|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""DanFEVER: A FEVER dataset for Danish""" |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{norregaard-derczynski-2021-danfever, |
|
title = "{D}an{FEVER}: claim verification dataset for {D}anish", |
|
author = "N{\o}rregaard, Jeppe and |
|
Derczynski, Leon", |
|
booktitle = "Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)", |
|
month = may # " 31--2 " # jun, |
|
year = "2021", |
|
address = "Reykjavik, Iceland (Online)", |
|
publisher = {Link{\"o}ping University Electronic Press, Sweden}, |
|
url = "https://aclanthology.org/2021.nodalida-main.47", |
|
pages = "422--428", |
|
abstract = "We present a dataset, DanFEVER, intended for multilingual misinformation research. The dataset is in Danish and has the same format as the well-known English FEVER dataset. It can be used for testing methods in multilingual settings, as well as for creating models in production for the Danish language.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
""" |
|
|
|
_URL = "https://media.githubusercontent.com/media/StrombergNLP/danfever/main/tsv/da_fever.tsv" |
|
|
|
|
|
class DanFeverConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DanFever""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig DanFever. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(DanFeverConfig, self).__init__(**kwargs) |
|
|
|
|
|
class DanFever(datasets.GeneratorBasedBuilder): |
|
"""DanFever dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
DanFeverConfig(name="DanFever", version=datasets.Version("1.0.0"), description="FEVER dataset for Danish"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"claim": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel( |
|
names=[ |
|
"Refuted", |
|
"Supported", |
|
"NotEnoughInfo", |
|
] |
|
), |
|
"evidence_extract": datasets.Value("string"), |
|
"verifiable": datasets.features.ClassLabel( |
|
names=[ |
|
"NotVerifiable", |
|
"Verifiable", |
|
] |
|
), |
|
"evidence": datasets.Value("string"), |
|
"original_id": datasets.Value("string"), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://stromberg.ai/publication/danfever/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
data_reader = csv.DictReader(f, delimiter="\t", quotechar='"') |
|
guid = 0 |
|
for instance in data_reader: |
|
instance.pop('nr.') |
|
instance["original_id"] = instance.pop('id') |
|
instance["id"] = str(guid) |
|
yield guid, instance |
|
guid += 1 |
|
|