File size: 16,938 Bytes
c4b8dec |
1 2 3 4 5 6 7 8 |
{
"timestamp": "2024-08-03T01:42:24.852Z",
"image": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAYAAAD0eNT6AAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Xm0XFWdNuA3uUDmhEACwlLmdh4QAWlUVFBaBWXSKDYoiB9oIw6ILoVWURt0KY5IK7QIAi0aRVFBaRRQVBoBEQecGmSQBUICIZARuMnXde1e2gLm3puq+lXVeWqt/EWd/e797L3Im3urzpmwevXq1fEiQIAAAQIEGiUwQQFo1H5bLAECBAgQGBFQABwEAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGbbskECBAgQEABcAYIECBAgEADBRSABm66JRMgQIAAAQXAGSBAgAABAg0UUAAauOmWTIAAAQIEFABngAABAgQINFBAAWjgplsyAQIECBBQAJwBAgQIECDQQAEFoIGb3vYlr179f4ecMKHtEQYkQIAAgfYKKADt9Ry40Vbfe28e+N3v8sDvf5/hm27K8C23ZPiPf8yq22/PqkWLsvruu7N6+fKsXrlyZO0TJk3KhClTMmH99TNx9uxM3HjjDD3iERl65CMztPnmWWerrbLOox+dCTNmDJyVBREgQKCfBBSAftqtLsy19Zf8/Vdfnft/9rPc/8tf5oFrr83wbbe1NXlok02yzhOekHWf+MSs+5SnZN3tthspB14ECBAg0D0BBaB71j2bdP811+S+yy7705/LL8+qhQu7OteJc+ZkvZ12yno77zzyZ91tt+1qvjACBAg0UUABaOKuJxm++easvOiirLz44tx36aVZtXhxT0hMnDUr6+2ySybtumsm7bZbhjbbrCfmZRIECBAYNAEFYNB2dA3rue/KK7Py/POz4tvfzgO//W1Pr36dxzwmk1/4wkzaY4+st8MOPT1XkyNAgEC/CSgA/bZj45xv61/5y7/+9az4xjeyasGCcY5Sc9nEuXMz+SUvyZS99hr56YAXAQIECKy9gAKw9oY9PcL9V12V5fPnZ/mXvzzyqf1+frW+VTDlZS/LlHnzsu722/fzUsydAAEC5QIKQPkWdGYCw3/4Q5affXaWnX12hm+4oTMhRaMObbllpu6/f6a88pUjXy/06g2B1fm/94OYEPeD6I2dMQsCDy2gAAzgyVh+zjlZfsYZWfn97w/g6v68pEnPfnamvOpVmbLffgO9zl5Y3D1Znt/k1vw+d+SGLMgfcmduzaLcnsW5K0tzd5Zmee7Litw/Mt3JWTdTsl7Wz7RskGnZOLOyaWbnUdkwW2ZutspGeWw2zcxM6YXlmQOBRgooAAO07a2b9Sw77bQsO/30tG7g04RX64ZCUw86KFMPPnjkJkNe7RG4MQtyVX6fn+am/Dw35xf5w8hf+O18tQrBk/KoPDmb5anZPNtnq2yRue2MMBYBAn9DQAEYkOOx8sILs/Tkk0e+2tfEV+srg9MOOyyTdt+9ictvy5qvzo35QX6TH+V3+VF+mwXpbomcmxl5Rh6TZ+TReVYem+2yRVvWZRACBB5aQAEYgJPR+ot/6ac/neEbbxyA1Yx/CUNbbJFpr3/9SBHwGp3ATVmYC/PzfDe/zMX5VRZn2egu7PC7ZmVqds3j87w8Mbvnydk8czqcaHgCzRNQAPp4z1fdeWeWnnhilpx4YjI83McraePUh4Yy/YgjMu2IIzJxww3bOPBgDXV5rss3