text
stringlengths 7
318k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
439
|
---|---|---|---|
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Troubleshooting guide
This guide aims to provide you the tools and knowledge required to navigate some common issues. However,
as 🤗 Accelerate continuously evolves and the use cases and setups are diverse, you might encounter an issue not covered in this
guide. If the suggestions listed in this guide do not cover your such situation, please refer to the final section of
the guide, [Asking for Help](#ask-for-help), to learn where to find help with your specific issue.
## Logging
When facing an error, logging can help narrow down where it is coming from. In a distributed setup with multiple processes,
logging can be a challenge, but 🤗 Accelerate provides a utility that streamlines the logging process and ensures that
logs are synchronized and managed effectively across the distributed setup.
To troubleshoot an issue, use `accelerate.logging` instead of the standard Python `logging` module:
```diff
- import logging
+ from accelerate.logging import get_logger
- logger = logging.getLogger(__name__)
+ logger = get_logger(__name__)
```
To set the log level (`INFO`, `DEBUG`, `WARNING`, `ERROR`, `CRITICAL`), export it as the `ACCELERATE_LOG_LEVEL` environment,
or pass as `log_level` to `get_logger`:
```python
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
```
By default, the log is called on main processes only. To call it on all processes, pass `main_process_only=False`.
If a log should be called on all processes and in order, also pass `in_order=True`.
## Hanging code and timeout errors
### Mismatched tensor shapes
If your code seems to be hanging for a significant amount time on a distributed setup, a common cause is mismatched shapes of tensors on different
devices.
When running scripts in a distributed fashion, functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] are
necessary to grab tensors across devices to perform operations on them collectively. These (and other) functions rely on
`torch.distributed` performing a `gather` operation, which requires that tensors have the **exact same shape** across all processes.
When the tensor shapes don't match, you will experience handing code, and eventually hit a timeout exception.
If you suspect this to be the case, use Accelerate's operational debug mode to immediately catch the issue.
The recommended way to enable Accelerate's operational debug mode is during `accelerate config` setup.
Alternative ways to enable debug mode are:
* From the CLI:
```bash
accelerate launch --debug {my_script.py} --arg1 --arg2
```
* As an environmental variable (which avoids the need for `accelerate launch`):
```bash
ACCELERATE_DEBUG_MODE="1" torchrun {my_script.py} --arg1 --arg2
```
* Manually changing the `config.yaml` file:
```diff
compute_environment: LOCAL_MACHINE
+debug: true
```
Once you enable the debug mode, you should get a similar traceback that points to the tensor shape mismatch issue:
```py
Traceback (most recent call last):
File "/home/zach_mueller_huggingface_co/test.py", line 18, in <module>
main()
File "/home/zach_mueller_huggingface_co/test.py", line 15, in main
broadcast_tensor = broadcast(tensor)
File "/home/zach_mueller_huggingface_co/accelerate/src/accelerate/utils/operations.py", line 303, in wrapper
accelerate.utils.operations.DistributedOperationException:
Cannot apply desired operation due to shape mismatches. All shapes across devices must be valid.
Operation: `accelerate.utils.operations.broadcast`
Input shapes:
- Process 0: [1, 5]
- Process 1: [1, 2, 5]
```
### Early stopping leads to hanging
When doing early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss),
it may not be synchronized across all of them. As a result, a break can happen on process 0 but not on process 1.
This will cause the code to hang indefinitely until a timeout occurs.
If you have early stopping conditionals, use `set_breakpoint` and `check_breakpoint` methods to make sure all the processes
are ended correctly:
```py
# Assume `should_do_breakpoint` is a custom defined function that returns a conditional,
# and that conditional might be true only on process 1
if should_do_breakpoint(loss):
accelerator.set_breakpoint()
# Later in the training script when we need to check for the breakpoint
if accelerator.check_breakpoint():
break
```
### Hanging on low kernel versions on Linux
This is a known issue. On Linux with kernel version < 5.5, hanging processes have been reported. To avoid
encountering this problem, we recommend upgrading your system to a later kernel version.
## CUDA out of memory
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory",
as the entire script needs to be restarted, progress is lost, and typically a developer would want to simply
start their script and let it run.
To address this problem, `Accelerate` offers a utility `find_executable_batch_size` that is heavily based on [toma](https://github.com/BlackHC/toma).
The utility retries code that fails due to OOM (out-of-memory) conditions and lowers batch sizes automatically.
### find_executable_batch_size
This algorithm operates with exponential decay, decreasing the batch size in half after each failed run on some
training script. To use it, restructure your training function to include an inner function that includes this wrapper,
and build your dataloaders inside it. At a minimum, this could look like 4 new lines of code.
<Tip warning={true}>
The inner function *must* take in the batch size as the first parameter, but we do not pass one to it when called. The wrapper handles this for us.
</Tip>
It should also be noted that anything which will consume CUDA memory and passed to the `accelerator` **must** be declared inside the inner function,
such as models and optimizers.
```diff
def training_function(args):
accelerator = Accelerator()
+ @find_executable_batch_size(starting_batch_size=args.batch_size)
+ def inner_training_loop(batch_size):
+ nonlocal accelerator # Ensure they can be used in our context
+ accelerator.free_memory() # Free all lingering references
model = get_model()
model.to(accelerator.device)
optimizer = get_optimizer()
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
lr_scheduler = get_scheduler(
optimizer,
num_training_steps=len(train_dataloader)*num_epochs
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
train(model, optimizer, train_dataloader, lr_scheduler)
validate(model, eval_dataloader)
+ inner_training_loop()
```
To find out more, check the documentation [here](../package_reference/utilities#accelerate.find_executable_batch_size).
## Non-reproducible results between device setups
If you have changed the device setup and are observing different model performance, this is likely due to the fact that
you have not updated your script when moving from one setup to another. The same script with the same batch size across TPU,
multi-GPU, and single-GPU with Accelerate will have different results.
For example, if you were previously training on a single GPU with a batch size of 16, when moving to two GPU setup,
you need to change the batch size to 8 to have the same effective batch size. This is because when training with Accelerate,
the batch size passed to the dataloader is the **batch size per GPU**.
To make sure you can reproduce the results between the setups, make sure to use the same seed, adjust the batch size
accordingly, consider scaling the learning rate.
For more details and a quick reference for batch sizes, check out the [Comparing performance between different device setups](../concept_guides/performance) guide.
## Performance issues on different GPUs
If your multi-GPU setup consists of different GPUs, you may hit some limitations:
- There may be an imbalance in GPU memory between the GPUs. In this case, the GPU with smaller memory will limit the batch size or the size of the model that can be loaded onto the GPUs.
- If you are using GPUs with different performance profiles, the performance will be driven by the slowest GPU that you are using as the other GPUs will have to wait for it to complete its workload.
Vastly different GPUs within the same setup can lead to performance bottlenecks.
## Ask for help
If the above troubleshooting tools and advice did not help you resolve your issue, reach out for help to the community
and the team.
### Forums
Ask for help on the Hugging Face forums - post your question in the [🤗Accelerate category](https://discuss.huggingface.co/c/accelerate/18)
Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
### Discord
Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
### GitHub Issues
Create an Issue on the 🤗 Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you suspect
to have found a bug related to the library. Include context regarding the bug and details about your distributed setup
to help us better figure out what's wrong and how we can fix it.
| accelerate/docs/source/basic_tutorials/troubleshooting.md/0 | {
"file_path": "accelerate/docs/source/basic_tutorials/troubleshooting.md",
"repo_id": "accelerate",
"token_count": 2832
} | 0 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Intel® Extension for PyTorch
[IPEX](https://github.com/intel/intel-extension-for-pytorch) is optimized for CPUs with AVX-512 or above, and functionally works for CPUs with only AVX2. So, it is expected to bring performance benefit for Intel CPU generations with AVX-512 or above while CPUs with only AVX2 (e.g., AMD CPUs or older Intel CPUs) might result in a better performance under IPEX, but not guaranteed. IPEX provides performance optimizations for CPU training with both Float32 and BFloat16. The usage of BFloat16 is the main focus of the following sections.
Low precision data type BFloat16 has been natively supported on the 3rd Generation Xeon® Scalable Processors (aka Cooper Lake) with AVX512 instruction set and will be supported on the next generation of Intel® Xeon® Scalable Processors with Intel® Advanced Matrix Extensions (Intel® AMX) instruction set with further boosted performance. The Auto Mixed Precision for CPU backend has been enabled since PyTorch-1.10. At the same time, the support of Auto Mixed Precision with BFloat16 for CPU and BFloat16 optimization of operators has been massively enabled in Intel® Extension for PyTorch, and partially upstreamed to PyTorch master branch. Users can get better performance and user experience with IPEX Auto Mixed Precision.
## IPEX installation:
IPEX release is following PyTorch, to install via pip:
| PyTorch Version | IPEX version |
| :---------------: | :----------: |
| 2.0 | 2.0.0 |
| 1.13 | 1.13.0 |
| 1.12 | 1.12.300 |
| 1.11 | 1.11.200 |
| 1.10 | 1.10.100 |
```
pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
Check more approaches for [IPEX installation](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html).
## How It Works For Training optimization in CPU
🤗 Accelerate has integrated [IPEX](https://github.com/intel/intel-extension-for-pytorch), all you need to do is enabling it through the config.
**Scenario 1**: Acceleration of No distributed CPU training
Run <u>accelerate config</u> on your machine:
```bash
$ accelerate config
-----------------------------------------------------------------------------------------------------------------------------------------------------------
In which compute environment are you running?
This machine
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Which type of machine are you using?
No distributed training
Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:yes
Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
Do you want to use DeepSpeed? [yes/NO]: NO
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Do you wish to use FP16 or BF16 (mixed precision)?
bf16
```
This will generate a config file that will be used automatically to properly set the
default options when doing
```bash
accelerate launch my_script.py --args_to_my_script
```
For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with IPEX enabled.
default_config.yaml that is generated after `accelerate config`
```bash
compute_environment: LOCAL_MACHINE
distributed_type: 'NO'
downcast_bf16: 'no'
ipex_config:
ipex: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: true
```
```bash
accelerate launch examples/nlp_example.py
```
**Scenario 2**: Acceleration of distributed CPU training
we use Intel oneCCL for communication, combined with Intel® MPI library to deliver flexible, efficient, scalable cluster messaging on Intel® architecture. you could refer the [here](https://huggingface.co/docs/transformers/perf_train_cpu_many) for the installation guide
Run <u>accelerate config</u> on your machine(node0):
```bash
$ accelerate config
-----------------------------------------------------------------------------------------------------------------------------------------------------------
In which compute environment are you running?
This machine
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Which type of machine are you using?
multi-CPU
How many different machines will you use (use more than 1 for multi-node training)? [1]: 4
-----------------------------------------------------------------------------------------------------------------------------------------------------------
What is the rank of this machine?
0
What is the IP address of the machine that will host the main process? 36.112.23.24
What is the port you will use to communicate with the main process? 29500
Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: yes
Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
How many CPU(s) should be used for distributed training? [1]:16
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Do you wish to use FP16 or BF16 (mixed precision)?
bf16
```
For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with IPEX enabled for distributed CPU training.
default_config.yaml that is generated after `accelerate config`
```bash
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_CPU
downcast_bf16: 'no'
ipex_config:
ipex: true
machine_rank: 0
main_process_ip: 36.112.23.24
main_process_port: 29500
main_training_function: main
mixed_precision: bf16
num_machines: 4
num_processes: 16
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: true
```
Set following env and using intel MPI to launch the training
In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument.
```bash
$ cat hostfile
xxx.xxx.xxx.xxx #node0 ip
xxx.xxx.xxx.xxx #node1 ip
xxx.xxx.xxx.xxx #node2 ip
xxx.xxx.xxx.xxx #node3 ip
```
Now, run the following command in node0 and **16DDP** will be enabled in node0,node1,node2,node3 with BF16 mixed precision:
```bash
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
source $oneccl_bindings_for_pytorch_path/env/setvars.sh
export CCL_WORKER_COUNT=1
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
export CCL_ATL_TRANSPORT=ofi
mpirun -f hostfile -n 16 -ppn 4 accelerate launch examples/nlp_example.py
```
## Related Resources
- [Project's github](https://github.com/intel/intel-extension-for-pytorch)
- [API docs](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/api_doc.html)
- [Tuning guide](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html)
- [Blogs & Publications](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/blogs_publications.html)
| accelerate/docs/source/usage_guides/ipex.md/0 | {
"file_path": "accelerate/docs/source/usage_guides/ipex.md",
"repo_id": "accelerate",
"token_count": 2313
} | 1 |
import argparse
import runhouse as rh
import torch
from nlp_example import training_function
from accelerate.utils import PrepareForLaunch, patch_environment
def launch_train(*args):
num_processes = torch.cuda.device_count()
print(f"Device count: {num_processes}")
with patch_environment(
world_size=num_processes, master_addr="127.0.0.1", master_port="29500", mixed_precision=args[1].mixed_precision
):
launcher = PrepareForLaunch(training_function, distributed_type="MULTI_GPU")
torch.multiprocessing.start_processes(launcher, args=args, nprocs=num_processes, start_method="spawn")
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/main/rh_primitives/cluster.html#hardware-setup
# for cloud access setup instructions (if using on-demand hardware), and for API specifications.
# on-demand GPU
# gpu = rh.cluster(name='rh-cluster', instance_type='V100:1', provider='cheapest', use_spot=False) # single GPU
gpu = rh.cluster(name="rh-cluster", instance_type="V100:4", provider="cheapest", use_spot=False) # multi GPU
gpu.up_if_not()
# on-prem GPU
# gpu = rh.cluster(
# ips=["ip_addr"], ssh_creds={ssh_user:"<username>", ssh_private_key:"<key_path>"}, name="rh-cluster"
# )
# Set up remote function
reqs = [
"pip:./",
"transformers",
"datasets",
"evaluate",
"tqdm",
"scipy",
"scikit-learn",
"tensorboard",
"torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117",
]
launch_train_gpu = rh.function(fn=launch_train, system=gpu, reqs=reqs, name="train_bert_glue")
# Define train args/config, run train function
train_args = argparse.Namespace(cpu=False, mixed_precision="fp16")
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
launch_train_gpu(config, train_args, stream_logs=True)
# Alternatively, we can just run as instructed in the README (but only because there's already a wrapper CLI):
# gpu.install_packages(reqs)
# gpu.run(['accelerate launch --multi_gpu accelerate/examples/nlp_example.py'])
| accelerate/examples/multigpu_remote_launcher.py/0 | {
"file_path": "accelerate/examples/multigpu_remote_launcher.py",
"repo_id": "accelerate",
"token_count": 869
} | 2 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from pathlib import Path
from typing import List
import numpy as np
import torch
from safetensors.torch import load_file
from torch.cuda.amp import GradScaler
from .utils import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_MODEL_NAME,
SAFE_WEIGHTS_NAME,
SAMPLER_NAME,
SCALER_NAME,
SCHEDULER_NAME,
WEIGHTS_NAME,
get_pretty_name,
is_tpu_available,
is_xpu_available,
save,
)
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
from .logging import get_logger
from .state import PartialState
logger = get_logger(__name__)
def save_accelerator_state(
output_dir: str,
model_states: List[dict],
optimizers: list,
schedulers: list,
dataloaders: list,
process_index: int,
scaler: GradScaler = None,
save_on_each_node: bool = False,
safe_serialization: bool = True,
):
"""
Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory.
<Tip>
If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native
`pickle`.
</Tip>
Args:
output_dir (`str` or `os.PathLike`):
The name of the folder to save all relevant weights and states.
model_states (`List[torch.nn.Module]`):
A list of model states
optimizers (`List[torch.optim.Optimizer]`):
A list of optimizer instances
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
A list of learning rate schedulers
dataloaders (`List[torch.utils.data.DataLoader]`):
A list of dataloader instances to save their sampler states
process_index (`int`):
The current process index in the Accelerator state
scaler (`torch.cuda.amp.GradScaler`, *optional*):
An optional gradient scaler instance to save
save_on_each_node (`bool`, *optional*):
Whether to save on every node, or only the main node.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
"""
output_dir = Path(output_dir)
# Model states
for i, state in enumerate(model_states):
weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
if i > 0:
weights_name = weights_name.replace(".", f"_{i}.")
output_model_file = output_dir.joinpath(weights_name)
save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
logger.info(f"Model weights saved in {output_model_file}")
# Optimizer states
for i, opt in enumerate(optimizers):
state = opt.state_dict()
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
output_optimizer_file = output_dir.joinpath(optimizer_name)
save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f"Optimizer state saved in {output_optimizer_file}")
# Scheduler states
for i, scheduler in enumerate(schedulers):
state = scheduler.state_dict()
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
output_scheduler_file = output_dir.joinpath(scheduler_name)
save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f"Scheduler state saved in {output_scheduler_file}")
# DataLoader states
for i, dataloader in enumerate(dataloaders):
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
output_sampler_file = output_dir.joinpath(sampler_name)
# Only save if we have our custom sampler
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.sampler.sampler
if isinstance(sampler, SeedableRandomSampler):
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
# GradScaler state
if scaler is not None:
state = scaler.state_dict()
output_scaler_file = output_dir.joinpath(SCALER_NAME)
torch.save(state, output_scaler_file)
logger.info(f"Gradient scaler state saved in {output_scaler_file}")
# Random number generator states
states = {}
states_name = f"{RNG_STATE_NAME}_{process_index}.pkl"
states["random_state"] = random.getstate()
states["numpy_random_seed"] = np.random.get_state()
states["torch_manual_seed"] = torch.get_rng_state()
if is_xpu_available():
states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all()
else:
states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all()
if is_tpu_available():
states["xm_seed"] = xm.get_rng_state()
output_states_file = output_dir.joinpath(states_name)
torch.save(states, output_states_file)
logger.info(f"Random states saved in {output_states_file}")
return output_dir
def load_accelerator_state(
input_dir,
models,
optimizers,
schedulers,
dataloaders,
process_index,
scaler=None,
map_location=None,
**load_model_func_kwargs,
):
"""
Loads states of the models, optimizers, scaler, and RNG generators from a given directory.
Args:
input_dir (`str` or `os.PathLike`):
The name of the folder to load all relevant weights and states.
models (`List[torch.nn.Module]`):
A list of model instances
optimizers (`List[torch.optim.Optimizer]`):
A list of optimizer instances
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
A list of learning rate schedulers
process_index (`int`):
The current process index in the Accelerator state
scaler (`torch.cuda.amp.GradScaler`, *optional*):
An optional *GradScaler* instance to load
map_location (`str`, *optional*):
What device to load the optimizer state onto. Should be one of either "cpu" or "on_device".
load_model_func_kwargs (`dict`, *optional*):
Additional arguments that can be passed to the model's `load_state_dict` method.
"""
if map_location not in [None, "cpu", "on_device"]:
raise TypeError(
"Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`"
)
if map_location is None:
map_location = "cpu"
elif map_location == "on_device":
map_location = PartialState().device
input_dir = Path(input_dir)
# Model states
for i, model in enumerate(models):
ending = f"_{i}" if i > 0 else ""
input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
if input_model_file.exists():
state_dict = load_file(input_model_file, device=str(map_location))
else:
# Load with torch
input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
state_dict = torch.load(input_model_file, map_location=map_location)
models[i].load_state_dict(state_dict, **load_model_func_kwargs)
logger.info("All model weights loaded successfully")
# Optimizer states
for i, opt in enumerate(optimizers):
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
input_optimizer_file = input_dir.joinpath(optimizer_name)
optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
optimizers[i].load_state_dict(optimizer_state)
logger.info("All optimizer states loaded successfully")
# Scheduler states
for i, scheduler in enumerate(schedulers):
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
input_scheduler_file = input_dir.joinpath(scheduler_name)
scheduler.load_state_dict(torch.load(input_scheduler_file))
logger.info("All scheduler states loaded successfully")
for i, dataloader in enumerate(dataloaders):
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
input_sampler_file = input_dir.joinpath(sampler_name)
# Only load if we have our custom sampler
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.sampler.sampler
if isinstance(sampler, SeedableRandomSampler):
dataloader.sampler.sampler = torch.load(input_sampler_file)
logger.info("All dataloader sampler states loaded successfully")
# GradScaler state
if scaler is not None:
input_scaler_file = input_dir.joinpath(SCALER_NAME)
scaler.load_state_dict(torch.load(input_scaler_file))
logger.info("GradScaler state loaded successfully")
# Random states
try:
states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
random.setstate(states["random_state"])
np.random.set_state(states["numpy_random_seed"])
torch.set_rng_state(states["torch_manual_seed"])
if is_xpu_available():
torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"])
else:
torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"])
if is_tpu_available():
xm.set_rng_state(states["xm_seed"])
logger.info("All random states loaded successfully")
except Exception:
logger.info("Could not load random states")
def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False):
"""
Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl`
"""
# Should this be the right way to get a qual_name type value from `obj`?
save_location = Path(path) / f"custom_checkpoint_{index}.pkl"
logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}")
save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node)
def load_custom_state(obj, path, index: int = 0):
"""
Loads the state of `obj` at `{path}/custom_checkpoint_{index}.pkl`
"""
load_location = f"{path}/custom_checkpoint_{index}.pkl"
logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}")
obj.load_state_dict(torch.load(load_location, map_location="cpu"))
| accelerate/src/accelerate/checkpointing.py/0 | {
"file_path": "accelerate/src/accelerate/checkpointing.py",
"repo_id": "accelerate",
"token_count": 4641
} | 3 |
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A variety of helper functions and constants when dealing with terminal menu choices, based on
https://github.com/bchao1/bullet
"""
import enum
import shutil
import sys
TERMINAL_WIDTH, _ = shutil.get_terminal_size()
CURSOR_TO_CHAR = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
class Direction(enum.Enum):
UP = 0
DOWN = 1
def forceWrite(content, end=""):
sys.stdout.write(str(content) + end)
sys.stdout.flush()
def writeColor(content, color, end=""):
forceWrite(f"\u001b[{color}m{content}\u001b[0m", end)
def reset_cursor():
forceWrite("\r")
def move_cursor(num_lines: int, direction: str):
forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}")
def clear_line():
forceWrite(" " * TERMINAL_WIDTH)
reset_cursor()
def linebreak():
reset_cursor()
forceWrite("-" * TERMINAL_WIDTH)
| accelerate/src/accelerate/commands/menu/helpers.py/0 | {
"file_path": "accelerate/src/accelerate/commands/menu/helpers.py",
"repo_id": "accelerate",
"token_count": 505
} | 4 |
#!/usr/bin/env python
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A collection of utilities for comparing `examples/complete_*_example.py` scripts with the capabilities inside of each
`examples/by_feature` example. `compare_against_test` is the main function that should be used when testing, while the
others are used to either get the code that matters, or to preprocess them (such as stripping comments)
"""
import os
from typing import List
def get_function_contents_by_name(lines: List[str], name: str):
"""
Extracts a function from `lines` of segmented source code with the name `name`.
Args:
lines (`List[str]`):
Source code of a script seperated by line.
name (`str`):
The name of the function to extract. Should be either `training_function` or `main`
"""
if name != "training_function" and name != "main":
raise ValueError(f"Incorrect function name passed: {name}, choose either 'main' or 'training_function'")
good_lines, found_start = [], False
for line in lines:
if not found_start and f"def {name}" in line:
found_start = True
good_lines.append(line)
continue
if found_start:
if name == "training_function" and "def main" in line:
return good_lines
if name == "main" and "if __name__" in line:
return good_lines
good_lines.append(line)
def clean_lines(lines: List[str]):
"""
Filters `lines` and removes any entries that start with a comment ('#') or is just a newline ('\n')
Args:
lines (`List[str]`):
Source code of a script seperated by line.
"""
return [line for line in lines if not line.lstrip().startswith("#") and line != "\n"]
def compare_against_test(base_filename: str, feature_filename: str, parser_only: bool, secondary_filename: str = None):
"""
Tests whether the additional code inside of `feature_filename` was implemented in `base_filename`. This should be
used when testing to see if `complete_*_.py` examples have all of the implementations from each of the
`examples/by_feature/*` scripts.
It utilizes `nlp_example.py` to extract out all of the repeated training code, so that only the new additional code
is examined and checked. If something *other* than `nlp_example.py` should be used, such as `cv_example.py` for the
`complete_cv_example.py` script, it should be passed in for the `secondary_filename` parameter.
Args:
base_filename (`str` or `os.PathLike`):
The filepath of a single "complete" example script to test, such as `examples/complete_cv_example.py`
feature_filename (`str` or `os.PathLike`):
The filepath of a single feature example script. The contents of this script are checked to see if they
exist in `base_filename`
parser_only (`bool`):
Whether to compare only the `main()` sections in both files, or to compare the contents of
`training_loop()`
secondary_filename (`str`, *optional*):
A potential secondary filepath that should be included in the check. This function extracts the base
functionalities off of "examples/nlp_example.py", so if `base_filename` is a script other than
`complete_nlp_example.py`, the template script should be included here. Such as `examples/cv_example.py`
"""
with open(base_filename, "r") as f:
base_file_contents = f.readlines()
with open(os.path.abspath(os.path.join("examples", "nlp_example.py")), "r") as f:
full_file_contents = f.readlines()
with open(feature_filename, "r") as f:
feature_file_contents = f.readlines()
if secondary_filename is not None:
with open(secondary_filename, "r") as f:
secondary_file_contents = f.readlines()
# This is our base, we remove all the code from here in our `full_filename` and `feature_filename` to find the new content
if parser_only:
base_file_func = clean_lines(get_function_contents_by_name(base_file_contents, "main"))
full_file_func = clean_lines(get_function_contents_by_name(full_file_contents, "main"))
feature_file_func = clean_lines(get_function_contents_by_name(feature_file_contents, "main"))
if secondary_filename is not None:
secondary_file_func = clean_lines(get_function_contents_by_name(secondary_file_contents, "main"))
else:
base_file_func = clean_lines(get_function_contents_by_name(base_file_contents, "training_function"))
full_file_func = clean_lines(get_function_contents_by_name(full_file_contents, "training_function"))
feature_file_func = clean_lines(get_function_contents_by_name(feature_file_contents, "training_function"))
if secondary_filename is not None:
secondary_file_func = clean_lines(
get_function_contents_by_name(secondary_file_contents, "training_function")
)
_dl_line = "train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)\n"
# Specific code in our script that differs from the full version, aka what is new
new_feature_code = []
passed_idxs = [] # We keep track of the idxs just in case it's a repeated statement
it = iter(feature_file_func)
for i in range(len(feature_file_func) - 1):
if i not in passed_idxs:
line = next(it)
if (line not in full_file_func) and (line.lstrip() != _dl_line):
if "TESTING_MOCKED_DATALOADERS" not in line:
new_feature_code.append(line)
passed_idxs.append(i)
else:
# Skip over the `config['num_epochs'] = 2` statement
_ = next(it)
# Extract out just the new parts from the full_file_training_func
new_full_example_parts = []
passed_idxs = [] # We keep track of the idxs just in case it's a repeated statement
for i, line in enumerate(base_file_func):
if i not in passed_idxs:
if (line not in full_file_func) and (line.lstrip() != _dl_line):
if "TESTING_MOCKED_DATALOADERS" not in line:
new_full_example_parts.append(line)
passed_idxs.append(i)
# Finally, get the overall diff
diff_from_example = [line for line in new_feature_code if line not in new_full_example_parts]
if secondary_filename is not None:
diff_from_two = [line for line in full_file_contents if line not in secondary_file_func]
diff_from_example = [line for line in diff_from_example if line not in diff_from_two]
return diff_from_example
| accelerate/src/accelerate/test_utils/examples.py/0 | {
"file_path": "accelerate/src/accelerate/test_utils/examples.py",
"repo_id": "accelerate",
"token_count": 2747
} | 5 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_MODEL_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAMPLER_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_DISTRIBUTED_OPERATION_TYPES,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
AutocastKwargs,
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FP8RecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import (
are_libraries_initialized,
check_cuda_p2p_ib_support,
check_fp8_capability,
get_int_from_env,
parse_choice_from_env,
parse_flag_from_env,
str_to_bool,
)
from .imports import (
get_ccl_version,
is_4bit_bnb_available,
is_8bit_bnb_available,
is_aim_available,
is_bf16_available,
is_bnb_available,
is_boto3_available,
is_ccl_available,
is_clearml_available,
is_comet_ml_available,
is_cuda_available,
is_datasets_available,
is_deepspeed_available,
is_dvclive_available,
is_fp8_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_msamp_available,
is_npu_available,
is_pandas_available,
is_peft_available,
is_rich_available,
is_sagemaker_available,
is_tensorboard_available,
is_timm_available,
is_tpu_available,
is_transformer_engine_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
calculate_maximum_sizes,
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
is_peft_model,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
CannotPadNestedTensorWarning,
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fp32,
convert_to_fp32,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_4bit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
T5TrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
check_os_kernel,
clean_state_dict_for_safetensors,
clear_environment,
convert_bytes,
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
recursive_getattr,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| accelerate/src/accelerate/utils/__init__.py/0 | {
"file_path": "accelerate/src/accelerate/utils/__init__.py",
"repo_id": "accelerate",
"token_count": 2193
} | 6 |
compute_environment: LOCAL_MACHINE
deepspeed_config: {}
distributed_type: 'NO'
downcast_bf16: 'no'
fsdp_config: {}
gpu_ids: all
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
megatron_lm_config: {}
mixed_precision: 'no'
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
use_cpu: false
tpu_name: 'test-tpu'
tpu_zone: 'us-central1-a'
commands: null
command_file: tests/test_samples/test_command_file.sh | accelerate/tests/test_configs/latest.yaml/0 | {
"file_path": "accelerate/tests/test_configs/latest.yaml",
"repo_id": "accelerate",
"token_count": 186
} | 7 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import random
import sys
import torch
import transformers
from transformers import AutoModelForCausalLM, set_seed
from alignment import (
DataArguments,
DPOConfig,
H4ArgumentParser,
ModelArguments,
apply_chat_template,
get_checkpoint,
get_datasets,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
get_tokenizer,
is_adapter_model,
)
from peft import PeftConfig, PeftModel
from trl import DPOTrainer
logger = logging.getLogger(__name__)
def main():
parser = H4ArgumentParser((ModelArguments, DataArguments, DPOConfig))
model_args, data_args, training_args = parser.parse()
#######
# Setup
#######
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.info(f"Model parameters {model_args}")
logger.info(f"Data parameters {data_args}")
logger.info(f"Training/evaluation parameters {training_args}")
# Check for last checkpoint
last_checkpoint = get_checkpoint(training_args)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
# Set seed for reproducibility
set_seed(training_args.seed)
###############
# Load datasets
###############
raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits)
logger.info(
f"Training on the following splits: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
)
column_names = list(raw_datasets["train"].features)
#####################################
# Load tokenizer and process datasets
#####################################
data_args.truncation_side = "left" # Truncate from left to ensure we don't lose labels in final turn
tokenizer = get_tokenizer(model_args, data_args)
#####################
# Apply chat template
#####################
raw_datasets = raw_datasets.map(
apply_chat_template,
fn_kwargs={"tokenizer": tokenizer, "task": "dpo"},
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
desc="Formatting comparisons with prompt template",
)
# Replace column names with what TRL needs, text_chosen -> chosen and text_rejected -> rejected
for split in ["train", "test"]:
raw_datasets[split] = raw_datasets[split].rename_columns(
{"text_prompt": "prompt", "text_chosen": "chosen", "text_rejected": "rejected"}
)
# Log a few random samples from the training set:
for index in random.sample(range(len(raw_datasets["train"])), 3):
logger.info(f"Prompt sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['prompt']}")
logger.info(f"Chosen sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['chosen']}")
logger.info(f"Rejected sample {index} of the raw training set:\n\n{raw_datasets['train'][index]['rejected']}")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
use_flash_attention_2=model_args.use_flash_attention_2,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = model_args.model_name_or_path
if is_adapter_model(model, model_args.model_revision) is True:
# Load the base model, merge the adapter weights and unload the adapter
# Note: to run QLoRA, you will need to merge the base model separately as the merged model in 16bit
logger.info(f"Merging PEFT adapters for {model_args.model_name_or_path=}")
peft_config = PeftConfig.from_pretrained(model_args.model_name_or_path, revision=model_args.model_revision)
model_kwargs = dict(
revision=model_args.base_model_revision,
trust_remote_code=model_args.trust_remote_code,
use_flash_attention_2=model_args.use_flash_attention_2,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
)
base_model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
**model_kwargs,
)
model = PeftModel.from_pretrained(
base_model, model_args.model_name_or_path, revision=model_args.model_revision
)
model.eval()
model = model.merge_and_unload()
model_kwargs = None
ref_model = model
ref_model_kwargs = model_kwargs
if model_args.use_peft is True:
ref_model = None
ref_model_kwargs = None
#########################
# Instantiate DPO trainer
#########################
trainer = DPOTrainer(
model,
ref_model,
model_init_kwargs=model_kwargs,
ref_model_init_kwargs=ref_model_kwargs,
args=training_args,
beta=training_args.beta,
train_dataset=raw_datasets["train"],
eval_dataset=raw_datasets["test"],
tokenizer=tokenizer,
max_length=training_args.max_length,
max_prompt_length=training_args.max_prompt_length,
peft_config=get_peft_config(model_args),
loss_type=training_args.loss_type,
)
###############
# Training loop
###############
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(raw_datasets["train"])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
logger.info("*** Training complete ***")
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(raw_datasets["test"])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": list(data_args.dataset_mixer.keys()),
"dataset_tags": list(data_args.dataset_mixer.keys()),
"tags": ["alignment-handbook"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
if training_args.push_to_hub is True:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)
logger.info("*** Training complete! ***")
if __name__ == "__main__":
main()
| alignment-handbook/scripts/run_dpo.py/0 | {
"file_path": "alignment-handbook/scripts/run_dpo.py",
"repo_id": "alignment-handbook",
"token_count": 3365
} | 8 |
# Creating apps
| candle/candle-book/src/apps/README.md/0 | {
"file_path": "candle/candle-book/src/apps/README.md",
"repo_id": "candle",
"token_count": 4
} | 9 |
# Running a model
In order to run an existing model, you will need to download and use existing weights.
Most models are already available on https://huggingface.co/ in [`safetensors`](https://github.com/huggingface/safetensors) format.
Let's get started by running an old model : `bert-base-uncased`.
| candle/candle-book/src/inference/inference.md/0 | {
"file_path": "candle/candle-book/src/inference/inference.md",
"repo_id": "candle",
"token_count": 88
} | 10 |
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
a.where_cond(b, c).unwrap();
}
const fn create_cond_arr<const N: usize>() -> [u8; N] {
let mut arr = [0u8; N];
let mut i = 0;
while i < N {
arr[i] = (i % 2) as u8;
i += 1;
}
arr
}
const B: usize = 1;
const M: usize = 1024;
const K: usize = 1024;
const SIZE: usize = B * M * K;
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
let elements = B * M * K;
// E.g. 2 f32 tensors + 1 u8 tensor
let flops = (2 * elements * dtype.size_in_bytes()) + elements;
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(
black_box(&tensor),
black_box(&on_true),
black_box(&on_false),
);
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let device = BenchDeviceHandler::new().unwrap();
for d in device.devices {
run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
}
}
criterion_group!(benches, criterion_benchmark);
| candle/candle-core/benches/benchmarks/where_cond.rs/0 | {
"file_path": "candle/candle-core/benches/benchmarks/where_cond.rs",
"repo_id": "candle",
"token_count": 942
} | 11 |
use crate::backend::{BackendDevice, BackendStorage};
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{DType, Error, IntDType, Layout, Result, Shape, WithDType};
use half::{bf16, f16};
use rayon::prelude::*;
const USE_IM2COL_CONV1D: bool = true;
const USE_IM2COL_CONV2D: bool = true;
// TODO: Maybe we should not implement [Clone] here and instead have an explicit allocator +
// intercept the oom errors to avoid panicking and provide a proper error.
#[derive(Debug, Clone)]
pub enum CpuStorage {
U8(Vec<u8>),
U32(Vec<u32>),
I64(Vec<i64>),
BF16(Vec<bf16>),
F16(Vec<f16>),
F32(Vec<f32>),
F64(Vec<f64>),
}
#[derive(Debug, Clone)]
pub struct CpuDevice;
pub trait Map1 {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>>;
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
match vs {
CpuStorage::U8(vs) => Ok(CpuStorage::U8(self.f(vs, layout)?)),
CpuStorage::U32(vs) => Ok(CpuStorage::U32(self.f(vs, layout)?)),
CpuStorage::I64(vs) => Ok(CpuStorage::I64(self.f(vs, layout)?)),
CpuStorage::BF16(vs) => Ok(CpuStorage::BF16(self.f(vs, layout)?)),
CpuStorage::F16(vs) => Ok(CpuStorage::F16(self.f(vs, layout)?)),
CpuStorage::F32(vs) => Ok(CpuStorage::F32(self.f(vs, layout)?)),
CpuStorage::F64(vs) => Ok(CpuStorage::F64(self.f(vs, layout)?)),
}
}
}
pub trait Map1Any {
fn f<T: WithDType, W: Fn(Vec<T>) -> CpuStorage>(
&self,
vs: &[T],
layout: &Layout,
wrap: W,
) -> Result<CpuStorage>;
fn map(&self, vs: &CpuStorage, layout: &Layout) -> Result<CpuStorage> {
match vs {
CpuStorage::U8(vs) => Ok(self.f(vs, layout, CpuStorage::U8)?),
CpuStorage::U32(vs) => Ok(self.f(vs, layout, CpuStorage::U32)?),
CpuStorage::I64(vs) => Ok(self.f(vs, layout, CpuStorage::I64)?),
CpuStorage::BF16(vs) => Ok(self.f(vs, layout, CpuStorage::BF16)?),
CpuStorage::F16(vs) => Ok(self.f(vs, layout, CpuStorage::F16)?),
CpuStorage::F32(vs) => Ok(self.f(vs, layout, CpuStorage::F32)?),
CpuStorage::F64(vs) => Ok(self.f(vs, layout, CpuStorage::F64)?),
}
}
}
type C = CpuStorage;
pub trait Map2 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<T>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U32(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::I64(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::BF16(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::F16(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::F32(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::F64(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
pub trait Map2U8 {
const OP: &'static str;
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, v2: &[T], l2: &Layout) -> Result<Vec<u8>>;
fn map(
&self,
v1: &CpuStorage,
l1: &Layout,
v2: &CpuStorage,
l2: &Layout,
) -> Result<CpuStorage> {
match (v1, v2) {
(C::U8(v1), C::U8(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::U32(v1), C::U32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::I64(v1), C::I64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::BF16(v1), C::BF16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F16(v1), C::F16(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F32(v1), C::F32(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
(C::F64(v1), C::F64(v2)) => Ok(C::U8(self.f(v1, l1, v2, l2)?)),
_ => Err(Error::DTypeMismatchBinaryOp {
lhs: v1.dtype(),
rhs: v2.dtype(),
op: Self::OP,
}
.bt()),
}
}
}
struct Cmp(CmpOp);
impl Map2U8 for Cmp {
const OP: &'static str = "cmp";
#[inline(always)]
fn f<T: WithDType>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<u8>> {
let dst = match self.0 {
CmpOp::Eq => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x == y)),
CmpOp::Ne => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x != y)),
CmpOp::Lt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x < y)),
CmpOp::Le => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x <= y)),
CmpOp::Gt => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x > y)),
CmpOp::Ge => binary_map(lhs_l, rhs_l, lhs, rhs, |x, y| u8::from(x >= y)),
};
Ok(dst)
}
}
struct WCond<'a, T: IntDType>(&'a [T], &'a Layout);
impl<'a, I: IntDType> Map2 for WCond<'a, I> {
const OP: &'static str = "where";
#[inline(always)]
fn f<T: WithDType>(&self, t: &[T], t_l: &Layout, f: &[T], f_l: &Layout) -> Result<Vec<T>> {
let vs = match (
self.1.contiguous_offsets(),
t_l.contiguous_offsets(),
f_l.contiguous_offsets(),
) {
(Some((o1, o2)), Some((o_t1, o_t2)), Some((o_f1, o_f2))) => {
let pred = &self.0[o1..o2];
let t = &t[o_t1..o_t2];
let f = &f[o_f1..o_f2];
pred.iter()
.zip(t.iter().zip(f.iter()))
.map(|(p, (&t, &f))| if p.is_true() { t } else { f })
.collect::<Vec<_>>()
}
_ => self
.1
.strided_index()
.zip(t_l.strided_index().zip(f_l.strided_index()))
.map(|(i_p, (i_t, i_f))| {
if self.0[i_p].is_true() {
t[i_t]
} else {
f[i_f]
}
})
.collect::<Vec<_>>(),
};
Ok(vs)
}
}
struct ReduceIndex {
reduce_dim_index: usize,
use_min: bool,
return_index: bool,
}
impl ReduceIndex {
// The value gets replaced if f(s[current_acc], s[i]) returns true.
#[inline(always)]
fn fold_impl<T, U, F, G>(&self, src: &[T], src_l: &Layout, f: F, g: G) -> Result<Vec<U>>
where
T: Clone + Copy,
U: Clone + Copy,
F: Fn(T, T) -> bool,
G: Fn(T, usize) -> U,
{
let reduce_dim_size = src_l.dims()[self.reduce_dim_index];
let reduce_dim_stride = src_l.stride()[self.reduce_dim_index];
let dst_len = src_l.shape().elem_count() / reduce_dim_size;
let mut dst: Vec<U> = Vec::with_capacity(dst_len);
let dst_to_set = dst.spare_capacity_mut();
let dst_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(dst_to_set) };
match src_l.contiguous_offsets() {
Some((o1, o2)) => {
let src = &src[o1..o2];
if reduce_dim_stride == 1 {
for (start_src_i, dst_v) in dst_to_set.iter_mut().enumerate() {
let start_src_i = start_src_i * reduce_dim_size;
let src = &src[start_src_i..start_src_i + reduce_dim_size];
let mut acc = 0;
let mut val = src[0];
for (src_i, &s) in src.iter().enumerate() {
if f(val, s) {
acc = src_i;
val = s
}
}
*dst_v = g(val, acc)
}
} else {
for (start_src_i, dst_v) in dst_to_set.iter_mut().enumerate() {
let (p, q) = (
start_src_i / reduce_dim_stride,
start_src_i % reduce_dim_stride,
);
// start_src_i = p * reduce_dim_stride + q
let start_src_i = p * reduce_dim_stride * reduce_dim_size + q;
let src = &src[start_src_i..];
let mut acc = 0;
let mut val = src[0];
for src_i in 0..reduce_dim_size {
let s = src[src_i * reduce_dim_stride];
if f(val, s) {
acc = src_i;
val = s
}
}
*dst_v = g(val, acc)
}
}
}
None => {
let l = src_l.narrow(self.reduce_dim_index, 0, 1)?;
for (unstr_index, src_index) in l.strided_index().enumerate() {
let src = &src[src_index..];
let mut acc = 0;
let mut val = src[0];
for src_i in 0..reduce_dim_size {
let s = src[src_i * reduce_dim_stride];
if f(val, s) {
acc = src_i;
val = s
}
}
dst_to_set[unstr_index] = g(val, acc)
}
}
}
unsafe { dst.set_len(dst_len) };
Ok(dst)
}
}
impl Map1Any for ReduceIndex {
#[inline(always)]
fn f<T: WithDType, W: Fn(Vec<T>) -> CpuStorage>(
&self,
src: &[T],
src_l: &Layout,
wrap: W,
) -> Result<CpuStorage> {
if src_l.shape().elem_count() == 0 {
Err(Error::EmptyTensor { op: "reduce" }.bt())?
