notebook: add example of how to construct Flair dataset
Browse files- FlairDatasetExample.ipynb +202 -0
FlairDatasetExample.ipynb
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "8f719117-0591-4f80-a071-16b8b1a0a829",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"2024-05-10 12:21:50.698143: I external/local_tsl/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n",
|
14 |
+
"2024-05-10 12:21:50.701405: I external/local_tsl/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n",
|
15 |
+
"2024-05-10 12:21:50.745330: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
16 |
+
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
17 |
+
"2024-05-10 12:21:51.413922: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
|
18 |
+
]
|
19 |
+
}
|
20 |
+
],
|
21 |
+
"source": [
|
22 |
+
"import flair\n",
|
23 |
+
"\n",
|
24 |
+
"from flair.datasets.sequence_labeling import ColumnCorpus\n",
|
25 |
+
"from flair.file_utils import cached_path\n",
|
26 |
+
"\n",
|
27 |
+
"from pathlib import Path\n",
|
28 |
+
"from typing import Optional, Union"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 2,
|
34 |
+
"id": "0ddcffce-b914-4250-848a-e8cb5b9cc049",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"class NER_HISTNERO(ColumnCorpus):\n",
|
39 |
+
" def __init__(\n",
|
40 |
+
" self,\n",
|
41 |
+
" base_path: Optional[Union[str, Path]] = None,\n",
|
42 |
+
" in_memory: bool = True,\n",
|
43 |
+
" **corpusargs,\n",
|
44 |
+
" ) -> None:\n",
|
45 |
+
" base_path = flair.cache_root / \"datasets\" if not base_path else Path(base_path)\n",
|
46 |
+
" dataset_name = self.__class__.__name__.lower()\n",
|
47 |
+
" data_folder = base_path / dataset_name\n",
|
48 |
+
" data_path = flair.cache_root / \"datasets\" / dataset_name\n",
|
49 |
+
"\n",
|
50 |
+
" column_format = {0: \"text\", 1: \"ner\"}\n",
|
51 |
+
"\n",
|
52 |
+
" hf_download_path = \"https://huggingface.co/datasets/stefan-it/histnero/resolve/main\"\n",
|
53 |
+
"\n",
|
54 |
+
" for split in [\"train\", \"dev\", \"test\"]:\n",
|
55 |
+
" cached_path(f\"{hf_download_path}/{split}.tsv\", data_path)\n",
|
56 |
+
" \n",
|
57 |
+
" super().__init__(\n",
|
58 |
+
" data_folder,\n",
|
59 |
+
" column_format = {0: \"text\", 1: \"ner\"},\n",
|
60 |
+
" column_delimiter=\"\\t\",\n",
|
61 |
+
" document_separator_token=\"-DOCSTART-\",\n",
|
62 |
+
" in_memory=in_memory,\n",
|
63 |
+
" comment_symbol=\"# \",\n",
|
64 |
+
" **corpusargs,\n",
|
65 |
+
" )"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 3,
|
71 |
+
"id": "caf404fb-b4f1-4688-81ef-abbd950beb0a",
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"name": "stdout",
|
76 |
+
"output_type": "stream",
|
77 |
+
"text": [
|
78 |
+
"2024-05-10 12:21:56,117 Reading data from /home/stefan/.flair/datasets/ner_histnero\n",
|
79 |
+
"2024-05-10 12:21:56,118 Train: /home/stefan/.flair/datasets/ner_histnero/train.tsv\n",
|
80 |
+
"2024-05-10 12:21:56,119 Dev: /home/stefan/.flair/datasets/ner_histnero/dev.tsv\n",
|
81 |
+
"2024-05-10 12:21:56,120 Test: /home/stefan/.flair/datasets/ner_histnero/test.tsv\n"
|
82 |
+
]
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"source": [
|
86 |
+
"corpus = NER_HISTNERO()"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 4,
|
92 |
+
"id": "c38074b8-36c6-47f8-9a9c-b9685514e4bf",
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [
|
95 |
+
{
|
96 |
+
"name": "stdout",
|
97 |
+
"output_type": "stream",
|
98 |
+
"text": [
|
99 |
+
"Corpus: 8149 train + 1114 dev + 1117 test sentences\n"
|
100 |
+
]
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"source": [
|
104 |
+
"print(str(corpus))"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "markdown",
|
109 |
+
"id": "7f1bfac4-d09f-477a-b1d8-0543d2e4368c",
|
110 |
+
"metadata": {},
|
111 |
+
"source": [
|
112 |
+
"# Tests\n",
|
113 |
+
"\n",
|
114 |
+
"We now check the number of parsed sentences and compare with the reference values from the HistNERo paper."