c3XOy9X5dW7t6cU9Lptmz2yXF2e77JRtenquJkegnwQUgH7arb+Ya+v3/Us//vEsO+OMPl1BZ6c99VWvyrQ3v9nnAv6K+ZL8Kl/Nlflarswduaezm9Dm0TfKzOyTHbJvdshz8/g2j244As0TUAD6cM9bD+lZcsIJWXHuuX04++5NefLee2f6UUeNPHSo6a8rcn3OzmU5O/+Zu7Kkrzk2yPTsn7/P/tk5O2brvl6LyROoFFAAKvXHkd16St+SD30oK84/fxxXN++SyXvskelvf/vIUweb+Lo5d+bM/CBn5Ye5PncMFMHW2SgH5Jk5MM/KZvHrnoHaXIvpioAC0BXm9oSM/Mv/+OOz4lvfas+ADRll8otelOlHH924nwTMz+U5Nd9L68f+g/xq/TrgkDwn87LTIC/T2gi0XUABaDtpZwZs/c7/3ve/Pyu+9rXOBAz4qJP32Scz3vWuRnwm4Lrcns/mkpE/rRv4NOHVuqHQa/PckT/bZOMmLNkaCay1gAKw1oSdH6D1af97jz02y848s/NhA5ww9cADM+PYYwf62wHfzs9yUi7MhfnFAO/kwy9t9zwph2f3vDDN/JVPIzfdosctoACMm657F7b+8l/y8Y93L3CAk6a/+c0jJWAQXyflO/lk/iM3DNjv+se6V1tmo7wx/5DD8/yxXur9BBoloAD0+HYvPeWU3PPOd/qef7v2aWgoMz/wgUw79NB2jVg+zn//fCgfzbfz0Xwrw1lVPp9emMBQJubIvChH5oXZMDN6YUrmQKDnBBSAntuSP09o5QUXZPE73tH4O/y1e4tadwyc9cEPZtILXtDuobs+Xuv3/R/OeTktg/3gp/HCHpxn523Z0+cCxgvouoEWUAB6dHtbt/Vd/Na3Nvbe/p3eltazA2Z95CNplYF+fbUe0HN8vp5zckW/LqEr894vO+bo7DXy4CEvAgT+LKAA9OhpuOdd7xq5za9X5wRatwue+f73dy6ggyP/NDfmuHw938hPOpgyOEO/JE/LMdkrT/WAocHZVCtZawEFYK0J2z/A8nPOyeIjjsjqZb3xYJb2r7A3RpwwdWpmnXhipuy3X29MaJSzaP3L/9icM3Ivf6/RC7SeJXBs9vOTgNGTeeeACygAPbbBw7fcksVveENWfu97PTazwZzOpOc8Z6QEDD2qP3483Pqd/7vzlXwlPx7MDenwql6ap+d9eanPBHTY2fD9IaAA9Ng+tW7ze+/xx/fYrAZ7OjOOPnrkdsG9/mp92v/ozPeBv7XcqNYHA4/PPN8OWEtHl/e/gALQQ3t43xVX5O7DDsvwDTf00KwGfypDW26Z9U8+OevtuGNPL/aYzB/5xL/X2gu0vhlwXOat/UBGINDHAgpAD23ePW9/e1rf+/fqvkDrvgAzP/Sh7gePMrF1k5+j8u++5z9KrzW9rXWfgBPyj24WtCYo/32gBRSAHtne+y69NIte85qsWriwR2bUrGlMnDMnsz/3uay3yy49t/Dzc02OzFmNv8NfuzemdcfAj+aA7JFt2z208Qj0hYAC0CPb1PrO/7JTT+2R2TRzGlMPOWTk3gC99LohC3JETm/svf07vRetZwecmIOyZeZ2Osr4BHpOQAHogS2578c/zqIDDsiqBQt6YDbNncLEuXMz+6yzst7Tn94zCO/IF0du8evVOYHWLYM/mFd0LsDIBHpUQAHogY3xsJ8e2IT/mUIvPSxofi7PYTk1S7Oyd4AGcCbTMikn55DMy04DuDpLIvDwAgpA8ekYvvnm3PXyl+eBX/+6eCbiWwLrPO5x2eBLX8rQZpuVgtycO3NYPpuLcm3pPJoSvluekJPz2myWDZuyZOskEAWg+BAsO+20LH7LW4pnIf4vBWZ97GOZevDBpSjH5dy8N18tnUPTwt+TfXNM9m7asq23wQIKQPHmLzrwwKz45jeLZyH+LwUmv/jFmX3mmWUol+e6HJzP5PrcUTaHJgZvnY1yWl6XnbJNE5dvzQ0UUAAKN/3+a67JnXvumdVLlhTOQvRfC0yYPj0bnnde1t225uthb8mZaX3v36v7Aofn+flYDux+sEQCBQIKQAH6/0YuPemk3HPMMYUzEP1wAjOPOy7TDj+860CX5Fc5IP+aBbmn69kCk7mZmbPyT3luHo+DwMALKACFW9z66t+K89zatXALHjZ68p57jnwlsNuvI/L5nJyLuh0r7y8EDstuOTGvZkJg4AUUgKItHr7ppizcffesuv32ohmI/VsCEzfeOHMuvDBDm2/eNajL8l+Zl0/kDv/675r5QwVtlJmZnzdl5/xd6TyEE+i0gALQaeGHGX/Fuedm0UEHFaWLHY3A7NNPz+S9u/epcA/7Gc2udOc9HhbUHWcptQIKQJG/m/8UwY8htps3BbopC7N3Ppprc8sYZuitnRJ4Qh6Zc3NkNs+cTkUYl0C5gAJQtAV37btvVl58cVG62NEITNp112zw1e58F//fckkOz2mjmZb3dEngpByc/5fndilNDIHuCygA3TfPqkWLsnDnnTN8220F6SJHKzC0ySaZc9llmTh79mgvGff7Xp5P5mu5atzXu7D9Avtk+3wpb2z/wEYk0CMCCkDBRtz/k59k4W67FSSLHKvAnIsuyrpPe9pYLxvT+6/OjXlejs+SrBjTdd7cWYHpmZzv5uhsly06G2R0AkUCCkAB/PL583P3oYcWJIscq8D6p5ySKfPmjfWyMb3/E7kgb8sXxnSNN3dH4MN5Zd6UF3QnTAqBLgsoAF0Gb8UtOeGE3Psv/1KQLHKsAjP++Z8z/aijxnrZmN4/L5/MuX78Pyazbr1572yf+X4N0C1uOV0WUAC6DN6Kaz38p/UQIK/eF2g9FKj1cKBOvW7MguyS9+WPWdypCOOuhcAjMiuX5t3ZInPXYhSXEuhNAQWgYF/uesUrsvKCCwqSRY5VYNILXpANvvjFsV426vefkyuyfz416vd7Y/cFzs4bsl927H6wRAIdFlAAOgz8UMO3PgDY+iCgV+8LtD4A2PogYKdebv7TKdn2jeumQO2zNFJvCSgABftxx7bbZvjGGwuSRY5VYGiLLbLRNdeM9bJRv3+PfDjfyS9G/X5v7L7A8/OknJ+3dT9YIoEOCygAHQZ+qOFv32abrFq4sCBZ5FgFJs6Zk42vu26sl43q/YuyNE/N0bk1i0b1fm+qEdg0s/PTHJ/ZmVYzAakEOiSgAHQI9m8N+8eNN87qlSsLkkWOVWDCpEl5RIce2HRFrs8z896xTsn7CwR+mPdkx2xdkCySQOcEFIDO2T70yKtX57Y5c5Lh4W4nyxuPwNBQNrnzzvFcucZrzs5leXU+s8b3eUO9wOfzuuyfnesnYgYE2iigALQRc1RDKQCjYuqZN3WwAHwg38h78pWeWaqJPLzAe/PSvDMvQURgoAQUgILt9CuAAvRxRnbyVwCth/+0HgLk1fsCrYcCtR4O5EVgkAQUgILd9CHAAvRxRnbyQ4Ctx/9+K537hsE4l+yyhxB4UbYdeTywF4FBElAACnbT1wAL0McZ2cmvAT4j782VuX6cM3NZNwV2yNb5Ud7TzUhZBDouoAB0nPjBAW4EVIA+zshO3gjoMTkqN+SOcc7MZd0U2DIb5bc5oZuRsgh0XEAB6DjxgwPcCrgAfZyRnbwV8KY5PAtz7zhn5rJuCszJjNyak7oZKYtAxwUUgI4TPzjAw4AK0McZ2cmHAc3MIVmR+8c5M5d1U2By1s09ObWbkbIIdFxAAeg48YMDPA64AH2ckZ16HPDqrM7UHJzhrBrnzFzWTYGhTMzynN7NSFkEOi6gAHSc+MEBy+fPz92HHlqQLHKsAuufckqmzJs31svW+H4FYI1EPfUGBaCntsNk2iSgALQJcizDtJ4E2PogoFfvC7SeBNj6IGAnXn4F0AnVzozpVwCdcTVqrYACUOC/atGiLNx55wzfdltBusjRCgxtsknmXHZZJs6ePdpLxvQ+HwIcE1fpm30IsJRfeIcEFIAOwa5p2Lv23TcrL754TW/z3wsFJu26azb46lc7NgNfA+wYbdsH9jXAtpMasAcEFICiTbj32GOz5OMfL0oXOxqB6W9+c2Yce+xo3jqu97gR0LjYSi5yI6ASdqEdFlAAOgz8cMOvOPfcLDrooKJ0saMRmH366Zm8996jeeu43uNWwONiK7nIrYBL2IV2WEAB6DDwww0/fNNNWbj77lnVoWfNFy1rYGInbrxx5lx4YYY237xja/IwoI7Rtn1gDwNqO6kBe0BAASjchEUHHJAV551XOAPRDycwec89M/usszoK5HHAHeVt6+AeB9xWToP1iIACULgRS086Kfccc0zhDEQ/nMDM447LtMMP7yjQ2bksr85nOpph8PYIfD6vy/7ZuT2DGYVAjwgoAIUbcf811+TOPffM6iVLCmch+q8FJkyfng3POy/rbrttR3GuyPV5Zt7b0QyDt0fgh3lPdszW7RnMKAR6REABKN6IRQcemBXf/GbxLMT/pcDkF784s888s+Moi7I0T83RuTWLOp4lYPwCm2Z2fprjMzvTxj+IKwn0oIACULwpy047La2HA3n1jsCsj30srYcAdeO1Rz6c7+QX3YiSMU6B5+dJOT9vG+fVLiPQuwIKQPHeDN98c+56+cvzwK9/XTwT8S2BdR73uGzwpS9laLPNugJyTObnw/FB0K5gjzPkbdkzx6X9z4MY53RcRqBtAgpA2yjHP5CbAo3frt1XdvrmP38933NyRfbPp9q9DOO1UeDsvCH7Zcc2jmgoAr0hoAD0wD7c9+Mfp/WVwFULFvTAbJo7hYlz54589W+9pz+9awg3ZkF2yfvyxyzuWqag0Qs8IrNyad6dLTJ39Bd5J4E+EVAAemSjFr/1rVl26qk9MptmTmPqIYdk1kc+0vXFz8snc26u6nquwDUL7J3tMz9vXPMbvYNAHwooAD2yafddemkWveY1WbVwYY/MqFnTmDhnTmZ/7nNZb5ddur7wT+SCvC1f6HquwDULfDivzJvygjW/0TsI9KGAAtBDm3bP29+epaec0kMzas5Uph16aGZ+6EMlC746N+Z5OT5LsqIkX+hDC0zP5Hw3R2e7bIGIwEAKKAA9tK33XXFF7j7ssAzfcEMPzWrwpzK05ZZZ/+STs96OdR/0enk+ma/5NUBPHbZ9sn2+5Mf/PbUnJtNeAQWgvZ5rPdqSD30o9x5//FqPY4DRC8w4+uhMf/vbR39BB975b7kkrYcDefWOwEk5OK2HAHkRGFQBBaDHdnb4D3/I4iOOyMrvfa/HZjaY05n0nOdk1qc+laFHPrJ0gTdlYVqPB742t5TOQ/ifBJ6QR+bcHJnNMwcJgYEVUAB6cGuXn3POSAlYvWxZD85ucKY0YerUzDrxxEzZb7+eWJSbAvXENoxMws1/emcvzKRzAgpA52zXauR73vWuLD3xxLUaw8V/W2DaEUdk5vvf3zNMl+W/Mi+fyB25p2fm1MSJbJSZmZ83Zef8XROXb80NElAAenSzh2+8Ma17A6y86KIenWF/T2vSbruNfOd/aIve+oT3Efl8To49rzxdh2W3nJhXV05BNoGuCCgAXWEeX8jKCy7I4ne8I60y4NU+gdZf+rM++MFMekHvfb/7kvwqB+Rfs8BPAdq34WMYaW5m5qz8U56bx4/hKm8l0J8CCkCP71vrvgD3vPOdyfBwj8+0T6Y3NJSZH/hAWt/779XXW3JmTsp3enV6Az2vw/P8fCwHDvQaLY7A/wooAH1wFjwsqH2b1O2H/Yxn5pfnuhycz+T63DGey10zToGts1FOy+uyU7YZ5wguI9BfAgpAH+zXqjvvTKsELDvzzD6Ybe9OceqBB2bGscdm4oYb9u4k/2dmx+XcvDdf7fl5DtIE35N9c0z2HqQlWQuBvymgAPTJAXng97/Pve9/f1Z87Wt9MuPemubkffbJjHe9K+tstVVvTexhZnNz7sxh+WwuyrV9Md9+n+RueUJOzmuzWXq/HPa7tfn3joAC0Dt7scaZ3P/LX2bJ8cdnxbe+tcb3esOfBSa/6EWZfvTRWfeJT+wrlvm5PIfl1CzNyr6ad79Ndlom5eQcknnZqd+mbr4E1kpAAVgrvu5ffP/PfpbW7YJXnH9+98P7MHHyHnuM3OZ33ac8pQ9nn7wjX8xHo/B1cvOOzIvywbyikxHGJtCTAgpAT27L357UyE8CTjghK849tw9n370pT95770w/6qi++5f/XwrdkAU5Iqfnwvyie3ANSto9T8qJOShbZm6DVm2pBP4koAD06UlofSZg6cc/nmVnnNGnK+jstKe+6lWZ9uY3983v/P+Wxvm5JkfmrNzgWwFtPTRbZqN8NAdkj2zb1nENRqBfBBSAftmph5hn69sBrdsFL2ndMth9Av4kNDSU6UcckdZtfvvh0/6jPX6t+wIclX/PcFaN9hLv+xsCQ5mYE/KPaX3v34tAUwUUgAHY+aUnn5yln/504+8Y2LrD37TXvz7TDjtsAHb1wUvwsKD2bauH/bTP0kj9K6AA9O/e/Z+Zr7zwwrSKQFOfHdC6t3/rL/5Ju+8+IDv64GX8990gcnTm57R8f2DX2I2FHZxn5/jMy4aZ0Y04GQR6VkAB6NmtGfvEWp8LWHbaaVl2+ulZfe+9Yx+gD6+YMGNGph50UKYefPBA/L5/TVtwXW7Pu/OVfCU/XtNb/feHEHhpnp735aXZJhvzIdB4AQVgAI/A8nPOyfIzzsjK7w/2vxQnPfvZmfKqV2XKfvsN4C4+/JJ+kT/k2JyTb+bqRq17bRf74myXY7NfnpRHre1QricwEAIKwEBs44MXMXzLLVn+hS9k2dlnZ/iGGwZqlUNbbpmp+++fKfvvn6FHNfN/5j/NjTkuX8838pOB2ttOLeYleVqOyV55anrr8c+dWq9+8Kh1AAAPAklEQVRxCYxGQAEYjVIfv+f+q67K8vnzs/zLX86qRYv6eCXJxNmzM+VlL8uUefOy7vbb9/Va2jH51k8Cjs/Xc06uaMdwAzvGftkxR2cv//If2B22sPEKKADjleuz6+679NIs//rXs+Ib38iqBQv6avYT587N5Je8JFP22ivr7bJLX82905NtfSbgwznPBwMfBrr1gb/WJ/79zr/TJ9H4/SigAPTjrq3FnO+78sqsPP/8rPj2t/PAb3+7FiN1/tJ1HvOYTH7hCzNpjz2y3g47dD6wTxNa3w74aL49cstg9wn40ya2vuffusXvkXmhT/v36bk27c4LKACdN+7JhOGbbx75yuDKiy9O66cDqxYv7ol5Tpw1a+Rf+ZN23TWtr/YNbbZZT8yrHybRulnQJ/Mfjb9jYOsOf2/MP7jJTz8cWnMsFVAASvl7I/z+a67JfZdd9qc/l1+eVQsXdnViE+fMyXo77ZT1dt555M+627o163g34Nv5WU7KhY19dkDr3v6HZ/e8MP358Kfx7rvrCIxHQAEYj9oAXzN80025/+qr03rqYOuhQw9ce22Gb7utrSse2mSTrPOEJ4w8pKf1lL51t9suQ5tv3taMJg/W+lzAZ3PJyJ97srwRFDMzJa/Nc0f++H1/I7bcItsgoAC0AXGQh2jdUOiB3/0urZsMtcpB6+uFw3/8Y1bdfvvItwpW3313Vi9fntUr//TM+gmTJmXClCmZsP76I5/an7jxxhl6xCMy9MhHjvwlv85WW2WdRz86rRv4eHVWYH4uz6n5Xi7JrzobVDz6c/P4HJLnZF52Kp6JeAL9JaAA9Nd+mS2BMQncnDtzZn6Qs/LDXD9gTxPcOhvlgDwzB+ZZ2SwbjsnFmwkQ8DhgZ4BAIwSuyPU5O5fl7Pxn7sqSvl7zBpme/fP32T87Z8ds3ddrMXkClQJ+AlCpL5tAlwVavw74aq7M13Jl7sg9XU5fu7iNMjP7ZIfsmx3S+rG/FwECayegAKydn6sJ9KXA5blu5FkC5+Xq/Dq39vQaHpdNs2e2S+te/jtlm56eq8kR6CcBBaCfdstcCbRZ4KYszIX5eb6bX+bi/CqLs6zNCeMbblamZtc8Ps/LE7N7npzNM2d8A7mKAIGHFVAAHA4CBEYErs6N+UF+kx/ld/lRfpsF6e4jpedmRp6Rx+QZeXSelcdmOw/ucTIJdFRAAegor8EJ9KfAjVmQq/L7/DQ35ee5Oa0HD92a9j5MatPMHnlAz5OzWZ6azbN9tsoWmdufYGZNoA8FFIA+3DRTJtBtgdYNhX6TW/P73JEbsiB/yJ0jheD2LM5dWZq7szTLc19W5P6RqU3OupmS9bJ+pmWDTMvGmZXWX/iPyobZMnOzVTbKY7NpWjfw8SJAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBGQAGocZdKgAABAgRKBRSAUn7hBAgQIECgRkABqHGXSoAAAQIESgUUgFJ+4QQIECBAoEZAAahxl0qAAAECBEoFFIBSfuEECBAgQKBG4P8DMW1A08/5gVkAAAAASUVORK5CYII=",
"model": "gemini-1.5-pro-exp-0801",
"query": "What is the situation of the two circles compared to each other?",
"response": "The two circles are **externally tangent**, meaning they touch each other at a single point on their outer edges.\n",
"svgSource": "<svg xmlns=\"http://www.w3.org/2000/svg\" id=\"svgCanvas\" width=\"512\" height=\"512\" class=\"border-2 border-gray-200\" style=\"width: 512px; height: 512px; display: block;\"><rect width=\"100%\" height=\"100%\" fill=\"#ffffff\"/><circle cx=\"147\" cy=\"226\" r=\"54\" fill=\"#e60f0f\" data-id=\"1722649278577\" style=\"cursor: move;\"/><circle cx=\"277\" cy=\"234\" r=\"54\" fill=\"#05ff5d\" data-id=\"1722649278742\" style=\"cursor: move;\"/></svg>"
} |