}
let dst = match (self.return_index, self.use_min) {
(false, true) => wrap(self.fold_impl(src, src_l, |x, y| x > y, |v, _i| v)?),
(false, false) => wrap(self.fold_impl(src, src_l, |x, y| x < y, |v, _i| v)?),
(true, true) => {
CpuStorage::U32(self.fold_impl(src, src_l, |x, y| x > y, |_v, i| i as u32)?)
}
(true, false) => {
CpuStorage::U32(self.fold_impl(src, src_l, |x, y| x < y, |_v, i| i as u32)?)
}
};
Ok(dst)
}
}
struct ReduceSum<'a> {
dst_shape: &'a Shape,
reduce_dims: &'a [usize],
reduce_dims_and_stride: Vec<(usize, usize)>,
}
impl<'a> ReduceSum<'a> {
#[inline(always)]
fn fold_impl<T>(&self, src: &[T], src_l: &Layout, start_elt: T) -> Result<Vec<T>>
where
T: WithDType,
{
let mut dst = vec![start_elt; self.dst_shape.elem_count()];
match src_l.contiguous_offsets() {
Some((o1, o2)) => {
let src = &src[o1..o2];
// Handle the case where we reduce over the last dimensions separately as it is
// fairly common and easy to optimize. This rely on the layout being contiguous!
// reduce_dims is sorted, check if it is ranging from a to n-1.
let reduce_over_last_dims = self
.reduce_dims
.iter()
.rev()
.enumerate()
.all(|(i, &v)| v == src_l.shape().rank() - 1 - i);
if reduce_over_last_dims {
let reduce_sz = self
.reduce_dims_and_stride
.iter()
.map(|(u, _)| u)
.product::<usize>();
for (dst_i, dst_v) in dst.iter_mut().enumerate() {
let src_i = dst_i * reduce_sz;
unsafe {
T::vec_reduce_sum(
src[src_i..src_i + reduce_sz].as_ptr(),
dst_v,
reduce_sz,
)
};
}
return Ok(dst);
};
for (unstr_index, &src) in src.iter().enumerate() {
let mut dst_index = unstr_index;
// Set the reduce_dims indexes to 0.
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst[dst_index] += src;
}
}
None => {
for (unstr_index, src_index) in src_l.strided_index().enumerate() {
let mut dst_index = unstr_index;
// Set the reduce_dims indexes to 0.
for &(dim, stride) in self.reduce_dims_and_stride.iter() {
// The compiler is able to optimize the following in a single divmod op.
let (pre, post) = (dst_index / stride, dst_index % stride);
dst_index = (pre / dim) * stride + post;
}
dst[dst_index] += src[src_index];
}
}
}
Ok(dst)
}
}
impl<'a> Map1 for ReduceSum<'a> {
#[inline(always)]
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
self.fold_impl(src, src_l, T::zero())
}
}
pub fn unary_map<T: Copy, U: Copy, F: FnMut(T) -> U>(
vs: &[T],
layout: &Layout,
mut f: F,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => vs
[start_offset..start_offset + len]
.iter()
.map(|&v| f(v))
.collect(),
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let mut result = Vec::with_capacity(layout.shape().elem_count());
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
} else {
for index in block_start_index {
for offset in 0..block_len {
let v = unsafe { vs.get_unchecked(index + offset) };
result.push(f(*v))
}
}
}
result
}
}
}
pub fn unary_map_vec<T: Copy, U: Copy, F: FnMut(T) -> U, FV: FnMut(&[T], &mut [U])>(
vs: &[T],
layout: &Layout,
mut f: F,
mut f_vec: FV,
) -> Vec<U> {
match layout.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
let mut ys: Vec<U> = Vec::with_capacity(len);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
f_vec(&vs[start_offset..start_offset + len], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(len) };
ys
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let el_count = layout.shape().elem_count();
// Specialize the case where block_len is one to avoid the second loop.
if block_len == 1 {
let mut result = Vec::with_capacity(el_count);
for index in block_start_index {
let v = unsafe { vs.get_unchecked(index) };
result.push(f(*v))
}
result
} else {
let mut ys: Vec<U> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [U]>(ys_to_set) };
let mut dst_index = 0;
for src_index in block_start_index {
let vs = &vs[src_index..src_index + block_len];
let ys = &mut ys_to_set[dst_index..dst_index + block_len];
f_vec(vs, ys);
dst_index += block_len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
}
}
}
// This function maps over two strided index sequences.
pub fn binary_map<T: Copy, U: Copy, F: FnMut(T, T) -> U>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
) -> Vec<U> {
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => lhs[o_l1..o_l2]
.iter()
.zip(rhs[o_r1..o_r2].iter())
.map(|(&l, &r)| f(l, r))
.collect(),
(Some((o_l1, o_l2)), None) => {
// TODO: Maybe we want to avoid going through the layout twice.
match rhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
lhs[o_l1..o_l2]
.iter()
.map(|&l| {
let r = unsafe { rhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(l, *r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
(None, Some((o_r1, o_r2))) => {
// TODO: Maybe we want to avoid going through the layout twice.
match lhs_l.offsets_b() {
Some(ob) => {
let mut i_in_block = 0;
let mut i_right_broadcast = 0;
rhs[o_r1..o_r2]
.iter()
.map(|&r| {
let l = unsafe { lhs.get_unchecked(i_in_block + ob.start) };
i_right_broadcast += 1;
if i_right_broadcast >= ob.right_broadcast {
i_in_block += 1;
i_right_broadcast = 0;
}
if i_in_block >= ob.len {
i_in_block = 0
}
f(*l, r)
})
.collect()
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
// Similar to binary_map but with vectorized variants.
pub fn binary_map_vec<T: Copy, F: FnMut(T, T) -> T, FV: FnMut(&[T], &[T], &mut [T])>(
lhs_l: &Layout,
rhs_l: &Layout,
lhs: &[T],
rhs: &[T],
mut f: F,
mut f_vec: FV,
) -> Vec<T> {
let el_count = lhs_l.shape().elem_count();
match (lhs_l.contiguous_offsets(), rhs_l.contiguous_offsets()) {
(Some((o_l1, o_l2)), Some((o_r1, o_r2))) => {
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
f_vec(&lhs[o_l1..o_l2], &rhs[o_r1..o_r2], ys_to_set);
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
(Some((o_l1, o_l2)), None) => match rhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
let mut dst_i = 0;
for src_i in (o_l1..o_l2).step_by(ob.len) {
f_vec(
&lhs[src_i..src_i + ob.len],
rhs,
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let rhs = &rhs[ob.start..ob.start + ob.len];
let mut ys = lhs[o_l1..o_l2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &r) in rhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(*v, r)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
(None, Some((o_r1, o_r2))) => match lhs_l.offsets_b() {
Some(ob) if ob.right_broadcast == 1 => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys: Vec<T> = Vec::with_capacity(el_count);
let ys_to_set = ys.spare_capacity_mut();
let ys_to_set = unsafe { std::mem::transmute::<_, &mut [T]>(ys_to_set) };
let mut dst_i = 0;
for src_i in (o_r1..o_r2).step_by(ob.len) {
f_vec(
lhs,
&rhs[src_i..src_i + ob.len],
&mut ys_to_set[dst_i..dst_i + ob.len],
);
dst_i += ob.len;
}
// SAFETY: values are all set by f_vec.
unsafe { ys.set_len(el_count) };
ys
}
Some(ob) => {
let lhs = &lhs[ob.start..ob.start + ob.len];
let mut ys = rhs[o_r1..o_r2].to_vec();
for idx_l in 0..ob.left_broadcast {
let start = idx_l * ob.len * ob.right_broadcast;
for (i, &l) in lhs.iter().enumerate() {
let start = start + i * ob.right_broadcast;
for v in ys[start..start + ob.right_broadcast].iter_mut() {
*v = f(l, *v)
}
}
}
ys
}
None => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
},
_ => lhs_l
.strided_index()
.zip(rhs_l.strided_index())
.map(|(lhs_i, rhs_i)| f(lhs[lhs_i], rhs[rhs_i]))
.collect(),
}
}
struct Affine(f64, f64);
impl Map1 for Affine {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let mul = T::from_f64(self.0);
let add = T::from_f64(self.1);
Ok(unary_map(vs, layout, |v| v * mul + add))
}
}
struct AvgPool2D((usize, usize), (usize, usize));
impl Map1 for AvgPool2D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
let (k_h, k_w) = self.0;
let (s_h, s_w) = self.1;
let (b_sz, c, h, w) = layout.shape().dims4()?;
let stride = layout.stride();
let (stride_h, stride_w) = (stride[2], stride[3]);
let h_out = (h - k_h) / s_h + 1;
let w_out = (w - k_w) / s_w + 1;
let src_index = layout.start_offset();
let mut dst = vec![T::zero(); b_sz * c * h_out * w_out];
let scale = 1f64 / (k_h * k_w) as f64;
let scale = T::from_f64(scale);
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * h_out * w_out..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * h_out * w_out..];
let src_index = src_index + c_idx * stride[1];
for h_idx in 0..h_out {
for w_idx in 0..w_out {
let mut sum = T::zero();
for m in 0..k_h {
for n in 0..k_w {
let m = s_h * h_idx + m;
let n = s_w * w_idx + n;
sum += src[src_index + m * stride_h + n * stride_w]
}
}
dst[h_idx * w_out + w_idx] = sum * scale;
}
}
}
}
Ok(dst)
}
}
struct MaxPool2D((usize, usize), (usize, usize));
impl Map1 for MaxPool2D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
let (k_h, k_w) = self.0;
let (s_h, s_w) = self.1;
let (b_sz, c, h, w) = layout.shape().dims4()?;
let stride = layout.stride();
let (stride_h, stride_w) = (stride[2], stride[3]);
let h_out = (h - k_h) / s_h + 1;
let w_out = (w - k_w) / s_w + 1;
let src_index = layout.start_offset();
let mut dst = vec![T::zero(); b_sz * c * h_out * w_out];
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * h_out * w_out..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * h_out * w_out..];
let src_index = src_index + c_idx * stride[1];
for h_idx in 0..h_out {
for w_idx in 0..w_out {
let mut largest =
src[src_index + s_h * h_idx * stride_h + s_w * w_idx * stride_w];
for m in 0..k_h {
for n in 0..k_w {
let m = s_h * h_idx + m;
let n = s_w * w_idx + n;
if largest < src[src_index + m * stride_h + n * stride_w] {
largest = src[src_index + m * stride_h + n * stride_w]
}
}
}
dst[h_idx * w_out + w_idx] = largest;
}
}
}
}
Ok(dst)
}
}
struct UpsampleNearest1D(usize);
impl Map1 for UpsampleNearest1D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: Specialized implementation for the case 2*sz?
let dst_sz = self.0;
let (b_sz, c, src_sz) = layout.shape().dims3()?;
let stride = layout.stride();
let stride_sz = stride[2];
let src_index = layout.start_offset();
let scale_sz = src_sz as f64 / dst_sz as f64;
let mut dst = vec![T::zero(); b_sz * c * dst_sz];
let src_idxs = (0..dst_sz)
.map(|idx| usize::min(src_sz - 1, (idx as f64 * scale_sz) as usize))
.collect::<Vec<_>>();
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * dst_sz..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * dst_sz..];
let src_index = src_index + c_idx * stride[1];
for (idx, src_idx) in src_idxs.iter().enumerate() {
dst[idx] = src[src_index + src_idx * stride_sz]
}
}
}
Ok(dst)
}
}
struct UpsampleNearest2D(usize, usize);
impl Map1 for UpsampleNearest2D {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
// TODO: Specialized implementation for the case 2*h, 2*w?
let (dst_h, dst_w) = (self.0, self.1);
let (b_sz, c, src_h, src_w) = layout.shape().dims4()?;
let stride = layout.stride();
let (stride_h, stride_w) = (stride[2], stride[3]);
let src_index = layout.start_offset();
let scale_h = src_h as f64 / dst_h as f64;
let scale_w = src_w as f64 / dst_w as f64;
let mut dst = vec![T::zero(); b_sz * c * dst_h * dst_w];
let src_h_idxs = (0..dst_h)
.map(|h_idx| usize::min(src_h - 1, (h_idx as f64 * scale_h) as usize))
.collect::<Vec<_>>();
let src_w_idxs = (0..dst_w)
.map(|w_idx| usize::min(src_w - 1, (w_idx as f64 * scale_w) as usize))
.collect::<Vec<_>>();
for b_idx in 0..b_sz {
let dst = &mut dst[b_idx * c * dst_h * dst_w..];
let src_index = src_index + b_idx * stride[0];
for c_idx in 0..c {
let dst = &mut dst[c_idx * dst_h * dst_w..];
let src_index = src_index + c_idx * stride[1];
for (h_idx, src_h_idx) in src_h_idxs.iter().enumerate() {
for (w_idx, src_w_idx) in src_w_idxs.iter().enumerate() {
let src_index = src_index + src_h_idx * stride_h + src_w_idx * stride_w;
dst[h_idx * dst_w + w_idx] = src[src_index]
}
}
}
}
Ok(dst)
}
}
struct Gather<'a, I: IntDType> {
ids: &'a [I],
ids_l: &'a Layout,
dim: usize,
}
impl<'a, I: IntDType> Map1 for Gather<'a, I> {
fn f<T: WithDType>(&self, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
let src = match src_l.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
let dim = self.dim;
let ids_dims = self.ids_l.dims();
let src_dims = src_l.dims();
let dst_len: usize = ids_dims.iter().product();
let dst_left_len: usize = ids_dims[..dim].iter().product();
let dst_dim_len = ids_dims[dim];
let dst_right_len: usize = ids_dims[dim + 1..].iter().product();
let src_dim_len = src_dims[dim];
let src_right_len: usize = src_dims[dim + 1..].iter().product();
let mut dst = vec![T::zero(); dst_len];
for left_i in 0..dst_left_len {
let start_src_idx = left_i * src_right_len * src_dim_len;
let start_dst_idx = left_i * dst_right_len * dst_dim_len;
for i in 0..dst_dim_len {
let start_dst_idx = start_dst_idx + i * dst_right_len;
for right_i in 0..dst_right_len {
let dst_idx = start_dst_idx + right_i;
let index = ids[dst_idx].as_usize();
if index >= src_dim_len {
Err(Error::InvalidIndex {
index,
size: src_dim_len,
op: "gather",
}
.bt())?
}
let src_idx = start_src_idx + index * src_right_len + right_i;
dst[dst_idx] = src[src_idx]
}
}
}
Ok(dst)
}
}
struct IndexSelect<'a, T: IntDType> {
ids: &'a [T],
ids_l: &'a Layout,
dim: usize,
}
impl<'a, I: IntDType> Map1 for IndexSelect<'a, I> {
fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> {
let src = match layout.contiguous_offsets() {
Some((a, b)) => &src[a..b],
None => Err(Error::RequiresContiguous { op: "index-select" }.bt())?,
};
let dim = self.dim;
let n_ids = match self.ids_l.dims() {
[n_ids] => *n_ids,
d => Err(Error::UnexpectedNumberOfDims {
expected: 1,
got: d.len(),
shape: self.ids_l.shape().clone(),
}
.bt())?,
};
let stride_ids = self.ids_l.stride()[0];
let mut dst_dims = layout.dims().to_vec();
let src_dim = dst_dims[dim];
dst_dims[dim] = n_ids;
let dst_len: usize = dst_dims.iter().product();
let left_len: usize = dst_dims[..dim].iter().product();
let right_len: usize = dst_dims[dim + 1..].iter().product();
let mut dst = vec![T::zero(); dst_len];
for left_i in 0..left_len {
let start_src_idx = left_i * right_len * src_dim;
let start_dst_idx = left_i * right_len * n_ids;
for i in 0..n_ids {
let index = self.ids[self.ids_l.start_offset() + stride_ids * i].as_usize();
if index >= src_dim {
Err(Error::InvalidIndex {
index,
size: src_dim,
op: "index-select",
}
.bt())?
}
let start_src_idx = start_src_idx + index * right_len;
let start_dst_idx = start_dst_idx + i * right_len;
dst[start_dst_idx..start_dst_idx + right_len]
.copy_from_slice(&src[start_src_idx..start_src_idx + right_len])
}
}
Ok(dst)
}
}
struct ScatterAdd<'a, I: IntDType> {
ids: &'a [I],
ids_l: &'a Layout,
dim: usize,
}
impl<'a, I: IntDType> Map2 for ScatterAdd<'a, I> {
const OP: &'static str = "scatter-add";
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let dst_len = l1.shape().elem_count();
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "scatter-add" }.bt())?,
Some((o1, o2)) => &src[o1..o2],
};
let dim = self.dim;
let ids_dims = self.ids_l.dims();
let dst_dims = l1.dims();
let dst_dim_len = dst_dims[dim];
let dst_right_len: usize = dst_dims[dim + 1..].iter().product();
let ids_left_len: usize = ids_dims[..dim].iter().product();
let ids_dim_len = ids_dims[dim];
let ids_right_len: usize = ids_dims[dim + 1..].iter().product();
let ids = match self.ids_l.contiguous_offsets() {
Some((a, b)) => &self.ids[a..b],
None => Err(Error::RequiresContiguous { op: "gather" }.bt())?,
};
for left_i in 0..ids_left_len {
let start_ids_idx = left_i * ids_right_len * ids_dim_len;
let start_dst_idx = left_i * dst_right_len * dst_dim_len;
for i in 0..ids_dim_len {
let start_ids_idx = start_ids_idx + i * ids_right_len;
for right_i in 0..dst_right_len {
let ids_idx = start_ids_idx + right_i;
let index = ids[ids_idx].as_usize();
if index >= dst_dim_len {
Err(Error::InvalidIndex {
index,
size: dst_dim_len,
op: "gather",
}
.bt())?
}
let dst_idx = start_dst_idx + index * dst_right_len + right_i;
dst[dst_idx] += src[ids_idx]
}
}
}
Ok(dst)
}
}
struct IndexAdd<'a, I: IntDType> {
ids: &'a [I],
dim: usize,
}
impl<'a, I: IntDType> Map2 for IndexAdd<'a, I> {
const OP: &'static str = "index-add";
// https://pytorch.org/docs/stable/generated/torch.Tensor.index_add_.html#torch.Tensor.index_add_
// v1, l1 -> self
fn f<T: WithDType>(&self, v1: &[T], l1: &Layout, src: &[T], src_l: &Layout) -> Result<Vec<T>> {
let dst_len = l1.shape().elem_count();
let mut dst = vec![T::zero(); dst_len];
copy_strided_src_(v1, &mut dst, 0, l1);
let src = match src_l.contiguous_offsets() {
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
Some((o1, o2)) => &src[o1..o2],
};
let dim = self.dim;
let max_idx = l1.dims()[dim];
let pre_dim = src_l.dims()[..dim].iter().product::<usize>();
let src_dim_sz = src_l.dims()[dim];
let post_dim = src_l.dims()[dim + 1..].iter().product::<usize>();
if dim == 0 {
for (src_idx, dst_idx) in self.ids.iter().enumerate() {
let dst_idx = dst_idx.as_usize();
if dst_idx >= max_idx {
Err(Error::InvalidIndex {
index: dst_idx,
op: "index-add",
size: max_idx,
})?
}
let src_idx = src_idx * post_dim;
let dst_idx = dst_idx * post_dim;
let src = &src[src_idx..src_idx + post_dim];
let dst = &mut dst[dst_idx..dst_idx + post_dim];
for (d, &s) in dst.iter_mut().zip(src.iter()) {
*d += s
}
}
} else {
for (src_idx, dst_idx) in self.ids.iter().enumerate() {
let dst_idx = dst_idx.as_usize();
if dst_idx >= max_idx {
Err(Error::InvalidIndex {
index: dst_idx,
op: "index-add",
size: max_idx,
})?
