/3Dwa89ZmAT+YiHwxcCVbrA3+tT/z7nf9gTpMxBIYnIAAMz68r715y3nlZctZZWfbDuj99Pu6Vr8yEfffNhD337Mo+rGxTrW8HfDqXDDwy2HMC/qTU+p5/6xG/h2Unn/bvqdNss70sIAD0cveeYu/9d92VJV/9ahafe276b7utqir7NtooE/faKxP22it9z+zdD4i1Hhb0ufx3458Y2HrC33vzTx7yU9X/pYrpBQEBoBe6NIw9Pnr99VkYb1N7AAAPIUlEQVQye3aWfOMbWT5//jBm6vytY6dPz4Q3vzkTZs3Kqltu2fkNtWEHl+QXOSWXNfbdAa1n+x+cHbNTRv9BTW1onykI9LSAANDT7Rv85h+56qosufDCLP32t7N87tzB39gFI8fOnJnxb3xjJuy6a1bbbrsu2FF7t9D6XMCXcuXAn4eypL2Td+lsUzMh78yrB/74fX+XNsm2qhcQAKpv8V8X+Mh112XZxRdn6SWX5LHf/76rq1/l2c/O+J12yridd85qW23V1Xttx+Zm55qcnh/kyvymHdN17RyvzvNyQF6VWdmma/doYwSaICAANKHLf6fG/jvuGPjK4LIrrkjrpwPLFyzoComx06YN/Ct/3Pbbp/XVvr711++KfY3WJu7I/Tk7P8o5+XFuqextgptkreydl2efvCLrZ+ReyTxavbIOgV4XEAB6vYNt2P+jN96YR66++k9/rrkmy+fNa8Osg59i7IwZWW2bbbLattsO/Fl1c697vTa35NxcnXPzP3kgCweP2YUj18jk7JV/zF7ZNltnky7coS0RaKaAANDMvq+06v7bb8+jN9yQ1lsHWy8deuymm9J/zz1tVepbZ52sstlmAy/pab2lb9UttkjfBhu0dY1aJmv9OuBbuS7n57rcl4d6qqy1MjW7Z6vska3S+rG/iwCB7hIQALqrH123m9YDhR77wx/SeshQKxy0vl7Y/8c/Zvm99w58q2DFgw9mxZIlWbFs2cDex4wblzETJmTM6qun9an9sWuvnb5nPCN966038Jf8KhtvnFWe9ay0HuDjGrzANbl54F0CF+WG/DZ3D/7GDox8btbNLtkirWf5b5NNO7ADSxIgMBgBAWAwSsYQ6BKB2zMvl+WX+X5+nSvymyzI4q7Y2bRMzPZ5Xl6T52fHvDAbZEZX7MsmCBBYuYAA4HQQ6FGBGzInP8rv8pP8IT/J7zM3o/v455mZkpfl2XlZnpVX5DnZwot7evQk2XZTBQSApnZe3VUJzMncXJ9b8/Pcnl/mjrRePHR32vvgp3UzfeAFPS/M+nlxNsiW2TgbZmZVjooh0CQBAaBJ3VZrYwRaDxT6Xe7Orbkvt2Vu7sz9A4Hg3izIA1mUB7MoS/JIlubRAZPxWTUTslpWz6SskUlZO9PS+gv/mVkzG2VmNs5aeU7WTesBPi4CBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDgEBoI4+qoIAAQIECBQJCABFXAYTIECAAIE6BASAOvqoCgIECBAgUCQgABRxGUyAAAECBOoQEADq6KMqCBAgQIBAkYAAUMRlMAECBAgQqENAAKijj6ogQIAAAQJFAgJAEZfBBAgQIECgDoH/C/FVQNNUJ0isAAAAAElFTkSuQmCC", "model": "sonnet-3.5", "query": "What is the situation of the two circles compared to each other?", "response": "The image shows two solid colored circles, one red and one green, positioned side by side on a white background. Based on the question, it seems you want me to describe the relative situation or positioning of the two circles compared to each other. From the image, the red circle is on the left side, and the green circle is on the right side. They appear to be of similar size and are placed horizontally next to each other with a bit of spacing in between.", "svgSource": "" }