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 5,
|
120 |
+
"id": "f1dc9c90-c14c-44c6-9716-5e341c73d370",
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [],
|
123 |
+
"source": [
|
124 |
+
"gold_training_split_sentences = {\n",
|
125 |
+
" \"train\": 8_020,\n",
|
126 |
+
" \"dev\": 1_003,\n",
|
127 |
+
" \"test\": 1_003,\n",
|
128 |
+
"}\n",
|
129 |
+
"\n",
|
130 |
+
"flair_corpus_mapping = {\n",
|
131 |
+
" \"train\": corpus.train,\n",
|
132 |
+
" \"dev\": corpus.dev,\n",
|
133 |
+
" \"test\": corpus.test,\n",
|
134 |
+
"}"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "code",
|
139 |
+
"execution_count": 8,
|
140 |
+
"id": "957921b4-53f6-4c49-a916-339ff0296eee",
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [
|
143 |
+
{
|
144 |
+
"name": "stdout",
|
145 |
+
"output_type": "stream",
|
146 |
+
"text": [
|
147 |
+
"✔️ Number of parsed sentences for train split\n",
|
148 |
+
"✔️ Number of parsed sentences for dev split\n",
|
149 |
+
"✔️ Number of parsed sentences for test split\n",
|
150 |
+
"✔️ Number of parsed sentences for complete dataset\n"
|
151 |
+
]
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"source": [
|
155 |
+
"actual_total_sentences = 0\n",
|
156 |
+
"gold_total_sentences = sum(gold_training_split_sentences.values())\n",
|
157 |
+
"\n",
|
158 |
+
"for dataset_split in [\"train\", \"dev\", \"test\"]:\n",
|
159 |
+
" gold_sentences = gold_training_split_sentences[dataset_split]\n",
|
160 |
+
"\n",
|
161 |
+
" actual_sentences = 0\n",
|
162 |
+
" \n",
|
163 |
+
" for sentence in flair_corpus_mapping[dataset_split]:\n",
|
164 |
+
" # We do not count document marker as sentences!\n",
|
165 |
+
" if sentence[0].text.startswith(\"-DOCSTART-\"):\n",
|
166 |
+
" continue\n",
|
167 |
+
" actual_sentences += 1\n",
|
168 |
+
"\n",
|
169 |
+
" actual_total_sentences += actual_sentences\n",
|
170 |
+
"\n",
|
171 |
+
" assert gold_sentences == actual_sentences, f\"Mismatch of parsed sentences for {dataset_split} split!\"\n",
|
172 |
+
"\n",
|
173 |
+
" print(f\"✔️ Number of parsed sentences for {dataset_split} split\")\n",
|
174 |
+
"\n",
|
175 |
+
"assert actual_total_sentences == gold_total_sentences, f\"Mismatch in total parsed sentences!\"\n",
|
176 |
+
"\n",
|
177 |
+
"print(f\"✔️ Number of parsed sentences for complete dataset\")"
|
178 |
+
]
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"metadata": {
|
182 |
+
"kernelspec": {
|
183 |
+
"display_name": "Python 3 (ipykernel)",
|
184 |
+
"language": "python",
|
185 |
+
"name": "python3"
|
186 |
+
},
|
187 |
+
"language_info": {
|
188 |
+
"codemirror_mode": {
|
189 |
+
"name": "ipython",
|
190 |
+
"version": 3
|
191 |
+
},
|
192 |
+
"file_extension": ".py",
|
193 |
+
"mimetype": "text/x-python",
|
194 |
+
"name": "python",
|
195 |
+
"nbconvert_exporter": "python",
|
196 |
+
"pygments_lexer": "ipython3",
|
197 |
+
"version": "3.11.6"
|
198 |
+
}
|
199 |
+
},
|
200 |
+
"nbformat": 4,
|
201 |
+
"nbformat_minor": 5
|
202 |
+
}
|