}
for pre_i in 0..pre_dim {
let pre_src_i = (pre_i * src_dim_sz + src_idx) * post_dim;
let pre_dst_i = (pre_i * max_idx + dst_idx) * post_dim;
let src = &src[pre_src_i..pre_src_i + post_dim];
let dst = &mut dst[pre_dst_i..pre_dst_i + post_dim];
for (d, &s) in dst.iter_mut().zip(src.iter()) {
*d += s
}
}
}
}
Ok(dst)
}
}
fn copy_strided_src_<T: Copy>(src: &[T], dst: &mut [T], dst_offset: usize, src_l: &Layout) {
match src_l.strided_blocks() {
crate::StridedBlocks::SingleBlock { start_offset, len } => {
let to_copy = (dst.len() - dst_offset).min(len);
dst[dst_offset..dst_offset + to_copy]
.copy_from_slice(&src[start_offset..start_offset + to_copy])
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len: 1,
} => {
for (dst_index, src_index) in block_start_index.enumerate() {
let dst_index = dst_index + dst_offset;
if dst_index >= dst.len() {
break;
}
dst[dst_index] = src[src_index]
}
}
crate::StridedBlocks::MultipleBlocks {
block_start_index,
block_len,
} => {
let mut dst_index = dst_offset;
for src_index in block_start_index {
let next_dst_index = dst_index + block_len;
if dst_index >= dst.len() {
break;
}
let to_copy = usize::min(block_len, dst.len() - dst_index);
dst[dst_index..dst_index + to_copy]
.copy_from_slice(&src[src_index..src_index + to_copy]);
dst_index = next_dst_index
}
}
}
}
struct Conv1D<'a>(&'a crate::conv::ParamsConv1D);
impl<'a> Map2 for Conv1D<'a> {
const OP: &'static str = "conv1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let k = &k[k_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
let l_out = p.l_out();
let dst_elems = p.c_out * l_out * p.b_size;
// The output shape is [b_size, c_out, l_out]
let dst = vec![T::zero(); dst_elems];
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
for b_idx in 0..p.b_size {
for src_l in 0..p.l_in {
for src_c_idx in 0..p.c_in {
let inp_idx = b_idx * inp_s0 + src_c_idx * inp_s1 + src_l * inp_s2;
inp_cont[b_idx * p.l_in * p.c_in + src_l * p.c_in + src_c_idx] = inp[inp_idx]
}
}
}
for offset in 0..p.k_size {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let dst_idx = dst_c_idx * l_out;
let k_cont = (0..p.c_in)
.map(|c_in_idx| k[dst_c_idx * k_s0 + c_in_idx * k_s1 + offset * k_s2])
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
let dst_idx = dst_idx + b_idx * p.c_out * l_out;
for dst_l in 0..l_out {
let dst_idx = dst_idx + dst_l;
let src_l = p.stride * dst_l + offset * p.dilation;
if src_l < p.padding || src_l >= p.padding + p.l_in {
continue;
}
let src_l = src_l - p.padding;
let inp_cont = &inp_cont[b_idx * p.l_in * p.c_in + src_l * p.c_in..];
assert!(inp_cont.len() >= p.c_in);
assert!(k_cont.len() >= p.c_in);
let mut d = T::zero();
unsafe { T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in) }
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to parallelise
// the different tasks so no two threads can try to write at the same
// location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
})
}
Ok(dst)
}
}
struct Im2Col1D {
l_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col1D {
fn l_out(&self, l: usize) -> usize {
(l + 2 * self.padding - self.dilation * (self.l_k - 1) - 1) / self.stride + 1
}
}
impl Map1 for Im2Col1D {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let &Self {
l_k,
stride,
dilation,
padding,
} = self;
let (b, c, l) = layout.shape().dims3()?;
let l_out = self.l_out(l);
let src = &vs[layout.start_offset()..];
let mut dst = vec![T::zero(); b * l_out * c * l_k];
let (src_s0, src_s1, src_s2) = {
let s = layout.stride();
(s[0], s[1], s[2])
};
// TODO: provide specialized kernels for the common use cases.
// - l_k = 1
// - padding = 0
// - stride = 1
// - dilation = 1
for b_idx in 0..b {
let src_idx = b_idx * src_s0;
let dst_idx = b_idx * l_out * c * l_k;
for l_idx in 0..l_out {
let dst_idx = dst_idx + l_idx * c * l_k;
for c_idx in 0..c {
let dst_idx = dst_idx + c_idx * l_k;
let src_idx = c_idx * src_s1 + src_idx;
for l_k_idx in 0..l_k {
let src_l = l_idx * stride + l_k_idx * dilation;
if padding != 0 && (src_l < padding || src_l >= l + padding) {
continue;
}
let src_l = src_l - padding;
let src_idx = src_idx + src_l * src_s2;
let dst_idx = dst_idx + l_k_idx;
dst[dst_idx] = src[src_idx]
}
}
}
}
Ok(dst)
}
}
struct Im2Col {
h_k: usize,
w_k: usize,
stride: usize,
dilation: usize,
padding: usize,
}
impl Im2Col {
fn hw_out(&self, h: usize, w: usize) -> (usize, usize) {
let h_out = (h + 2 * self.padding - self.dilation * (self.h_k - 1) - 1) / self.stride + 1;
let w_out = (w + 2 * self.padding - self.dilation * (self.w_k - 1) - 1) / self.stride + 1;
(h_out, w_out)
}
}
impl Map1 for Im2Col {
fn f<T: WithDType>(&self, vs: &[T], layout: &Layout) -> Result<Vec<T>> {
let &Self {
h_k,
w_k,
stride,
dilation,
padding,
} = self;
let (b, c, h, w) = layout.shape().dims4()?;
let (h_out, w_out) = self.hw_out(h, w);
let src = &vs[layout.start_offset()..];
let mut dst = vec![T::zero(); b * h_out * w_out * c * h_k * w_k];
let (src_s0, src_s1, src_s2, src_s3) = {
let s = layout.stride();
(s[0], s[1], s[2], s[3])
};
// TODO: provide specialized kernels for the common use cases.
// - h_k = w_k = 1
// - padding = 0
// - stride = 1
// - dilation = 1
for b_idx in 0..b {
let src_idx = b_idx * src_s0;
let dst_idx = b_idx * h_out * w_out * c * h_k * w_k;
for h_idx in 0..h_out {
let dst_idx = dst_idx + h_idx * w_out * c * h_k * w_k;
for w_idx in 0..w_out {
let dst_idx = dst_idx + w_idx * c * h_k * w_k;
for c_idx in 0..c {
let dst_idx = dst_idx + c_idx * h_k * w_k;
let src_idx = c_idx * src_s1 + src_idx;
for h_k_idx in 0..h_k {
let src_h = h_idx * stride + h_k_idx * dilation;
if padding != 0 && (src_h < padding || src_h >= h + padding) {
continue;
}
let src_h = src_h - padding;
let src_idx = src_idx + src_h * src_s2;
let dst_idx = dst_idx + h_k_idx * w_k;
for w_k_idx in 0..w_k {
let src_w = w_idx * stride + w_k_idx * dilation;
if padding != 0 && (src_w < padding || src_w >= w + padding) {
continue;
}
let src_w = src_w - padding;
let src_idx = src_idx + src_w * src_s3;
let dst_idx = dst_idx + w_k_idx;
dst[dst_idx] = src[src_idx]
}
}
}
}
}
}
Ok(dst)
}
}
struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D);
impl<'a> Map2 for ConvTranspose1D<'a> {
const OP: &'static str = "conv_transpose1d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2) = crate::shape::dims3(inp_l.stride())?;
let (k_s0, k_s1, k_s2) = crate::shape::dims3(k_l.stride())?;
let l_out = p.l_out();
// Output shape: [b_size, c_out, l_out].
let dst_elems = p.c_out * l_out * p.b_size;
let dst = vec![T::zero(); dst_elems];
let dst_s0 = p.c_out * l_out;
let dst_s1 = l_out;
let dst_s2 = 1;
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.l_in];
let cont_s0 = p.l_in * p.c_in;
let cont_s1 = p.c_in;
for b_idx in 0..p.b_size {
for l_idx in 0..p.l_in {
for c_idx in 0..p.c_in {
let src_idx = b_idx * inp_s0 + c_idx * inp_s1 + l_idx * inp_s2;
let dst_idx = b_idx * cont_s0 + l_idx * cont_s1 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
for k_idx in 0..p.k_size {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let k_cont = (0..p.c_in)
.map(|c_in_idx| k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_idx * k_s2])
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
for l_idx in 0..p.l_in {
let out_idx = l_idx * p.stride + k_idx * p.dilation;
if out_idx < p.padding {
continue;
}
let out_idx = out_idx - p.padding;
if out_idx < l_out {
let inp_cont = &inp_cont[b_idx * cont_s0 + l_idx * cont_s1..];
let dst_idx = b_idx * dst_s0 + out_idx * dst_s2 + dst_c_idx * dst_s1;
let mut d = T::zero();
unsafe {
T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to
// parallelise the different tasks so no two threads can try to
// write at the same location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
})
}
Ok(dst)
}
}
struct Conv2D<'a>(&'a crate::conv::ParamsConv2D);
impl<'a> Map2 for Conv2D<'a> {
const OP: &'static str = "conv2d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2, inp_s3) = crate::shape::dims4(inp_l.stride())?;
let k = &k[k_l.start_offset()..];
let (k_s0, k_s1, k_s2, k_s3) = crate::shape::dims4(k_l.stride())?;
let (out_h, out_w) = (p.out_h(), p.out_w());
// Output shape: [b_size, c_out, out_h, out_w].
let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w];
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w];
let cont_s0 = p.i_h * p.i_w * p.c_in;
let cont_s1 = p.i_w * p.c_in;
let cont_s2 = p.c_in;
for b_idx in 0..p.b_size {
for h_idx in 0..p.i_h {
for w_idx in 0..p.i_w {
for c_idx in 0..p.c_in {
let src_idx =
b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3;
let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
}
for offset_h in 0..p.k_h {
for offset_w in 0..p.k_w {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let dst_idx = dst_c_idx * out_w * out_h;
let k_cont = (0..p.c_in)
.map(|c_in_idx| {
k[dst_c_idx * k_s0
+ c_in_idx * k_s1
+ offset_h * k_s2
+ offset_w * k_s3]
})
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
let dst_idx = dst_idx + b_idx * p.c_out * out_h * out_w;
for dst_h in 0..out_h {
let dst_idx = dst_idx + dst_h * out_w;
let src_h = p.stride * dst_h + offset_h * p.dilation;
if src_h < p.padding || src_h >= p.i_h + p.padding {
continue;
}
let src_h = src_h - p.padding;
for dst_w in 0..out_w {
let dst_idx = dst_idx + dst_w;
let src_w = p.stride * dst_w + offset_w * p.dilation;
if src_w < p.padding || src_w >= p.i_w + p.padding {
continue;
}
let src_w = src_w - p.padding;
let inp_cont = &inp_cont
[b_idx * cont_s0 + src_h * cont_s1 + src_w * cont_s2..];
assert!(inp_cont.len() >= p.c_in);
assert!(k_cont.len() >= p.c_in);
let mut d = T::zero();
unsafe {
T::vec_dot(inp_cont.as_ptr(), k_cont.as_ptr(), &mut d, p.c_in)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to parallelise
// the different tasks so no two threads can try to write at the same
// location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
});
}
}
Ok(dst)
}
}
struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D);
impl<'a> Map2 for ConvTranspose2D<'a> {
const OP: &'static str = "conv_transpose2d";
fn f<T: WithDType>(&self, inp: &[T], inp_l: &Layout, k: &[T], k_l: &Layout) -> Result<Vec<T>> {
let p = self.0;
let inp = &inp[inp_l.start_offset()..];
let (inp_s0, inp_s1, inp_s2, inp_s3) = crate::shape::dims4(inp_l.stride())?;
let k = &k[k_l.start_offset()..];
let (k_s0, k_s1, k_s2, k_s3) = crate::shape::dims4(k_l.stride())?;
let (out_h, out_w) = (p.out_h(), p.out_w());
// Output shape: [b_size, c_out, out_h, out_w].
let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w];
let dst_s0 = p.c_out * out_h * out_w;
let dst_s1 = out_h * out_w;
let dst_s2 = out_w;
let dst_s3 = 1;
// TODO: Avoid making this copy if `inp` already has the appropriate layout.
let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w];
let cont_s0 = p.i_h * p.i_w * p.c_in;
let cont_s1 = p.i_w * p.c_in;
let cont_s2 = p.c_in;
for b_idx in 0..p.b_size {
for h_idx in 0..p.i_h {
for w_idx in 0..p.i_w {
for c_idx in 0..p.c_in {
let src_idx =
b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3;
let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx;
inp_cont[dst_idx] = inp[src_idx]
}
}
}
}
for k_y in 0..p.k_h {
for k_x in 0..p.k_w {
(0..p.c_out).into_par_iter().for_each(|dst_c_idx| {
let k_cont = (0..p.c_in)
.map(|c_in_idx| {
k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_y * k_s2 + k_x * k_s3]
})
.collect::<Vec<_>>();
for b_idx in 0..p.b_size {
for inp_y in 0..p.i_h {
for inp_x in 0..p.i_w {
let out_x = inp_x * p.stride + k_x * p.dilation;
let out_y = inp_y * p.stride + k_y * p.dilation;
if out_x < p.padding || out_y < p.padding {
continue;
}
let out_x = out_x - p.padding;
let out_y = out_y - p.padding;
if out_x < out_w && out_y < out_h {
let inp_cont = &inp_cont
[b_idx * cont_s0 + inp_y * cont_s1 + inp_x * cont_s2..];
let dst_idx = b_idx * dst_s0
+ out_y * dst_s2
+ out_x * dst_s3
+ dst_c_idx * dst_s1;
let mut d = T::zero();
unsafe {
T::vec_dot(
inp_cont.as_ptr(),
k_cont.as_ptr(),
&mut d,
p.c_in,
)
}
let dst_p = dst.as_ptr();
// Safety: dst_idx are uniques per dst_c_idx which is used to
// parallelise the different tasks so no two threads can try to
// write at the same location.
unsafe {
let ptr = dst_p.add(dst_idx) as *mut T;
*ptr += d
}
}
}
}
}
})
}
}
Ok(dst)
}
}
struct MatMul((usize, usize, usize, usize));
impl MatMul {
fn striding_error(&self, lhs_l: &Layout, rhs_l: &Layout, msg: &'static str) -> Error {
Error::MatMulUnexpectedStriding(Box::new(crate::error::MatMulUnexpectedStriding {
lhs_l: lhs_l.clone(),
rhs_l: rhs_l.clone(),
bmnk: self.0,
msg,
}))
.bt()
}
}
impl Map2 for MatMul {
const OP: &'static str = "mat_mul";
#[cfg(all(not(feature = "mkl"), not(feature = "accelerate")))]
fn f<T: 'static + WithDType + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
use gemm::{gemm, Parallelism};
match T::DTYPE {
DType::F16 | DType::F32 | DType::F64 => {}
_ => Err(Error::UnsupportedDTypeForOp(T::DTYPE, "matmul").bt())?,
}
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let lhs_cs = lhs_stride[rank - 1];
let lhs_rs = lhs_stride[rank - 2];
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let c_skip: usize = m * n;
let dst_shape: Shape = (m, n).into();
let dst_strides = dst_shape.stride_contiguous();
let dst_rs = dst_strides[0];
let dst_cs = dst_strides[1];
let mut dst = vec![T::zero(); b * m * n];
let num_threads = crate::utils::get_num_threads();
let parallelism = if num_threads > 1 {
Parallelism::Rayon(num_threads)
} else {
Parallelism::None
};
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
gemm(
/* m: usize = */ m,
/* n: usize = */ n,
/* k: usize = */ k,
/* dst: *mut T = */ dst_p.as_mut_ptr(),
/* dst_cs: isize = */ dst_cs as isize,
/* dst_rs: isize = */ dst_rs as isize,
/* read_dst: bool = */ false,
/* lhs: *const T = */ lhs_p.as_ptr(),
/* lhs_cs: isize = */ lhs_cs as isize,
/* lhs_rs: isize = */ lhs_rs as isize,
/* rhs: *const T = */ rhs_p.as_ptr(),
/* rhs_cs: isize = */ rhs_cs as isize,
/* rhs_rs: isize = */ rhs_rs as isize,
/* alpha: T = */ T::zero(),
/* beta: T = */ T::one(),
/* conj_dst: bool = */ false,
/* conj_lhs: bool = */ false,
/* conj_rhs: bool = */ false,
parallelism,
)
}
}
Ok(dst)
}
#[cfg(feature = "accelerate")]
fn f<T: 'static + WithDType + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
(n as i32, b'N')
} else if rhs_m1 == k && rhs_m2 == 1 {
(k as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
};
// The b tensor has dims batching, m, k (lhs)
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
(k as i32, b'N')
} else if lhs_m1 == m && lhs_m2 == 1 {
(m as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
};
let mut dst = vec![T::zero(); b * m * n];
match T::DTYPE {
DType::F16 => {
crate::bail!("the accelerate backend does not support f16 matmul")
}
DType::F32 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f32;
let b = lhs_p.as_ptr() as *const f32;
let c = dst_p.as_mut_ptr() as *mut f32;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::accelerate::sgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
DType::F64 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f64;
let b = lhs_p.as_ptr() as *const f64;
let c = dst_p.as_mut_ptr() as *mut f64;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::accelerate::dgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
dtype => Err(Error::UnsupportedDTypeForOp(dtype, "matmul").bt())?,
}
Ok(dst)
}
#[cfg(feature = "mkl")]
fn f<T: 'static + WithDType + num_traits::Num + Copy>(
&self,
lhs: &[T],
lhs_l: &Layout,
rhs: &[T],
rhs_l: &Layout,
) -> Result<Vec<T>> {
let (b, m, n, k) = self.0;
let lhs = &lhs[lhs_l.start_offset()..];
let rhs = &rhs[rhs_l.start_offset()..];
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
let rhs_m2 = rhs_stride[rhs_stride.len() - 2];
let lhs_m1 = lhs_stride[lhs_stride.len() - 1];
let lhs_m2 = lhs_stride[lhs_stride.len() - 2];
let (lda, transa) = if rhs_m1 == 1 && rhs_m2 == n {
(n as i32, b'N')
} else if rhs_m1 == k && rhs_m2 == 1 {
(k as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?
};
// The b tensor has dims batching, m, k (lhs)
let (ldb, transb) = if lhs_m1 == 1 && lhs_m2 == k {
(k as i32, b'N')
} else if lhs_m1 == m && lhs_m2 == 1 {
(m as i32, b'T')
} else {
Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?
};
let mut dst = vec![T::zero(); b * m * n];
match T::DTYPE {
DType::F16 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f16;
let b = lhs_p.as_ptr() as *const f16;
let c = dst_p.as_mut_ptr() as *mut f16;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::mkl::hgemm(
transa,
transb,
/* m= */ n as i32,
/* n= */ m as i32,
/* k= */ k as i32,
/* alpha= */ f16::ONE,
/* a= */ a,
/* lda= */ lda,
/* b= */ b,
/* ldb= */ ldb,
/* beta= */ f16::ZERO,
/* c= */ c,
/* ldc= */ n as i32,
)
}
}
}
DType::F32 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f32;
let b = lhs_p.as_ptr() as *const f32;
let c = dst_p.as_mut_ptr() as *mut f32;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::mkl::sgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
DType::F64 => {
for step in 0..b {
let lhs_p = &lhs[step * a_skip..];
let rhs_p = &rhs[step * b_skip..];
let dst_p = &mut dst[step * c_skip..];
unsafe {
let a = rhs_p.as_ptr() as *const f64;
let b = lhs_p.as_ptr() as *const f64;
let c = dst_p.as_mut_ptr() as *mut f64;
let a = std::slice::from_raw_parts(a, a_skip);
let b = std::slice::from_raw_parts(b, b_skip);
let c = std::slice::from_raw_parts_mut(c, c_skip);
crate::mkl::dgemm(
transa, transb, /* m= */ n as i32, /* n= */ m as i32,
/* k= */ k as i32, /* alpha= */ 1., /* a= */ a,
/* lda= */ lda, /* b= */ b, /* ldb= */ ldb,
/* beta= */ 0., /* c= */ c, /* ldc= */ n as i32,
)
}
}
}
dtype => Err(Error::UnsupportedDTypeForOp(dtype, "matmul").bt())?,
}
Ok(dst)
}
}
fn elu<T: num_traits::Float>(v: T, alpha: T) -> T {
if v.is_sign_positive() {
v
} else {
(v.exp() - T::one()) * alpha
}
}
impl CpuStorage {
pub fn as_slice<D: WithDType>(&self) -> Result<&[D]> {
D::cpu_storage_as_slice(self)
}
pub fn concat(storages: &[CpuStorage]) -> Result<CpuStorage> {
let storage0 = &storages[0];
let s = match storage0 {
Self::U8(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::U8(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::U8(storages)
}
Self::U32(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::U32(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::U32(storages)
}
Self::I64(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::I64(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::I64(storages)
}
Self::BF16(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::BF16(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::BF16(storages)
}
Self::F16(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::F16(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::F16(storages)
}
Self::F32(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::F32(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::F32(storages)
}
Self::F64(_) => {
let storages = storages
.iter()
.map(|s| match s {
Self::F64(s) => Ok(s.as_slice()),
_ => crate::bail!("dtype mismatch"),
})
.collect::<Result<Vec<_>>>()?
.concat();
Self::F64(storages)
}
};
Ok(s)
}
}
impl BackendStorage for CpuStorage {
type Device = CpuDevice;
fn dtype(&self) -> DType {
match self {
Self::U8(_) => DType::U8,
Self::U32(_) => DType::U32,
Self::I64(_) => DType::I64,
Self::BF16(_) => DType::BF16,
Self::F16(_) => DType::F16,
Self::F32(_) => DType::F32,
Self::F64(_) => DType::F64,
}
}
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
// TODO: find a way around the quadratic number of cases below.
match (self, dtype) {
(Self::U8(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::U32(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::I64(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v as f32));
Ok(Self::BF16(data))
}
(Self::BF16(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::BF16(data))
}
(Self::F16(storage), DType::BF16) => {
let data = unary_map(storage, layout, |v| bf16::from_f32(v.to_f32()));
Ok(Self::BF16(data))
}
(Self::F32(storage), DType::BF16) => {
let data = unary_map(storage, layout, bf16::from_f32);
Ok(Self::BF16(data))
}
(Self::F64(storage), DType::BF16) => {
let data = unary_map(storage, layout, bf16::from_f64);
Ok(Self::BF16(data))
}
(Self::U8(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::U32(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::I64(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v as f32));
Ok(Self::F16(data))
}
(Self::BF16(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| f16::from_f32(v.to_f32()));
Ok(Self::F16(data))
}
(Self::F16(storage), DType::F16) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F16(data))
}
(Self::F32(storage), DType::F16) => {
let data = unary_map(storage, layout, f16::from_f32);
Ok(Self::F16(data))
}
(Self::F64(storage), DType::F16) => {
let data = unary_map(storage, layout, f16::from_f64);
Ok(Self::F16(data))
}
(Self::U8(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::U32(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::I64(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::BF16(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v.to_f32());
Ok(Self::F32(data))
}
(Self::F16(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v.to_f32());
Ok(Self::F32(data))
}
(Self::F32(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F32(data))
}
(Self::F64(storage), DType::F32) => {
let data = unary_map(storage, layout, |v| v as f32);
Ok(Self::F32(data))
}
(Self::U8(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::U8(data))
}
(Self::BF16(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u8);
Ok(Self::U8(data))
}
(Self::F16(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u8);
Ok(Self::U8(data))
}
(Self::F32(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::F64(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::U32(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::I64(storage), DType::U8) => {
let data = unary_map(storage, layout, |v| v as u8);
Ok(Self::U8(data))
}
(Self::U8(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::U32(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::U32(data))
}
(Self::I64(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::BF16(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u32);
Ok(Self::U32(data))
}
(Self::F16(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v.to_f32() as u32);
Ok(Self::U32(data))
}
(Self::F32(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::F64(storage), DType::U32) => {
let data = unary_map(storage, layout, |v| v as u32);
Ok(Self::U32(data))
}
(Self::U8(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::U32(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::I64(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::I64(data))
}
(Self::BF16(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v.to_f32() as i64);
Ok(Self::I64(data))
}
(Self::F16(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v.to_f32() as i64);
Ok(Self::I64(data))
}
(Self::F32(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::F64(storage), DType::I64) => {
let data = unary_map(storage, layout, |v| v as i64);
Ok(Self::I64(data))
}
(Self::U8(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::U32(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::I64(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::BF16(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v.to_f64());
Ok(Self::F64(data))
}
(Self::F16(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v.to_f64());
Ok(Self::F64(data))
}
(Self::F32(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v as f64);
Ok(Self::F64(data))
}
(Self::F64(storage), DType::F64) => {
let data = unary_map(storage, layout, |v| v);
Ok(Self::F64(data))
}
}
}
fn reduce_op(&self, op: ReduceOp, layout: &Layout, reduce_dims: &[usize]) -> Result<Self> {
match op {
ReduceOp::Sum => {
let src_dims = layout.dims();
let mut dst_dims = src_dims.to_vec();
for &dim in reduce_dims.iter() {
dst_dims[dim] = 1;
}
let dst_shape = Shape::from(dst_dims);
let mut reduce_dims = reduce_dims.to_vec();
// Sort the reduce_dims as they have to be processed from left to right when converting the
// indexes.
reduce_dims.sort();
let reduce_dims_and_stride: Vec<_> = reduce_dims
.iter()
.map(|&d| (src_dims[d], src_dims[d + 1..].iter().product::<usize>()))
.collect();
ReduceSum {
dst_shape: &dst_shape,
reduce_dims: &reduce_dims,
reduce_dims_and_stride,
}
.map(self, layout)
}
ReduceOp::Min | ReduceOp::ArgMin | ReduceOp::Max | ReduceOp::ArgMax => {
let reduce_dim_index = match reduce_dims {
[reduce_dim_index] => *reduce_dim_index,
_ => {
let op = match op {
ReduceOp::Min => "min",
ReduceOp::ArgMin => "argmin",
ReduceOp::Max => "max",
ReduceOp::ArgMax => "argmax",
_ => unreachable!(),
};
let dims = reduce_dims.to_vec();
Err(Error::OnlySingleDimension { op, dims })?
}
};
let (use_min, return_index) = match op {
ReduceOp::Min => (true, false),
ReduceOp::ArgMin => (true, true),
ReduceOp::Max => (false, false),
ReduceOp::ArgMax => (false, true),
_ => unreachable!(),
};
ReduceIndex {
reduce_dim_index,
use_min,
return_index,
}
.map(self, layout)
}
}
}
fn cmp(&self, op: CmpOp, rhs: &Self, lhs_l: &Layout, rhs_l: &Layout) -> Result<Self> {
Cmp(op).map(self, lhs_l, rhs, rhs_l)
}
fn affine(&self, layout: &Layout, mul: f64, add: f64) -> Result<Self> {
Affine(mul, add).map(self, layout)
}
fn avg_pool2d(
&self,
layout: &Layout,
kernel_size: (usize, usize),
stride: (usize, usize),
) -> Result<Self> {
AvgPool2D(kernel_size, stride).map(self, layout)
}
fn max_pool2d(
&self,
layout: &Layout,
kernel_size: (usize, usize),
stride: (usize, usize),
) -> Result<Self> {
MaxPool2D(kernel_size, stride).map(self, layout)
}
fn upsample_nearest1d(&self, layout: &Layout, sz: usize) -> Result<Self> {
UpsampleNearest1D(sz).map(self, layout)
}
fn upsample_nearest2d(&self, layout: &Layout, h: usize, w: usize) -> Result<Self> {
UpsampleNearest2D(h, w).map(self, layout)
}
fn powf(&self, layout: &Layout, e: f64) -> Result<Self> {
use num_traits::Float;
// TODO: Have some generic map for functions that apply on num_traits::Float elements.
match self {
Self::BF16(storage) => {
let data = unary_map(storage, layout, |v| v.powf(bf16::from_f64(e)));
Ok(Self::BF16(data))
}
Self::F16(storage) => {
let data = unary_map(storage, layout, |v| v.powf(f16::from_f64(e)));
Ok(Self::F16(data))
}
Self::F32(storage) => {
let data = unary_map(storage, layout, |v| v.powf(e as f32));
Ok(Self::F32(data))
}
Self::F64(storage) => {
let data = unary_map(storage, layout, |v| v.powf(e));
Ok(Self::F64(data))
}
Self::U8(_) => Err(Error::UnsupportedDTypeForOp(DType::U8, "elu").bt()),
Self::U32(_) => Err(Error::UnsupportedDTypeForOp(DType::U32, "elu").bt()),
Self::I64(_) => Err(Error::UnsupportedDTypeForOp(DType::I64, "elu").bt()),
}
}
fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> {
// TODO: Have some generic map for functions that apply on num_traits::Float elements.
match self {
Self::BF16(storage) => {
let data = unary_map(storage, layout, |v| elu(v, bf16::from_f64(alpha)));
Ok(Self::BF16(data))
}
Self::F16(storage) => {
let data = unary_map(storage, layout, |v| elu(v, f16::from_f64(alpha)));
Ok(Self::F16(data))
}
Self::F32(storage) => {
let data = unary_map(storage, layout, |v| elu(v, f32::from_f64(alpha)));
Ok(Self::F32(data))
}
Self::F64(storage) => {
let data = unary_map(storage, layout, |v| elu(v, alpha));
Ok(Self::F64(data))
}
Self::U8(_) => Err(Error::UnsupportedDTypeForOp(DType::U8, "elu").bt()),
Self::U32(_) => Err(Error::UnsupportedDTypeForOp(DType::U32, "elu").bt()),
Self::I64(_) => Err(Error::UnsupportedDTypeForOp(DType::I64, "elu").bt()),
}
}
fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
match self {
Self::BF16(storage) => {
if B::BF16_VEC {
let data = unary_map_vec(storage, layout, B::bf16, B::bf16_vec);
Ok(Self::BF16(data))
} else {
let data = unary_map(storage, layout, B::bf16);
Ok(Self::BF16(data))
}
}
Self::F16(storage) => {
if B::F16_VEC {
let data = unary_map_vec(storage, layout, B::f16, B::f16_vec);
Ok(Self::F16(data))
} else {
let data = unary_map(storage, layout, B::f16);
Ok(Self::F16(data))
}
}
Self::F32(storage) => {
if B::F32_VEC {
let data = unary_map_vec(storage, layout, B::f32, B::f32_vec);
Ok(Self::F32(data))
} else {
let data = unary_map(storage, layout, B::f32);
Ok(Self::F32(data))
}
}
Self::F64(storage) => {
if B::F64_VEC {
let data = unary_map_vec(storage, layout, B::f64, B::f64_vec);
Ok(Self::F64(data))
} else {
let data = unary_map(storage, layout, B::f64);
Ok(Self::F64(data))
}
}
Self::U8(storage) => {
let data = unary_map(storage, layout, B::u8);
Ok(Self::U8(data))
}
Self::U32(storage) => {
let data = unary_map(storage, layout, B::u32);
Ok(Self::U32(data))
}
Self::I64(storage) => {
let data = unary_map(storage, layout, B::i64);
Ok(Self::I64(data))
}
}
}
fn binary_impl<B: BinaryOpT>(
&self,
rhs: &Self,
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
match (self, rhs) {
(Self::BF16(lhs), Self::BF16(rhs)) => {
let data = if B::BF16_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::bf16, B::bf16_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::bf16)
};
Ok(Self::BF16(data))
}
(Self::F16(lhs), Self::F16(rhs)) => {
let data = if B::F16_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f16, B::f16_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::f16)
};
Ok(Self::F16(data))
}
(Self::F32(lhs), Self::F32(rhs)) => {
let data = if B::F32_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f32, B::f32_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::f32)
};
Ok(Self::F32(data))
}
(Self::F64(lhs), Self::F64(rhs)) => {
let data = if B::F64_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::f64, B::f64_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::f64)
};
Ok(Self::F64(data))
}
(Self::U32(lhs), Self::U32(rhs)) => {
let data = if B::U32_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::u32, B::u32_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::u32)
};
Ok(Self::U32(data))
}
(Self::I64(lhs), Self::I64(rhs)) => {
let data = if B::I64_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::i64, B::i64_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::i64)
};
Ok(Self::I64(data))
}
(Self::U8(lhs), Self::U8(rhs)) => {
let data = if B::U8_VEC {
binary_map_vec(lhs_l, rhs_l, lhs, rhs, B::u8, B::u8_vec)
} else {
binary_map(lhs_l, rhs_l, lhs, rhs, B::u8)
};
Ok(Self::U8(data))
}
_ => {
// This should be covered by the dtype check above.
Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: rhs.dtype(),
op: B::NAME,
}
.bt())
}
}
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
match (self, dst) {
(Self::U8(src), Self::U8(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::U32(src), Self::U32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::I64(src), Self::I64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::BF16(src), Self::BF16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F16(src), Self::F16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F32(src), Self::F32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F64(src), Self::F64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(_, dst) => {
// This should be covered by the dtype check above.
return Err(Error::DTypeMismatchBinaryOp {
lhs: self.dtype(),
rhs: dst.dtype(),
op: "copy_strided",
}
.bt());
}
}
Ok(())
}
fn where_cond(
&self,
layout: &Layout,
t: &Self,
t_l: &Layout,
f: &Self,
f_l: &Layout,
) -> Result<Self> {
match self {
Self::U8(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
Self::U32(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
Self::I64(pred) => WCond(pred, layout).map(t, t_l, f, f_l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "where-cond")),
}
}
fn conv1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv1D,
) -> Result<Self> {
if !USE_IM2COL_CONV1D {
return Conv1D(params).map(self, l, kernel, kernel_l);
}
let op = Im2Col1D {
l_k: params.k_size,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
};
let col = op.map(self, l)?;
let b = params.b_size;
let n = params.c_out;
let l_out = params.l_out();
let k = op.l_k * params.c_in;
let m = l_out;
let col_l = Layout::contiguous((b, m, k));
let res = if kernel_l.is_contiguous() {
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, l_out, params.c_out)).transpose(1, 2)?;
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
fn conv_transpose1d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
ConvTranspose1D(params).map(self, l, kernel, kernel_l)
}
fn conv2d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConv2D,
) -> Result<Self> {
if !USE_IM2COL_CONV2D {
return Conv2D(params).map(self, l, kernel, kernel_l);
}
let op = Im2Col {
h_k: params.k_h,
w_k: params.k_w,
padding: params.padding,
stride: params.stride,
dilation: params.dilation,
};
let col = op.map(self, l)?;
let b = params.b_size;
let n = params.c_out;
let (h_out, w_out) = (params.out_h(), params.out_w());
let k = op.h_k * op.w_k * params.c_in;
let m = h_out * w_out;
let col_l = Layout::contiguous((b, m, k));
let res = if kernel_l.is_contiguous() {
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
} else {
// Make the kernel contiguous if not already the case.
let mut kernel_c = self.device().zeros_impl(kernel_l.shape(), kernel.dtype())?;
kernel.copy_strided_src(&mut kernel_c, 0, kernel_l)?;
let kernel_l = Layout::contiguous_with_offset((1, n, k), kernel_l.start_offset())
.transpose(1, 2)?
.broadcast_as((b, k, n))?;
col.matmul(kernel, (b, m, n, k), &col_l, &kernel_l)?
};
let res_l = Layout::contiguous((b, h_out, w_out, params.c_out))
.transpose(1, 2)?
.transpose(1, 3)?;
let mut res_t = self.device().zeros_impl(res_l.shape(), res.dtype())?;
res.copy_strided_src(&mut res_t, 0, &res_l)?;
Ok(res_t)
}
fn conv_transpose2d(
&self,
l: &Layout,
kernel: &Self,
kernel_l: &Layout,
params: &crate::conv::ParamsConvTranspose2D,
) -> Result<Self> {
ConvTranspose2D(params).map(self, l, kernel, kernel_l)
}
fn index_select(&self, ids: &Self, l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
match ids {
Self::U8(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
Self::U32(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
Self::I64(ids) => IndexSelect { ids, ids_l, dim }.map(self, l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-select")),
}
}
fn gather(&self, l: &Layout, ids: &Self, ids_l: &Layout, dim: usize) -> Result<Self> {
match ids {
Self::U8(ids) => Gather { ids, ids_l, dim }.map(self, l),
Self::U32(ids) => Gather { ids, ids_l, dim }.map(self, l),
Self::I64(ids) => Gather { ids, ids_l, dim }.map(self, l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "gather")),
}
}
fn scatter_add(
&self,
l: &Layout,
ids: &Self,
ids_l: &Layout,
src: &Self,
src_l: &Layout,
dim: usize,
) -> Result<Self> {
match ids {
Self::U8(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
Self::U32(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
Self::I64(ids) => ScatterAdd { ids, ids_l, dim }.map(self, l, src, src_l),
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "scatter-add")),
}
}
fn index_add(
&self,
l: &Layout,
ids: &Self,
ids_l: &Layout,
src: &Self,
src_l: &Layout,
dim: usize,
) -> Result<Self> {
match ids {
Self::U8(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::U32(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
Self::I64(ids) => {
let ids = match ids_l.contiguous_offsets() {
Some((a, b)) => &ids[a..b],
None => Err(Error::RequiresContiguous { op: "index-add" }.bt())?,
};
IndexAdd { ids, dim }.map(self, l, src, src_l)
}
_ => Err(Error::UnsupportedDTypeForOp(self.dtype(), "index-add").bt()),
}
}
fn matmul(
&self,
rhs: &Self,
bmnk: (usize, usize, usize, usize),
lhs_l: &Layout,
rhs_l: &Layout,
) -> Result<Self> {
MatMul(bmnk).map(self, lhs_l, rhs, rhs_l)
}
fn device(&self) -> &Self::Device {
&CpuDevice
}
fn try_clone(&self, _: &Layout) -> Result<Self> {
Ok(self.clone())
}
fn to_cpu_storage(&self) -> Result<CpuStorage> {
Ok(self.clone())
}
}
impl BackendDevice for CpuDevice {
type Storage = CpuStorage;
fn location(&self) -> crate::DeviceLocation {
crate::DeviceLocation::Cpu
}
fn same_device(&self, _: &Self) -> bool {
true
}
fn storage_from_cpu_storage(&self, s: &CpuStorage) -> Result<Self::Storage> {
Ok(s.clone())
}
fn new(_: usize) -> Result<Self> {
Ok(Self)
}
fn set_seed(&self, _seed: u64) -> Result<()> {
crate::bail!("cannot seed the CPU rng with set_seed")
}
fn rand_uniform(&self, shape: &Shape, dtype: DType, min: f64, max: f64) -> Result<CpuStorage> {
use rand::prelude::*;
let elem_count = shape.elem_count();
let mut rng = rand::thread_rng();
match dtype {
DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_uniform").bt())
}
DType::BF16 => {
let mut data = Vec::with_capacity(elem_count);
let uniform =
rand::distributions::Uniform::new(bf16::from_f64(min), bf16::from_f64(max));
for _i in 0..elem_count {
data.push(rng.sample::<bf16, _>(uniform))
}
Ok(CpuStorage::BF16(data))
}
DType::F16 => {
let mut data = Vec::with_capacity(elem_count);
let uniform =
rand::distributions::Uniform::new(f16::from_f64(min), f16::from_f64(max));
for _i in 0..elem_count {
data.push(rng.sample::<f16, _>(uniform))
}
Ok(CpuStorage::F16(data))
}
DType::F32 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distributions::Uniform::new(min as f32, max as f32);
for _i in 0..elem_count {
data.push(rng.sample::<f32, _>(uniform))
}
Ok(CpuStorage::F32(data))
}
DType::F64 => {
let mut data = Vec::with_capacity(elem_count);
let uniform = rand::distributions::Uniform::new(min, max);
for _i in 0..elem_count {
data.push(rng.sample::<f64, _>(uniform))
}
Ok(CpuStorage::F64(data))
}
}
}
fn rand_normal(&self, shape: &Shape, dtype: DType, mean: f64, std: f64) -> Result<CpuStorage> {
use rand::prelude::*;
let elem_count = shape.elem_count();
let mut rng = rand::thread_rng();
match dtype {
DType::U8 | DType::U32 | DType::I64 => {
Err(Error::UnsupportedDTypeForOp(dtype, "rand_normal").bt())
}
DType::BF16 => {
let mut data = Vec::with_capacity(elem_count);
let normal = rand_distr::Normal::new(bf16::from_f64(mean), bf16::from_f64(std))
.map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::BF16(data))
}
DType::F16 => {
let mut data = Vec::with_capacity(elem_count);
let normal = rand_distr::Normal::new(f16::from_f64(mean), f16::from_f64(std))
.map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::F16(data))
}
DType::F32 => {
let mut data = Vec::with_capacity(elem_count);
let normal =
rand_distr::Normal::new(mean as f32, std as f32).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::F32(data))
}
DType::F64 => {
let mut data = Vec::with_capacity(elem_count);
let normal = rand_distr::Normal::new(mean, std).map_err(Error::wrap)?;
for _i in 0..elem_count {
data.push(normal.sample(&mut rng))
}
Ok(CpuStorage::F64(data))
}
}
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
let storage = match dtype {
DType::U8 => CpuStorage::U8(vec![1u8; elem_count]),
DType::U32 => CpuStorage::U32(vec![1u32; elem_count]),
DType::I64 => CpuStorage::I64(vec![1i64; elem_count]),
DType::BF16 => CpuStorage::BF16(vec![bf16::ONE; elem_count]),
DType::F16 => CpuStorage::F16(vec![f16::ONE; elem_count]),
DType::F32 => CpuStorage::F32(vec![1f32; elem_count]),
DType::F64 => CpuStorage::F64(vec![1f64; elem_count]),
};
Ok(storage)
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<CpuStorage> {
let elem_count = shape.elem_count();
let storage = match dtype {
DType::U8 => CpuStorage::U8(vec![0u8; elem_count]),
DType::U32 => CpuStorage::U32(vec![0u32; elem_count]),
DType::I64 => CpuStorage::I64(vec![0i64; elem_count]),
DType::BF16 => CpuStorage::BF16(vec![bf16::ZERO; elem_count]),
DType::F16 => CpuStorage::F16(vec![f16::ZERO; elem_count]),
DType::F32 => CpuStorage::F32(vec![0f32; elem_count]),
DType::F64 => CpuStorage::F64(vec![0f64; elem_count]),
};
Ok(storage)
}
}
#[macro_export]
macro_rules! map_dtype {
($name:expr, $storage:ident, $fn:expr, ($($dtypes:ident),+)) => {
match $storage {
$(CpuStorage::$dtypes(__e) => CpuStorage::$dtypes($fn(__e)),)*
s => Err(Error::UnsupportedDTypeForOp(s.dtype(), $name).bt())?,
}
};
}
| candle/candle-core/src/cpu_backend.rs/0 | {
"file_path": "candle/candle-core/src/cpu_backend.rs",
"repo_id": "candle",
"token_count": 68866
} | 12 |
// Just enough pickle support to be able to read PyTorch checkpoints.
// This hardcodes objects that are required for tensor reading, we may want to make this a bit more
// composable/tensor agnostic at some point.
use crate::{DType, Error as E, Layout, Result, Tensor};
use byteorder::{LittleEndian, ReadBytesExt};
use std::collections::HashMap;
use std::io::BufRead;
const VERBOSE: bool = false;
// https://docs.juliahub.com/Pickle/LAUNc/0.1.0/opcode/
#[repr(u8)]
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum OpCode {
// https://github.com/python/cpython/blob/ed25f097160b5cbb0c9a1f9a746d2f1bbc96515a/Lib/pickletools.py#L2123
Proto = 0x80,
Global = b'c',
BinPut = b'q',
LongBinPut = b'r',
EmptyTuple = b')',
Reduce = b'R',
Mark = b'(',
BinUnicode = b'X',
BinInt = b'J',
Tuple = b't',
BinPersId = b'Q',
BinInt1 = b'K',
BinInt2 = b'M',
Tuple1 = 0x85,
Tuple2 = 0x86,
Tuple3 = 0x87,
NewTrue = 0x88,
NewFalse = 0x89,
None = b'N',
BinGet = b'h',
LongBinGet = b'j',
SetItem = b's',
SetItems = b'u',
EmptyDict = b'}',
Dict = b'd',
Build = b'b',
Stop = b'.',
NewObj = 0x81,
EmptyList = b']',
BinFloat = b'g',
Append = b'a',
Appends = b'e',
}
// Avoid using FromPrimitive so as not to drag another dependency.
impl TryFrom<u8> for OpCode {
type Error = u8;
fn try_from(value: u8) -> std::result::Result<Self, Self::Error> {
match value {
0x80 => Ok(Self::Proto),
b'c' => Ok(Self::Global),
b'q' => Ok(Self::BinPut),
b'r' => Ok(Self::LongBinPut),
b')' => Ok(Self::EmptyTuple),
b'R' => Ok(Self::Reduce),
b'(' => Ok(Self::Mark),
b'X' => Ok(Self::BinUnicode),
b'J' => Ok(Self::BinInt),
b't' => Ok(Self::Tuple),
b'Q' => Ok(Self::BinPersId),
b'K' => Ok(Self::BinInt1),
b'M' => Ok(Self::BinInt2),
b'N' => Ok(Self::None),
0x85 => Ok(Self::Tuple1),
0x86 => Ok(Self::Tuple2),
0x87 => Ok(Self::Tuple3),
0x88 => Ok(Self::NewTrue),
0x89 => Ok(Self::NewFalse),
b'h' => Ok(Self::BinGet),
b'j' => Ok(Self::LongBinGet),
b's' => Ok(Self::SetItem),
b'u' => Ok(Self::SetItems),
b'}' => Ok(Self::EmptyDict),
b'd' => Ok(Self::EmptyDict),
b'b' => Ok(Self::Build),
b'.' => Ok(Self::Stop),
0x81 => Ok(Self::NewObj),
b']' => Ok(Self::EmptyList),
b'G' => Ok(Self::BinFloat),
b'a' => Ok(Self::Append),
b'e' => Ok(Self::Appends),
value => Err(value),
}
}
}
fn read_to_newline<R: BufRead>(r: &mut R) -> Result<Vec<u8>> {
let mut data: Vec<u8> = Vec::with_capacity(32);
r.read_until(b'\n', &mut data)?;
data.pop();
if data.last() == Some(&b'\r') {
data.pop();
}
Ok(data)
}
#[derive(Debug, Clone, PartialEq)]
pub enum Object {
Class {
module_name: String,
class_name: String,
},
Int(i32),
Float(f64),
Unicode(String),
Bool(bool),
None,
Tuple(Vec<Object>),
List(Vec<Object>),
Mark,
Dict(Vec<(Object, Object)>),
Reduce {
callable: Box<Object>,
args: Box<Object>,
},
Build {
callable: Box<Object>,
args: Box<Object>,
},
PersistentLoad(Box<Object>),
}
type OResult<T> = std::result::Result<T, Object>;
impl Object {
pub fn unicode(self) -> OResult<String> {
match self {
Self::Unicode(t) => Ok(t),
_ => Err(self),
}
}
pub fn reduce(self) -> OResult<(Self, Self)> {
match self {
Self::Reduce { callable, args } => Ok((*callable, *args)),
_ => Err(self),
}
}
pub fn none(self) -> OResult<()> {
match self {
Self::None => Ok(()),
_ => Err(self),
}
}
pub fn persistent_load(self) -> OResult<Self> {
match self {
Self::PersistentLoad(t) => Ok(*t),
_ => Err(self),
}
}
pub fn bool(self) -> OResult<bool> {
match self {
Self::Bool(t) => Ok(t),
_ => Err(self),
}
}
pub fn int(self) -> OResult<i32> {
match self {
Self::Int(t) => Ok(t),
_ => Err(self),
}
}
pub fn tuple(self) -> OResult<Vec<Self>> {
match self {
Self::Tuple(t) => Ok(t),
_ => Err(self),
}
}
pub fn dict(self) -> OResult<Vec<(Self, Self)>> {
match self {
Self::Dict(t) => Ok(t),
_ => Err(self),
}
}
pub fn class(self) -> OResult<(String, String)> {
match self {
Self::Class {
module_name,
class_name,
} => Ok((module_name, class_name)),
_ => Err(self),
}
}
pub fn into_tensor_info(
self,
name: Self,
dir_name: &std::path::Path,
) -> Result<Option<TensorInfo>> {
let name = match name.unicode() {
Ok(name) => name,
Err(_) => return Ok(None),
};
let (callable, args) = match self.reduce() {
Ok(callable_args) => callable_args,
_ => return Ok(None),
};
let (callable, args) = match callable {
Object::Class {
module_name,
class_name,
} if module_name == "torch._tensor" && class_name == "_rebuild_from_type_v2" => {
let mut args = args.tuple()?;
let callable = args.remove(0);
let args = args.remove(1);
(callable, args)
}
_ => (callable, args),
};
match callable {
Object::Class {
module_name,
class_name,
} if module_name == "torch._utils" && class_name == "_rebuild_tensor_v2" => {}
_ => return Ok(None),
};
let (layout, dtype, file_path, storage_size) = rebuild_args(args)?;
let mut path = dir_name.to_path_buf();
path.push(file_path);
Ok(Some(TensorInfo {
name,
dtype,
layout,
path: path.to_string_lossy().into_owned(),
storage_size,
}))
}
}
impl TryFrom<Object> for String {
type Error = Object;
fn try_from(value: Object) -> std::result::Result<Self, Self::Error> {
match value {
Object::Unicode(s) => Ok(s),
other => Err(other),
}
}
}
impl TryFrom<Object> for usize {
type Error = Object;
fn try_from(value: Object) -> std::result::Result<Self, Self::Error> {
match value {
Object::Int(s) if s >= 0 => Ok(s as usize),
other => Err(other),
}
}
}
impl<T: TryFrom<Object, Error = Object>> TryFrom<Object> for Vec<T> {
type Error = Object;
fn try_from(value: Object) -> std::result::Result<Self, Self::Error> {
match value {
Object::Tuple(values) => {
// This does not return the appropriate value in the error case but instead return
// the object related to the first error.
values
.into_iter()
.map(|v| T::try_from(v))
.collect::<std::result::Result<Vec<T>, Self::Error>>()
}
other => Err(other),
}
}
}
#[derive(Debug)]
pub struct Stack {
stack: Vec<Object>,
memo: HashMap<u32, Object>,
}
impl Stack {
pub fn empty() -> Self {
Self {
stack: Vec::with_capacity(512),
memo: HashMap::new(),
}
}
pub fn stack(&self) -> &[Object] {
self.stack.as_slice()
}
pub fn read_loop<R: BufRead>(&mut self, r: &mut R) -> Result<()> {
loop {
if self.read(r)? {
break;
}
}
Ok(())
}
pub fn finalize(mut self) -> Result<Object> {
self.pop()
}
fn push(&mut self, obj: Object) {
self.stack.push(obj)
}
fn pop(&mut self) -> Result<Object> {
match self.stack.pop() {
None => crate::bail!("unexpected empty stack"),
Some(obj) => Ok(obj),
}
}
// https://docs.juliahub.com/Pickle/LAUNc/0.1.0/opcode/#Pickle.OpCodes.BUILD
fn build(&mut self) -> Result<()> {
let args = self.pop()?;
let obj = self.pop()?;
let obj = match (obj, args) {
(Object::Dict(mut obj), Object::Dict(mut args)) => {
obj.append(&mut args);
Object::Dict(obj)
}
(obj, args) => Object::Build {
callable: Box::new(obj),
args: Box::new(args),
},
};
self.push(obj);
Ok(())
}
fn reduce(&mut self) -> Result<()> {
let args = self.pop()?;
let callable = self.pop()?;
#[allow(clippy::single_match)]
let reduced = match &callable {
Object::Class {
module_name,
class_name,
} => {
if module_name == "collections" && class_name == "OrderedDict" {
// TODO: have a separate ordered dict.
Some(Object::Dict(vec![]))
} else {
None
}
}
_ => None,
};
let reduced = reduced.unwrap_or_else(|| Object::Reduce {
callable: Box::new(callable),
args: Box::new(args),
});
self.push(reduced);
Ok(())
}
fn last(&mut self) -> Result<&mut Object> {
match self.stack.last_mut() {
None => crate::bail!("unexpected empty stack"),
Some(obj) => Ok(obj),
}
}
fn memo_get(&self, id: u32) -> Result<Object> {
match self.memo.get(&id) {
None => crate::bail!("missing object in memo {id}"),
Some(obj) => {
// Maybe we should use refcounting rather than doing potential large clones here.
Ok(obj.clone())
}
}
}
fn memo_put(&mut self, id: u32) -> Result<()> {
let obj = self.last()?.clone();
self.memo.insert(id, obj);
Ok(())
}
fn persistent_load(&self, id: Object) -> Result<Object> {
Ok(Object::PersistentLoad(Box::new(id)))
}
fn new_obj(&self, class: Object, args: Object) -> Result<Object> {
Ok(Object::Reduce {
callable: Box::new(class),
args: Box::new(args),
})
}
fn pop_to_marker(&mut self) -> Result<Vec<Object>> {
let mut mark_idx = None;
for (idx, obj) in self.stack.iter().enumerate().rev() {
if obj == &Object::Mark {
mark_idx = Some(idx);
break;
}
}
match mark_idx {
Some(mark_idx) => {
let objs = self.stack.split_off(mark_idx + 1);
self.stack.pop();
Ok(objs)
}
None => {
crate::bail!("marker object not found")
}
}
}
pub fn read<R: BufRead>(&mut self, r: &mut R) -> Result<bool> {
let op_code = match OpCode::try_from(r.read_u8()?) {
Ok(op_code) => op_code,
Err(op_code) => {
crate::bail!("unknown op-code {op_code}")
}
};
// println!("op: {op_code:?}");
// println!("{:?}", self.stack);
match op_code {
OpCode::Proto => {
let version = r.read_u8()?;
if VERBOSE {
println!("proto {version}");
}
}
OpCode::Global => {
let module_name = read_to_newline(r)?;
let class_name = read_to_newline(r)?;
let module_name = String::from_utf8_lossy(&module_name).to_string();
let class_name = String::from_utf8_lossy(&class_name).to_string();
self.push(Object::Class {
module_name,
class_name,
})
}
OpCode::BinInt1 => {
let arg = r.read_u8()?;
self.push(Object::Int(arg as i32))
}
OpCode::BinInt2 => {
let arg = r.read_u16::<LittleEndian>()?;
self.push(Object::Int(arg as i32))
}
OpCode::BinInt => {
let arg = r.read_i32::<LittleEndian>()?;
self.push(Object::Int(arg))
}
OpCode::BinFloat => {
let arg = r.read_f64::<LittleEndian>()?;
self.push(Object::Float(arg))
}
OpCode::BinUnicode => {
let len = r.read_u32::<LittleEndian>()?;
let mut data = vec![0u8; len as usize];
r.read_exact(&mut data)?;
let data = String::from_utf8(data).map_err(E::wrap)?;
self.push(Object::Unicode(data))
}
OpCode::BinPersId => {
let id = self.pop()?;
let obj = self.persistent_load(id)?;
self.push(obj)
}
OpCode::Tuple => {
let objs = self.pop_to_marker()?;
self.push(Object::Tuple(objs))
}
OpCode::Tuple1 => {
let obj = self.pop()?;
self.push(Object::Tuple(vec![obj]))
}
OpCode::Tuple2 => {
let obj2 = self.pop()?;
let obj1 = self.pop()?;
self.push(Object::Tuple(vec![obj1, obj2]))
}
OpCode::Tuple3 => {
let obj3 = self.pop()?;
let obj2 = self.pop()?;
let obj1 = self.pop()?;
self.push(Object::Tuple(vec![obj1, obj2, obj3]))
}
OpCode::NewTrue => self.push(Object::Bool(true)),
OpCode::NewFalse => self.push(Object::Bool(false)),
OpCode::Append => {
let value = self.pop()?;
let pylist = self.last()?;
if let Object::List(d) = pylist {
d.push(value)
} else {
crate::bail!("expected a list, got {pylist:?}")
}
}
OpCode::Appends => {
let objs = self.pop_to_marker()?;
let pylist = self.last()?;
if let Object::List(d) = pylist {
d.extend(objs)
} else {
crate::bail!("expected a list, got {pylist:?}")
}
}
OpCode::SetItem => {
let value = self.pop()?;
let key = self.pop()?;
let pydict = self.last()?;
if let Object::Dict(d) = pydict {
d.push((key, value))
} else {
crate::bail!("expected a dict, got {pydict:?}")
}
}
OpCode::SetItems => {
let mut objs = self.pop_to_marker()?;
let pydict = self.last()?;
if let Object::Dict(d) = pydict {
if objs.len() % 2 != 0 {
crate::bail!("setitems: not an even number of objects")
}
while let Some(value) = objs.pop() {
let key = objs.pop().unwrap();
d.push((key, value))
}
} else {
crate::bail!("expected a dict, got {pydict:?}")
}
}
OpCode::None => self.push(Object::None),
OpCode::Stop => {
return Ok(true);
}
OpCode::Build => self.build()?,
OpCode::EmptyDict => self.push(Object::Dict(vec![])),
OpCode::Dict => {
let mut objs = self.pop_to_marker()?;
let mut pydict = vec![];
if objs.len() % 2 != 0 {
crate::bail!("setitems: not an even number of objects")
}
while let Some(value) = objs.pop() {
let key = objs.pop().unwrap();
pydict.push((key, value))
}
self.push(Object::Dict(pydict))
}
OpCode::Mark => self.push(Object::Mark),
OpCode::Reduce => self.reduce()?,
OpCode::EmptyTuple => self.push(Object::Tuple(vec![])),
OpCode::EmptyList => self.push(Object::List(vec![])),
OpCode::BinGet => {
let arg = r.read_u8()?;
let obj = self.memo_get(arg as u32)?;
self.push(obj)
}
OpCode::LongBinGet => {
let arg = r.read_u32::<LittleEndian>()?;
let obj = self.memo_get(arg)?;
self.push(obj)
}
OpCode::BinPut => {
let arg = r.read_u8()?;
self.memo_put(arg as u32)?
}
OpCode::LongBinPut => {
let arg = r.read_u32::<LittleEndian>()?;
self.memo_put(arg)?
}
OpCode::NewObj => {
let args = self.pop()?;
let class = self.pop()?;
let obj = self.new_obj(class, args)?;
self.push(obj)
}
}
Ok(false)
}
}
impl From<Object> for E {
fn from(value: Object) -> Self {
E::Msg(format!("conversion error on {value:?}"))
}
}
// https://github.com/pytorch/pytorch/blob/4eac43d046ded0f0a5a5fa8db03eb40f45bf656e/torch/_utils.py#L198
// Arguments: storage, storage_offset, size, stride, requires_grad, backward_hooks
fn rebuild_args(args: Object) -> Result<(Layout, DType, String, usize)> {
let mut args = args.tuple()?;
let stride = Vec::<usize>::try_from(args.remove(3))?;
let size = Vec::<usize>::try_from(args.remove(2))?;
let offset = args.remove(1).int()? as usize;
let storage = args.remove(0).persistent_load()?;
let mut storage = storage.tuple()?;
let storage_size = storage.remove(4).int()? as usize;
let path = storage.remove(2).unicode()?;
let (_module_name, class_name) = storage.remove(1).class()?;
let dtype = match class_name.as_str() {
"FloatStorage" => DType::F32,
"DoubleStorage" => DType::F64,
"HalfStorage" => DType::F16,
"BFloat16Storage" => DType::BF16,
"ByteStorage" => DType::U8,
"LongStorage" => DType::I64,
other => {
crate::bail!("unsupported storage type {other}")
}
};
let layout = Layout::new(crate::Shape::from(size), stride, offset);
Ok((layout, dtype, path, storage_size))
}
#[derive(Debug, Clone)]
pub struct TensorInfo {
pub name: String,
pub dtype: DType,
pub layout: Layout,
pub path: String,
pub storage_size: usize,
}
pub fn read_pth_tensor_info<P: AsRef<std::path::Path>>(
file: P,
verbose: bool,
) -> Result<Vec<TensorInfo>> {
let file = std::fs::File::open(file)?;
let zip_reader = std::io::BufReader::new(file);
let mut zip = zip::ZipArchive::new(zip_reader)?;
let zip_file_names = zip
.file_names()
.map(|f| f.to_string())
.collect::<Vec<String>>();
let mut tensor_infos = vec![];
for file_name in zip_file_names.iter() {
if !file_name.ends_with("data.pkl") {
continue;
}
let dir_name = std::path::PathBuf::from(file_name.strip_suffix(".pkl").unwrap());
let reader = zip.by_name(file_name)?;
let mut reader = std::io::BufReader::new(reader);
let mut stack = Stack::empty();
stack.read_loop(&mut reader)?;
let obj = stack.finalize()?;
if VERBOSE || verbose {
println!("{obj:?}");
}
let obj = match obj {
Object::Build { callable, args } => match *callable {
Object::Reduce { callable, args: _ } => match *callable {
Object::Class {
module_name,
class_name,
} if module_name == "__torch__" && class_name == "Module" => *args,
_ => continue,
},
_ => continue,
},
obj => obj,
};
if let Object::Dict(key_values) = obj {
for (name, value) in key_values.into_iter() {
match value.into_tensor_info(name, &dir_name) {
Ok(Some(tensor_info)) => tensor_infos.push(tensor_info),
Ok(None) => {}
Err(err) => eprintln!("skipping: {err:?}"),
}
}
}
}
Ok(tensor_infos)
}
/// Lazy tensor loader.
pub struct PthTensors {
tensor_infos: HashMap<String, TensorInfo>,
path: std::path::PathBuf,
// We do not store a zip reader as it needs mutable access to extract data. Instead we
// re-create a zip reader for each tensor.
}
impl PthTensors {
pub fn new<P: AsRef<std::path::Path>>(path: P) -> Result<Self> {
let tensor_infos = read_pth_tensor_info(path.as_ref(), false)?;
let tensor_infos = tensor_infos
.into_iter()
.map(|ti| (ti.name.to_string(), ti))
.collect();
let path = path.as_ref().to_owned();
Ok(Self { tensor_infos, path })
}
pub fn tensor_infos(&self) -> &HashMap<String, TensorInfo> {
&self.tensor_infos
}
pub fn get(&self, name: &str) -> Result<Option<Tensor>> {
use std::io::Read;
let tensor_info = match self.tensor_infos.get(name) {
None => return Ok(None),
Some(tensor_info) => tensor_info,
};
// We hope that the file has not changed since first reading it.
let zip_reader = std::io::BufReader::new(std::fs::File::open(&self.path)?);
let mut zip = zip::ZipArchive::new(zip_reader)?;
let mut reader = zip.by_name(&tensor_info.path)?;
// Reading the data is a bit tricky as it can be strided, for now only support the basic
// case.
if !tensor_info.layout.is_contiguous() {
crate::bail!(
"cannot retrieve non-contiguous tensors {:?}",
tensor_info.layout
)
}
let start_offset = tensor_info.layout.start_offset();
if start_offset > 0 {
std::io::copy(
&mut reader.by_ref().take(start_offset as u64),
&mut std::io::sink(),
)?;
}
let tensor = Tensor::from_reader(
tensor_info.layout.shape().clone(),
tensor_info.dtype,
&mut reader,
)?;
Ok(Some(tensor))
}
}
/// Read all the tensors from a PyTorch pth file.
pub fn read_all<P: AsRef<std::path::Path>>(path: P) -> Result<Vec<(String, Tensor)>> {
let pth = PthTensors::new(path)?;
let tensor_names = pth.tensor_infos.keys();
let mut tensors = Vec::with_capacity(tensor_names.len());
for name in tensor_names {
if let Some(tensor) = pth.get(name)? {
tensors.push((name.to_string(), tensor))
}
}
Ok(tensors)
}
| candle/candle-core/src/pickle.rs/0 | {
"file_path": "candle/candle-core/src/pickle.rs",
"repo_id": "candle",
"token_count": 12933
} | 13 |
use crate::{Result, Tensor};
#[macro_export]
macro_rules! test_device {
// TODO: Switch to generating the two last arguments automatically once concat_idents is
// stable. https://github.com/rust-lang/rust/issues/29599
($fn_name: ident, $test_cpu: ident, $test_cuda: ident, $test_metal: ident) => {
#[test]
fn $test_cpu() -> Result<()> {
$fn_name(&Device::Cpu)
}
#[cfg(feature = "cuda")]
#[test]
fn $test_cuda() -> Result<()> {
$fn_name(&Device::new_cuda(0)?)
}
#[cfg(feature = "metal")]
#[test]
fn $test_metal() -> Result<()> {
$fn_name(&Device::new_metal(0)?)
}
};
}
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
let b = 10f32.powi(digits);
let t = t.to_vec0::<f32>()?;
Ok(f32::round(t * b) / b)
}
pub fn to_vec1_round(t: &Tensor, digits: i32) -> Result<Vec<f32>> {
let b = 10f32.powi(digits);
let t = t.to_vec1::<f32>()?;
let t = t.iter().map(|t| f32::round(t * b) / b).collect();
Ok(t)
}
pub fn to_vec2_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<f32>>> {
let b = 10f32.powi(digits);
let t = t.to_vec2::<f32>()?;
let t = t
.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect();
Ok(t)
}
pub fn to_vec3_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
let b = 10f32.powi(digits);
let t = t.to_vec3::<f32>()?;
let t = t
.iter()
.map(|t| {
t.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect()
})
.collect();
Ok(t)
}
| candle/candle-core/src/test_utils.rs/0 | {
"file_path": "candle/candle-core/src/test_utils.rs",
"repo_id": "candle",
"token_count": 923
} | 14 |
[package]
name = "candle-datasets"
version.workspace = true
edition.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
license.workspace = true
readme = "README.md"
[dependencies]
byteorder = { workspace = true }
candle = { workspace = true }
candle-nn = { workspace = true }
hf-hub = { workspace = true}
intel-mkl-src = { workspace = true, optional = true }
memmap2 = { workspace = true }
tokenizers = { workspace = true, features = ["onig"] }
rand = { workspace = true }
thiserror = { workspace = true }
parquet = { workspace = true}
image = { workspace = true }
| candle/candle-datasets/Cargo.toml/0 | {
"file_path": "candle/candle-datasets/Cargo.toml",
"repo_id": "candle",
"token_count": 201
} | 15 |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::bigcode::{Config, GPTBigCode};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: GPTBigCode,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
}
impl TextGeneration {
fn new(
model: GPTBigCode,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
print!("{prompt}");
std::io::stdout().flush()?;
let mut tokens = self
.tokenizer
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut new_tokens = vec![];
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let (context_size, past_len) = if self.model.config().use_cache && index > 0 {
(1, tokens.len().saturating_sub(1))
} else {
(tokens.len(), 0)
};
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, past_len)?;
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
new_tokens.push(next_token);
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
"{sample_len} tokens generated ({:.3} token/s)",
sample_len as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, default_value_t = 100)]
sample_len: usize,
#[arg(long, default_value = "bigcode/starcoderbase-1b")]
model_id: String,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
weight_file: Option<String>,
}
fn main() -> Result<()> {
let args = Args::parse();
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = repo.get("tokenizer.json")?;
let filenames = match args.weight_file {
Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
None => ["model.safetensors"]
.iter()
.map(|f| repo.get(f))
.collect::<std::result::Result<Vec<_>, _>>()?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let config = Config::starcoder_1b();
let model = GPTBigCode::load(vb, config)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}
| candle/candle-examples/examples/bigcode/main.rs/0 | {
"file_path": "candle/candle-examples/examples/bigcode/main.rs",
"repo_id": "candle",
"token_count": 2134
} | 16 |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle_transformers::models::jina_bert::{BertModel, Config};
use anyhow::Error as E;
use candle::{DType, Module, Tensor};
use candle_nn::VarBuilder;
use clap::Parser;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// When set, compute embeddings for this prompt.
#[arg(long)]
prompt: Option<String>,
/// The number of times to run the prompt.
#[arg(long, default_value = "1")]
n: usize,
/// L2 normalization for embeddings.
#[arg(long, default_value = "true")]
normalize_embeddings: bool,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
model: Option<String>,
}
impl Args {
fn build_model_and_tokenizer(&self) -> anyhow::Result<(BertModel, tokenizers::Tokenizer)> {
use hf_hub::{api::sync::Api, Repo, RepoType};
let model = match &self.model {
Some(model_file) => std::path::PathBuf::from(model_file),
None => Api::new()?
.repo(Repo::new(
"jinaai/jina-embeddings-v2-base-en".to_string(),
RepoType::Model,
))
.get("model.safetensors")?,
};
let tokenizer = match &self.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => Api::new()?
.repo(Repo::new(
"sentence-transformers/all-MiniLM-L6-v2".to_string(),
RepoType::Model,
))
.get("tokenizer.json")?,
};
let device = candle_examples::device(self.cpu)?;
let config = Config::v2_base();
let tokenizer = tokenizers::Tokenizer::from_file(tokenizer).map_err(E::msg)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? };
let model = BertModel::new(vb, &config)?;
Ok((model, tokenizer))
}
}
fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
println!("tracing...");
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
let start = std::time::Instant::now();
let (model, mut tokenizer) = args.build_model_and_tokenizer()?;
let device = &model.device;
if let Some(prompt) = args.prompt {
let tokenizer = tokenizer
.with_padding(None)
.with_truncation(None)
.map_err(E::msg)?;
let tokens = tokenizer
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
println!("Loaded and encoded {:?}", start.elapsed());
for idx in 0..args.n {
let start = std::time::Instant::now();
let ys = model.forward(&token_ids)?;
if idx == 0 {
println!("{ys}");
}
println!("Took {:?}", start.elapsed());
}
} else {
let sentences = [
"The cat sits outside",
"A man is playing guitar",
"I love pasta",
"The new movie is awesome",
"The cat plays in the garden",
"A woman watches TV",
"The new movie is so great",
"Do you like pizza?",
];
let n_sentences = sentences.len();
if let Some(pp) = tokenizer.get_padding_mut() {
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
} else {
let pp = tokenizers::PaddingParams {
strategy: tokenizers::PaddingStrategy::BatchLongest,
..Default::default()
};
tokenizer.with_padding(Some(pp));
}
let tokens = tokenizer
.encode_batch(sentences.to_vec(), true)
.map_err(E::msg)?;
let token_ids = tokens
.iter()
.map(|tokens| {
let tokens = tokens.get_ids().to_vec();
Tensor::new(tokens.as_slice(), device)
})
.collect::<candle::Result<Vec<_>>>()?;
let token_ids = Tensor::stack(&token_ids, 0)?;
println!("running inference on batch {:?}", token_ids.shape());
let embeddings = model.forward(&token_ids)?;
println!("generated embeddings {:?}", embeddings.shape());
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;
let embeddings = (embeddings.sum(1)? / (n_tokens as f64))?;
let embeddings = if args.normalize_embeddings {
normalize_l2(&embeddings)?
} else {
embeddings
};
println!("pooled embeddings {:?}", embeddings.shape());
let mut similarities = vec![];
for i in 0..n_sentences {
let e_i = embeddings.get(i)?;
for j in (i + 1)..n_sentences {
let e_j = embeddings.get(j)?;
let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?;
let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?;
let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?;
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt();
similarities.push((cosine_similarity, i, j))
}
}
similarities.sort_by(|u, v| v.0.total_cmp(&u.0));
for &(score, i, j) in similarities[..5].iter() {
println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j])
}
}
Ok(())
}
pub fn normalize_l2(v: &Tensor) -> candle::Result<Tensor> {
v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)
}
| candle/candle-examples/examples/jina-bert/main.rs/0 | {
"file_path": "candle/candle-examples/examples/jina-bert/main.rs",
"repo_id": "candle",
"token_count": 3088
} | 17 |
// This should reach 91.5% accuracy.
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use rand::prelude::*;
use candle::{DType, Result, Tensor, D};
use candle_nn::{loss, ops, Conv2d, Linear, Module, ModuleT, Optimizer, VarBuilder, VarMap};
const IMAGE_DIM: usize = 784;
const LABELS: usize = 10;
fn linear_z(in_dim: usize, out_dim: usize, vs: VarBuilder) -> Result<Linear> {
let ws = vs.get_with_hints((out_dim, in_dim), "weight", candle_nn::init::ZERO)?;
let bs = vs.get_with_hints(out_dim, "bias", candle_nn::init::ZERO)?;
Ok(Linear::new(ws, Some(bs)))
}
trait Model: Sized {
fn new(vs: VarBuilder) -> Result<Self>;
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
}
struct LinearModel {
linear: Linear,
}
impl Model for LinearModel {
fn new(vs: VarBuilder) -> Result<Self> {
let linear = linear_z(IMAGE_DIM, LABELS, vs)?;
Ok(Self { linear })
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self.linear.forward(xs)
}
}
struct Mlp {
ln1: Linear,
ln2: Linear,
}
impl Model for Mlp {
fn new(vs: VarBuilder) -> Result<Self> {
let ln1 = candle_nn::linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
let ln2 = candle_nn::linear(100, LABELS, vs.pp("ln2"))?;
Ok(Self { ln1, ln2 })
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.ln1.forward(xs)?;
let xs = xs.relu()?;
self.ln2.forward(&xs)
}
}
#[derive(Debug)]
struct ConvNet {
conv1: Conv2d,
conv2: Conv2d,
fc1: Linear,
fc2: Linear,
dropout: candle_nn::Dropout,
}
impl ConvNet {
fn new(vs: VarBuilder) -> Result<Self> {
let conv1 = candle_nn::conv2d(1, 32, 5, Default::default(), vs.pp("c1"))?;
let conv2 = candle_nn::conv2d(32, 64, 5, Default::default(), vs.pp("c2"))?;
let fc1 = candle_nn::linear(1024, 1024, vs.pp("fc1"))?;
let fc2 = candle_nn::linear(1024, LABELS, vs.pp("fc2"))?;
let dropout = candle_nn::Dropout::new(0.5);
Ok(Self {
conv1,
conv2,
fc1,
fc2,
dropout,
})
}
fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
let (b_sz, _img_dim) = xs.dims2()?;
let xs = xs
.reshape((b_sz, 1, 28, 28))?
.apply(&self.conv1)?
.max_pool2d(2)?
.apply(&self.conv2)?
.max_pool2d(2)?
.flatten_from(1)?
.apply(&self.fc1)?
.relu()?;
self.dropout.forward_t(&xs, train)?.apply(&self.fc2)
}
}
struct TrainingArgs {
learning_rate: f64,
load: Option<String>,
save: Option<String>,
epochs: usize,
}
fn training_loop_cnn(
m: candle_datasets::vision::Dataset,
args: &TrainingArgs,
) -> anyhow::Result<()> {
const BSIZE: usize = 64;
let dev = candle::Device::cuda_if_available(0)?;
let train_labels = m.train_labels;
let train_images = m.train_images.to_device(&dev)?;
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
let mut varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
let model = ConvNet::new(vs.clone())?;
if let Some(load) = &args.load {
println!("loading weights from {load}");
varmap.load(load)?
}
let adamw_params = candle_nn::ParamsAdamW {
lr: args.learning_rate,
..Default::default()
};
let mut opt = candle_nn::AdamW::new(varmap.all_vars(), adamw_params)?;
let test_images = m.test_images.to_device(&dev)?;
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
let n_batches = train_images.dim(0)? / BSIZE;
let mut batch_idxs = (0..n_batches).collect::<Vec<usize>>();
for epoch in 1..args.epochs {
let mut sum_loss = 0f32;
batch_idxs.shuffle(&mut thread_rng());
for batch_idx in batch_idxs.iter() {
let train_images = train_images.narrow(0, batch_idx * BSIZE, BSIZE)?;
let train_labels = train_labels.narrow(0, batch_idx * BSIZE, BSIZE)?;
let logits = model.forward(&train_images, true)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
let loss = loss::nll(&log_sm, &train_labels)?;
opt.backward_step(&loss)?;
sum_loss += loss.to_vec0::<f32>()?;
}
let avg_loss = sum_loss / n_batches as f32;
let test_logits = model.forward(&test_images, false)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?
.to_dtype(DType::F32)?
.sum_all()?
.to_scalar::<f32>()?;
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
println!(
"{epoch:4} train loss {:8.5} test acc: {:5.2}%",
avg_loss,
100. * test_accuracy
);
}
if let Some(save) = &args.save {
println!("saving trained weights in {save}");
varmap.save(save)?
}
Ok(())
}
fn training_loop<M: Model>(
m: candle_datasets::vision::Dataset,
args: &TrainingArgs,
) -> anyhow::Result<()> {
let dev = candle::Device::cuda_if_available(0)?;
let train_labels = m.train_labels;
let train_images = m.train_images.to_device(&dev)?;
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
let mut varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
let model = M::new(vs.clone())?;
if let Some(load) = &args.load {
println!("loading weights from {load}");
varmap.load(load)?
}
let mut sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate)?;
let test_images = m.test_images.to_device(&dev)?;
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
for epoch in 1..args.epochs {
let logits = model.forward(&train_images)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
let loss = loss::nll(&log_sm, &train_labels)?;
sgd.backward_step(&loss)?;
let test_logits = model.forward(&test_images)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?
.to_dtype(DType::F32)?
.sum_all()?
.to_scalar::<f32>()?;
let test_accuracy = sum_ok / test_labels.dims1()? as f32;
println!(
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
loss.to_scalar::<f32>()?,
100. * test_accuracy
);
}
if let Some(save) = &args.save {
println!("saving trained weights in {save}");
varmap.save(save)?
}
Ok(())
}
#[derive(ValueEnum, Clone)]
enum WhichModel {
Linear,
Mlp,
Cnn,
}
#[derive(Parser)]
struct Args {
#[clap(value_enum, default_value_t = WhichModel::Linear)]
model: WhichModel,
#[arg(long)]
learning_rate: Option<f64>,
#[arg(long, default_value_t = 200)]
epochs: usize,
/// The file where to save the trained weights, in safetensors format.
#[arg(long)]
save: Option<String>,
/// The file where to load the trained weights from, in safetensors format.
#[arg(long)]
load: Option<String>,
/// The directory where to load the dataset from, in ubyte format.
#[arg(long)]
local_mnist: Option<String>,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
// Load the dataset
let m = if let Some(directory) = args.local_mnist {
candle_datasets::vision::mnist::load_dir(directory)?
} else {
candle_datasets::vision::mnist::load()?
};
println!("train-images: {:?}", m.train_images.shape());
println!("train-labels: {:?}", m.train_labels.shape());
println!("test-images: {:?}", m.test_images.shape());
println!("test-labels: {:?}", m.test_labels.shape());
let default_learning_rate = match args.model {
WhichModel::Linear => 1.,
WhichModel::Mlp => 0.05,
WhichModel::Cnn => 0.001,
};
let training_args = TrainingArgs {
epochs: args.epochs,
learning_rate: args.learning_rate.unwrap_or(default_learning_rate),
load: args.load,
save: args.save,
};
match args.model {
WhichModel::Linear => training_loop::<LinearModel>(m, &training_args),
WhichModel::Mlp => training_loop::<Mlp>(m, &training_args),
WhichModel::Cnn => training_loop_cnn(m, &training_args),
}
}
| candle/candle-examples/examples/mnist-training/main.rs/0 | {
"file_path": "candle/candle-examples/examples/mnist-training/main.rs",
"repo_id": "candle",
"token_count": 4094
} | 18 |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use clap::{Parser, ValueEnum};
use std::io::Write;
use tokenizers::Tokenizer;
use candle::quantized::{ggml_file, gguf_file};
use candle::Tensor;
use candle_transformers::generation::LogitsProcessor;
use candle_examples::token_output_stream::TokenOutputStream;
use candle_transformers::models::quantized_llama as model;
use model::ModelWeights;
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
#[derive(Debug)]
enum Prompt {
Interactive,
Chat,
One(String),
}
#[derive(Clone, Debug, Copy, PartialEq, Eq, ValueEnum)]
enum Which {
#[value(name = "7b")]
L7b,
#[value(name = "13b")]
L13b,
#[value(name = "70b")]
L70b,
#[value(name = "7b-chat")]
L7bChat,
#[value(name = "13b-chat")]
L13bChat,
#[value(name = "70b-chat")]
L70bChat,
#[value(name = "7b-code")]
L7bCode,
#[value(name = "13b-code")]
L13bCode,
#[value(name = "32b-code")]
L34bCode,
#[value(name = "7b-leo")]
Leo7b,
#[value(name = "13b-leo")]
Leo13b,
#[value(name = "7b-mistral")]
Mistral7b,
#[value(name = "7b-mistral-instruct")]
Mistral7bInstruct,
#[value(name = "7b-mistral-instruct-v0.2")]
Mistral7bInstructV02,
#[value(name = "7b-zephyr-a")]
Zephyr7bAlpha,
#[value(name = "7b-zephyr-b")]
Zephyr7bBeta,
#[value(name = "7b-open-chat-3.5")]
OpenChat35,
#[value(name = "7b-starling-a")]
Starling7bAlpha,
#[value(name = "mixtral")]
Mixtral,
#[value(name = "mixtral-instruct")]
MixtralInstruct,
}
impl Which {
fn is_mistral(&self) -> bool {
match self {
Self::L7b
| Self::L13b
| Self::L70b
| Self::L7bChat
| Self::L13bChat
| Self::L70bChat
| Self::L7bCode
| Self::L13bCode
| Self::L34bCode
| Self::Leo7b
| Self::Leo13b => false,
// Zephyr and OpenChat are fine tuned versions of mistral and should be treated in the
// same way. Starling is a fine tuned version of OpenChat.
Self::OpenChat35
| Self::Starling7bAlpha
| Self::Zephyr7bAlpha
| Self::Zephyr7bBeta
| Self::Mixtral
| Self::MixtralInstruct
| Self::Mistral7b
| Self::Mistral7bInstruct
| Self::Mistral7bInstructV02 => true,
}
}
fn is_zephyr(&self) -> bool {
match self {
Self::L7b
| Self::L13b
| Self::L70b
| Self::L7bChat
| Self::L13bChat
| Self::L70bChat
| Self::L7bCode
| Self::L13bCode
| Self::L34bCode
| Self::Leo7b
| Self::Leo13b
| Self::Mixtral
| Self::MixtralInstruct
| Self::Mistral7b
| Self::Mistral7bInstruct
| Self::Mistral7bInstructV02
| Self::OpenChat35
| Self::Starling7bAlpha => false,
Self::Zephyr7bAlpha | Self::Zephyr7bBeta => true,
}
}
fn is_open_chat(&self) -> bool {
match self {
Self::L7b
| Self::L13b
| Self::L70b
| Self::L7bChat
| Self::L13bChat
| Self::L70bChat
| Self::L7bCode
| Self::L13bCode
| Self::L34bCode
| Self::Leo7b
| Self::Leo13b
| Self::Mixtral
| Self::MixtralInstruct
| Self::Mistral7b
| Self::Mistral7bInstruct
| Self::Mistral7bInstructV02
| Self::Zephyr7bAlpha
| Self::Zephyr7bBeta => false,
Self::OpenChat35 | Self::Starling7bAlpha => true,
}
}
fn tokenizer_repo(&self) -> &'static str {
match self {
Which::L7b
| Which::L13b
| Which::L70b
| Which::L7bChat
| Which::L13bChat
| Which::L70bChat
| Which::L7bCode
| Which::L13bCode
| Which::L34bCode => "hf-internal-testing/llama-tokenizer",
Which::Leo7b => "LeoLM/leo-hessianai-7b",
Which::Leo13b => "LeoLM/leo-hessianai-13b",
Which::Mixtral => "mistralai/Mixtral-8x7B-v0.1",
Which::MixtralInstruct => "mistralai/Mixtral-8x7B-Instruct-v0.1",
Which::Mistral7b
| Which::Mistral7bInstruct
| Which::Mistral7bInstructV02
| Which::Zephyr7bAlpha
| Which::Zephyr7bBeta => "mistralai/Mistral-7B-v0.1",
Which::OpenChat35 => "openchat/openchat_3.5",
Which::Starling7bAlpha => "berkeley-nest/Starling-LM-7B-alpha",
}
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// GGML/GGUF file to load, typically a .bin/.gguf file generated by the quantize command from llama.cpp
#[arg(long)]
model: Option<String>,
/// The initial prompt, use 'interactive' for entering multiple prompts in an interactive way
/// and 'chat' for an interactive model where history of previous prompts and generated tokens
/// is preserved.
#[arg(long)]
prompt: Option<String>,
/// The length of the sample to generate (in tokens).
#[arg(short = 'n', long, default_value_t = 1000)]
sample_len: usize,
/// The tokenizer config in json format.
#[arg(long)]
tokenizer: Option<String>,
/// The temperature used to generate samples, use 0 for greedy sampling.
#[arg(long, default_value_t = 0.8)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
/// Display the token for the specified prompt.
#[arg(long)]
verbose_prompt: bool,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
/// The model size to use.
#[arg(long, default_value = "7b")]
which: Which,
/// Group-Query Attention, use 8 for the 70B version of LLaMAv2.
#[arg(long)]
gqa: Option<usize>,
}
impl Args {
fn tokenizer(&self) -> anyhow::Result<Tokenizer> {
let tokenizer_path = match &self.tokenizer {
Some(config) => std::path::PathBuf::from(config),
None => {
let api = hf_hub::api::sync::Api::new()?;
let repo = self.which.tokenizer_repo();
let api = api.model(repo.to_string());
api.get("tokenizer.json")?
}
};
Tokenizer::from_file(tokenizer_path).map_err(anyhow::Error::msg)
}
fn model(&self) -> anyhow::Result<std::path::PathBuf> {
let model_path = match &self.model {
Some(config) => std::path::PathBuf::from(config),
None => {
let (repo, filename) = match self.which {
Which::L7b => ("TheBloke/Llama-2-7B-GGML", "llama-2-7b.ggmlv3.q4_0.bin"),
Which::L13b => ("TheBloke/Llama-2-13B-GGML", "llama-2-13b.ggmlv3.q4_0.bin"),
Which::L70b => ("TheBloke/Llama-2-70B-GGML", "llama-2-70b.ggmlv3.q4_0.bin"),
Which::L7bChat => (
"TheBloke/Llama-2-7B-Chat-GGML",
"llama-2-7b-chat.ggmlv3.q4_0.bin",
),
Which::L13bChat => (
"TheBloke/Llama-2-13B-Chat-GGML",
"llama-2-13b-chat.ggmlv3.q4_0.bin",
),
Which::L70bChat => (
"TheBloke/Llama-2-70B-Chat-GGML",
"llama-2-70b-chat.ggmlv3.q4_0.bin",
),
Which::L7bCode => ("TheBloke/CodeLlama-7B-GGUF", "codellama-7b.Q8_0.gguf"),
Which::L13bCode => ("TheBloke/CodeLlama-13B-GGUF", "codellama-13b.Q8_0.gguf"),
Which::L34bCode => ("TheBloke/CodeLlama-34B-GGUF", "codellama-34b.Q8_0.gguf"),
Which::Leo7b => (
"TheBloke/leo-hessianai-7B-GGUF",
"leo-hessianai-7b.Q4_K_M.gguf",
),
Which::Leo13b => (
"TheBloke/leo-hessianai-13B-GGUF",
"leo-hessianai-13b.Q4_K_M.gguf",
),
Which::Mixtral => (
"TheBloke/Mixtral-8x7B-v0.1-GGUF",
"mixtral-8x7b-v0.1.Q4_K_M.gguf",
),
Which::MixtralInstruct => (
"TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
"mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf",
),
Which::Mistral7b => (
"TheBloke/Mistral-7B-v0.1-GGUF",
"mistral-7b-v0.1.Q4_K_S.gguf",
),
Which::Mistral7bInstruct => (
"TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
"mistral-7b-instruct-v0.1.Q4_K_S.gguf",
),
Which::Mistral7bInstructV02 => (
"TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
"mistral-7b-instruct-v0.2.Q4_K_S.gguf",
),
Which::Zephyr7bAlpha => (
"TheBloke/zephyr-7B-alpha-GGUF",
"zephyr-7b-alpha.Q4_K_M.gguf",
),
Which::Zephyr7bBeta => {
("TheBloke/zephyr-7B-beta-GGUF", "zephyr-7b-beta.Q4_K_M.gguf")
}
Which::OpenChat35 => ("TheBloke/openchat_3.5-GGUF", "openchat_3.5.Q4_K_M.gguf"),
Which::Starling7bAlpha => (
"TheBloke/Starling-LM-7B-alpha-GGUF",
"starling-lm-7b-alpha.Q4_K_M.gguf",
),
};
let api = hf_hub::api::sync::Api::new()?;
let api = api.model(repo.to_string());
api.get(filename)?
}
};
Ok(model_path)
}
}
fn format_size(size_in_bytes: usize) -> String {
if size_in_bytes < 1_000 {
format!("{}B", size_in_bytes)
} else if size_in_bytes < 1_000_000 {
format!("{:.2}KB", size_in_bytes as f64 / 1e3)
} else if size_in_bytes < 1_000_000_000 {
format!("{:.2}MB", size_in_bytes as f64 / 1e6)
} else {
format!("{:.2}GB", size_in_bytes as f64 / 1e9)
}
}
fn main() -> anyhow::Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let temperature = if args.temperature == 0. {
None
} else {
Some(args.temperature)
};
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let model_path = args.model()?;
let mut file = std::fs::File::open(&model_path)?;
let start = std::time::Instant::now();
let device = candle_examples::device(false)?;
let mut model = match model_path.extension().and_then(|v| v.to_str()) {
Some("gguf") => {
let model = gguf_file::Content::read(&mut file).map_err(|e| e.with_path(model_path))?;
let mut total_size_in_bytes = 0;
for (_, tensor) in model.tensor_infos.iter() {
let elem_count = tensor.shape.elem_count();
total_size_in_bytes +=
elem_count * tensor.ggml_dtype.type_size() / tensor.ggml_dtype.block_size();
}
println!(
"loaded {:?} tensors ({}) in {:.2}s",
model.tensor_infos.len(),
&format_size(total_size_in_bytes),
start.elapsed().as_secs_f32(),
);
ModelWeights::from_gguf(model, &mut file, &device)?
}
Some("ggml" | "bin") | Some(_) | None => {
let model = ggml_file::Content::read(&mut file, &device)
.map_err(|e| e.with_path(model_path))?;
let mut total_size_in_bytes = 0;
for (_, tensor) in model.tensors.iter() {
let elem_count = tensor.shape().elem_count();
total_size_in_bytes +=
elem_count * tensor.dtype().type_size() / tensor.dtype().block_size();
}
println!(
"loaded {:?} tensors ({}) in {:.2}s",
model.tensors.len(),
&format_size(total_size_in_bytes),
start.elapsed().as_secs_f32(),
);
println!("params: {:?}", model.hparams);
let default_gqa = match args.which {
Which::L7b
| Which::L13b
| Which::L7bChat
| Which::L13bChat
| Which::L7bCode
| Which::L13bCode
| Which::L34bCode
| Which::Leo7b
| Which::Leo13b => 1,
Which::Mixtral
| Which::MixtralInstruct
| Which::Mistral7b
| Which::Mistral7bInstruct
| Which::Mistral7bInstructV02
| Which::Zephyr7bAlpha
| Which::Zephyr7bBeta
| Which::L70b
| Which::L70bChat
| Which::OpenChat35
| Which::Starling7bAlpha => 8,
};
ModelWeights::from_ggml(model, args.gqa.unwrap_or(default_gqa))?
}
};
println!("model built");
let tokenizer = args.tokenizer()?;
let mut tos = TokenOutputStream::new(tokenizer);
let prompt = match args.prompt.as_deref() {
Some("chat") => Prompt::Chat,
Some("interactive") => Prompt::Interactive,
Some(s) => Prompt::One(s.to_string()),
None => Prompt::One(DEFAULT_PROMPT.to_string()),
};
let mut pre_prompt_tokens = vec![];
for prompt_index in 0.. {
let prompt_str = match &prompt {
Prompt::One(prompt) => prompt.clone(),
Prompt::Interactive | Prompt::Chat => {
let is_interactive = matches!(prompt, Prompt::Interactive);
print!("> ");
std::io::stdout().flush()?;
let mut prompt = String::new();
std::io::stdin().read_line(&mut prompt)?;
if prompt.ends_with('\n') {
prompt.pop();
if prompt.ends_with('\r') {
prompt.pop();
}
}
if args.which.is_open_chat() {
format!("GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:")
} else if args.which.is_zephyr() {
if prompt_index == 0 || is_interactive {
format!("<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>",)
} else {
format!("<|user|>\n{prompt}</s>\n<|assistant|>")
}
} else if args.which.is_mistral() {
format!("[INST] {prompt} [/INST]")
} else {
prompt
}
}
};
print!("{}", &prompt_str);
let tokens = tos
.tokenizer()
.encode(prompt_str, true)
.map_err(anyhow::Error::msg)?;
if args.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let prompt_tokens = [&pre_prompt_tokens, tokens.get_ids()].concat();
let to_sample = args.sample_len.saturating_sub(1);
let prompt_tokens = if prompt_tokens.len() + to_sample > model::MAX_SEQ_LEN - 10 {
let to_remove = prompt_tokens.len() + to_sample + 10 - model::MAX_SEQ_LEN;
prompt_tokens[prompt_tokens.len().saturating_sub(to_remove)..].to_vec()
} else {
prompt_tokens
};
let mut all_tokens = vec![];
let mut logits_processor = LogitsProcessor::new(args.seed, temperature, args.top_p);
let start_prompt_processing = std::time::Instant::now();
let mut next_token = {
let input = Tensor::new(prompt_tokens.as_slice(), &device)?.unsqueeze(0)?;
let logits = model.forward(&input, 0)?;
let logits = logits.squeeze(0)?;
logits_processor.sample(&logits)?
};
let prompt_dt = start_prompt_processing.elapsed();
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
let eos_token = if args.which.is_open_chat() {
"<|end_of_turn|>"
} else {
"</s>"
};
let eos_token = *tos.tokenizer().get_vocab(true).get(eos_token).unwrap();
let start_post_prompt = std::time::Instant::now();
let mut sampled = 0;
for index in 0..to_sample {
let input = Tensor::new(&[next_token], &device)?.unsqueeze(0)?;
let logits = model.forward(&input, prompt_tokens.len() + index)?;
let logits = logits.squeeze(0)?;
let logits = if args.repeat_penalty == 1. {
logits
} else {
let start_at = all_tokens.len().saturating_sub(args.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
args.repeat_penalty,
&all_tokens[start_at..],
)?
};
next_token = logits_processor.sample(&logits)?;
all_tokens.push(next_token);
if let Some(t) = tos.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
sampled += 1;
if next_token == eos_token {
break;
};
}
if let Some(rest) = tos.decode_rest().map_err(candle::Error::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
let dt = start_post_prompt.elapsed();
println!(
"\n\n{:4} prompt tokens processed: {:.2} token/s",
prompt_tokens.len(),
prompt_tokens.len() as f64 / prompt_dt.as_secs_f64(),
);
println!(
"{sampled:4} tokens generated: {:.2} token/s",
sampled as f64 / dt.as_secs_f64(),
);
match prompt {
Prompt::One(_) => break,
Prompt::Interactive => {}
Prompt::Chat => {
pre_prompt_tokens = [prompt_tokens.as_slice(), all_tokens.as_slice()].concat()
}
}
}
Ok(())
}
| candle/candle-examples/examples/quantized/main.rs/0 | {
"file_path": "candle/candle-examples/examples/quantized/main.rs",
"repo_id": "candle",
"token_count": 11119
} | 19 |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{DType, IndexOp, D};
use candle_nn::{ModuleT, VarBuilder};
use candle_transformers::models::vgg::{Models, Vgg};
use clap::{Parser, ValueEnum};
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
Vgg13,
Vgg16,
Vgg19,
}
#[derive(Parser)]
struct Args {
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Variant of the model to use.
#[arg(value_enum, long, default_value_t = Which::Vgg13)]
which: Which,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let image = candle_examples::imagenet::load_image224(args.image)?;
println!("loaded image {image:?}");
let api = hf_hub::api::sync::Api::new()?;
let repo = match args.which {
Which::Vgg13 => "timm/vgg13.tv_in1k",
Which::Vgg16 => "timm/vgg16.tv_in1k",
Which::Vgg19 => "timm/vgg19.tv_in1k",
};
let api = api.model(repo.into());
let filename = "model.safetensors";
let model_file = api.get(filename)?;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
let model = match args.which {
Which::Vgg13 => Vgg::new(vb, Models::Vgg13)?,
Which::Vgg16 => Vgg::new(vb, Models::Vgg16)?,
Which::Vgg19 => Vgg::new(vb, Models::Vgg19)?,
};
let logits = model.forward_t(&image, /*train=*/ false)?;
let prs = candle_nn::ops::softmax(&logits, D::Minus1)?
.i(0)?
.to_vec1::<f32>()?;
// Sort the predictions and take the top 5
let mut top: Vec<_> = prs.iter().enumerate().collect();
top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
let top = top.into_iter().take(5).collect::<Vec<_>>();
// Print the top predictions
for &(i, p) in &top {
println!(
"{:50}: {:.2}%",
candle_examples::imagenet::CLASSES[i],
p * 100.0
);
}
Ok(())
}
| candle/candle-examples/examples/vgg/main.rs/0 | {
"file_path": "candle/candle-examples/examples/vgg/main.rs",
"repo_id": "candle",
"token_count": 960
} | 20 |
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=16
width= 416
height = 416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
# Downsample
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
# Downsample
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[shortcut]
from=-3
activation=linear
######################
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 61
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1
[route]
layers = -4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[upsample]
stride=2
[route]
layers = -1, 36
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
classes=80
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1
| candle/candle-examples/examples/yolo-v3/yolo-v3.cfg/0 | {
"file_path": "candle/candle-examples/examples/yolo-v3/yolo-v3.cfg",
"repo_id": "candle",
"token_count": 3586
} | 21 |
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
namespace flash {
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool Varlen=true>
struct BlockInfo {
template<typename Params>
__device__ BlockInfo(const Params ¶ms, const int bidb)
: sum_s_q(!Varlen || params.cu_seqlens_q == nullptr ? -1 : params.cu_seqlens_q[bidb])
, sum_s_k(!Varlen || params.cu_seqlens_k == nullptr || !params.is_seqlens_k_cumulative ? -1 : params.cu_seqlens_k[bidb])
, actual_seqlen_q(!Varlen || params.cu_seqlens_q == nullptr ? params.seqlen_q : params.cu_seqlens_q[bidb + 1] - sum_s_q)
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
, seqlen_k_cache(!Varlen || params.cu_seqlens_k == nullptr ? params.seqlen_k : (params.is_seqlens_k_cumulative ? params.cu_seqlens_k[bidb + 1] - sum_s_k : params.cu_seqlens_k[bidb]))
, actual_seqlen_k(params.seqused_k ? params.seqused_k[bidb] : seqlen_k_cache + (params.knew_ptr == nullptr ? 0 : params.seqlen_knew))
{
}
template <typename index_t>
inline __device__ index_t q_offset(const index_t batch_stride, const index_t row_stride, const int bidb) const {
return sum_s_q == -1 ? bidb * batch_stride : uint32_t(sum_s_q) * row_stride;
}
template <typename index_t>
inline __device__ index_t k_offset(const index_t batch_stride, const index_t row_stride, const int bidb) const {
return sum_s_k == -1 ? bidb * batch_stride : uint32_t(sum_s_k) * row_stride;
}
const int sum_s_q;
const int sum_s_k;
const int actual_seqlen_q;
// We have to have seqlen_k_cache declared before actual_seqlen_k, otherwise actual_seqlen_k is set to 0.
const int seqlen_k_cache;
const int actual_seqlen_k;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash
| candle/candle-flash-attn/kernels/block_info.h/0 | {
"file_path": "candle/candle-flash-attn/kernels/block_info.h",
"repo_id": "candle",
"token_count": 851
} | 22 |
// Copyright (c) 2023, Tri Dao.
// Splitting the different head dimensions to different files to speed up compilation.
// This file is auto-generated. See "generate_kernels.py"
#include "flash_fwd_launch_template.h"
template<>
void run_mha_fwd_<cutlass::half_t, 64>(Flash_fwd_params ¶ms, cudaStream_t stream) {
run_mha_fwd_hdim64<cutlass::half_t>(params, stream);
}
| candle/candle-flash-attn/kernels/flash_fwd_hdim64_fp16_sm80.cu/0 | {
"file_path": "candle/candle-flash-attn/kernels/flash_fwd_hdim64_fp16_sm80.cu",
"repo_id": "candle",
"token_count": 135
} | 23 |
fn main() {
println!("cargo:rerun-if-changed=build.rs");
let builder = bindgen_cuda::Builder::default();
println!("cargo:info={builder:?}");
let bindings = builder.build_ptx().unwrap();
bindings.write("src/lib.rs").unwrap();
}
| candle/candle-kernels/build.rs/0 | {
"file_path": "candle/candle-kernels/build.rs",
"repo_id": "candle",
"token_count": 96
} | 24 |
#include <metal_stdlib>
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
constant size_t *dims,
constant size_t *strides
) {
uint strided_i = 0;
for (uint d = 0; d < num_dims; d++) {
uint dim_idx = num_dims - 1 - d;
strided_i += (idx % dims[dim_idx]) * strides[dim_idx];
idx /= dims[dim_idx];
}
return strided_i;
}
using namespace metal;
#define AFFINE(FN_NAME, T) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
constant float &add, \
device const T *input, \
device T *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = T(fma(float(input[id]), mul, add)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
constant float &add, \
device const T *input, \
device T *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = T(fma(float(input[get_strided_index(id, num_dims, dims, strides)]), mul, add)); \
}
#define POWF(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[id], TYPENAME(mul))); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
output[id] = TYPENAME(pow(input[get_strided_index(id, num_dims, dims, strides)], TYPENAME(mul))); \
}
#define ELU(FN_NAME, TYPENAME) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[id]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
constant size_t &num_dims, \
constant size_t *dims, \
constant size_t *strides, \
constant float &mul, \
device const TYPENAME *input, \
device TYPENAME *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
const TYPENAME x = input[get_strided_index(id, num_dims, dims, strides)]; \
output[id] = TYPENAME((x > 0)?x: mul * exp(x - 1)); \
} \
AFFINE(affine_f32, float)
AFFINE(affine_f16, half)
POWF(powf_f32, float)
POWF(powf_f16, half)
ELU(elu_f32, float)
ELU(elu_f16, half)
#if defined(__HAVE_BFLOAT__)
AFFINE(affine_bf16, bfloat);
POWF(powf_bf16, bfloat);
ELU(elu_bf16, bfloat);
#endif
| candle/candle-metal-kernels/src/affine.metal/0 | {
"file_path": "candle/candle-metal-kernels/src/affine.metal",
"repo_id": "candle",
"token_count": 1462
} | 25 |
use candle_metal_kernels::{call_unary_contiguous, call_unary_strided, unary, Kernels};
use half::{bf16, f16};
use metal::objc::rc::autoreleasepool;
use metal::{Device, MTLResourceOptions};
use rand;
use std::any::type_name;
use std::time::Instant;
fn main() {
let device = Device::system_default().unwrap();
let kernels = Kernels::new();
let f32_1k = (0..1000).map(|_| rand::random::<f32>()).collect::<Vec<_>>();
let f32_10k = (0..10000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f32_100k = (0..100000)
.map(|_| rand::random::<f32>())
.collect::<Vec<_>>();
let f16_map = |v: &[f32]| v.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>();
let f16_1k = f16_map(&f32_1k);
let f16_10k = f16_map(&f32_10k);
let f16_100k = f16_map(&f32_100k);
let bf16_map = |v: &[f32]| v.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>();
let bf16_1k = bf16_map(&f32_1k);
let bf16_10k = bf16_map(&f32_10k);
let bf16_100k = bf16_map(&f32_100k);
let f32_ckernels = [
unary::contiguous::sin::FLOAT,
unary::contiguous::cos::FLOAT,
unary::contiguous::exp::FLOAT,
unary::contiguous::sqr::FLOAT,
unary::contiguous::sqrt::FLOAT,
unary::contiguous::neg::FLOAT,
unary::contiguous::copy::FLOAT,
];
let f32_skernels = [
unary::strided::sin::FLOAT,
unary::strided::cos::FLOAT,
unary::strided::exp::FLOAT,
unary::strided::sqr::FLOAT,
unary::strided::sqrt::FLOAT,
unary::strided::neg::FLOAT,
unary::strided::copy::FLOAT,
];
let f16_ckernels = [
unary::contiguous::sin::HALF,
unary::contiguous::cos::HALF,
unary::contiguous::exp::HALF,
unary::contiguous::sqr::HALF,
unary::contiguous::sqrt::HALF,
unary::contiguous::neg::HALF,
unary::contiguous::copy::HALF,
];
let f16_skernels = [
unary::strided::sin::HALF,
unary::strided::cos::HALF,
unary::strided::exp::HALF,
unary::strided::sqr::HALF,
unary::strided::sqrt::HALF,
unary::strided::neg::HALF,
unary::strided::copy::HALF,
];
let bf16_ckernels = [
unary::contiguous::sin::BFLOAT,
unary::contiguous::cos::BFLOAT,
unary::contiguous::exp::BFLOAT,
unary::contiguous::sqr::BFLOAT,
unary::contiguous::sqrt::BFLOAT,
unary::contiguous::neg::BFLOAT,
unary::contiguous::copy::BFLOAT,
];
let bf16_skernels = [
unary::strided::sin::BFLOAT,
unary::strided::cos::BFLOAT,
unary::strided::exp::BFLOAT,
unary::strided::sqr::BFLOAT,
unary::strided::sqrt::BFLOAT,
unary::strided::neg::BFLOAT,
unary::strided::copy::BFLOAT,
];
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11} | {5: <11}",
"dtype", "kernel", "size", "runs", "total time", "avg time"
);
// f32
run_unary_bench(&device, &kernels, &f32_1k, f32_ckernels, f32_skernels);
run_unary_bench(&device, &kernels, &f32_10k, f32_ckernels, f32_skernels);
run_unary_bench(&device, &kernels, &f32_100k, f32_ckernels, f32_skernels);
// f16
run_unary_bench(&device, &kernels, &f16_1k, f16_ckernels, f16_skernels);
run_unary_bench(&device, &kernels, &f16_10k, f16_ckernels, f16_skernels);
run_unary_bench(&device, &kernels, &f16_100k, f16_ckernels, f16_skernels);
// bf16
run_unary_bench(&device, &kernels, &bf16_1k, bf16_ckernels, bf16_skernels);
run_unary_bench(&device, &kernels, &bf16_10k, bf16_ckernels, bf16_skernels);
run_unary_bench(&device, &kernels, &bf16_100k, bf16_ckernels, bf16_skernels);
}
fn run_unary_bench<T: Clone>(
device: &Device,
kernels: &Kernels,
v: &[T],
contiguous: [unary::contiguous::Kernel; 7],
strided: [unary::strided::Kernel; 7],
) {
let command_queue = device.new_command_queue();
let options = MTLResourceOptions::StorageModeManaged;
let iterations = 10000;
let input = device.new_buffer_with_data(
v.as_ptr() as *const core::ffi::c_void,
core::mem::size_of_val(v) as u64,
options,
);
let mut output = device.new_buffer(core::mem::size_of_val(v) as u64, options);
// Contiguous
for kernel_name in contiguous {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_unary_contiguous(
device,
&command_buffer,
kernels,
kernel_name,
v.len(),
&input,
&mut output,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
v.len(),
iterations,
total_time,
total_time / iterations
);
}
// Strided
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
for kernel_name in &strided {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
for _ in 0..iterations {
call_unary_strided(
device,
command_buffer,
&kernels,
kernel_name,
&shape,
&input,
&strides,
offset,
&mut output,
0,
)
.unwrap();
}
command_buffer.commit();
command_buffer.wait_until_completed();
start.elapsed()
});
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
kernel_name.0,
v.len(),
iterations,
total_time,
total_time / iterations
);
}
}
| candle/candle-metal-kernels/tmp/unary.rs/0 | {
"file_path": "candle/candle-metal-kernels/tmp/unary.rs",
"repo_id": "candle",
"token_count": 3489
} | 26 |
use candle::{Result, Tensor};
/// The negative log likelihood loss.
///
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to contain log probabilities.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn nll(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
let b_sz = match target.dims() {
&[b_sz] => b_sz,
dims => candle::bail!("the target tensor should have a single dimension ({dims:?})"),
};
match inp.dims() {
&[inp_b_sz, _] => {
if inp_b_sz != b_sz {
candle::bail!("batch size mismatch between inp ({inp_b_sz}) and target ({b_sz})")
}
}
dims => candle::bail!("the target tensor should have two dimensions ({dims:?})"),
}
inp.gather(&target.unsqueeze(1)?, 1)?
.sum_all()?
.affine(-1f64 / b_sz as f64, 0.)
}
/// The cross-entropy loss.
///
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to raw logits.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn cross_entropy(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
if inp.rank() != 2 {
candle::bail!("cross_entropy expects an input tensor of rank 2")
}
let inp = crate::ops::log_softmax(inp, 1)?;
nll(&inp, target)
}
/// The mean squared error loss.
pub fn mse(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
(inp - target)?.sqr()?.mean_all()
}
/// The binary cross-entropy with logit loss.
///
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to raw logits.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number
/// of categories.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
let inp = crate::ops::sigmoid(inp)?;
let left_side = target * inp.log()?;
let right_side = (target.affine(-1., 1.))? * inp.affine(-1., 1.)?.log()?;
let loss = left_side? + right_side?;
let loss = loss?.neg()?.mean_all()?;
Ok(loss)
}
| candle/candle-nn/src/loss.rs/0 | {
"file_path": "candle/candle-nn/src/loss.rs",
"repo_id": "candle",
"token_count": 1040
} | 27 |
# candle-onnx
This crate adds ONNX support to candle
## FAQ
#### Missing protoc installation when compiling candle-onnx
The candle-onnx dependency prost-build no longer comes bundled with prost
binaries. This could cause the following error when attempting to compile
candle-onnx:
```
error: failed to run custom build command for `candle-onnx`
Caused by: // (...)
Could not find `protoc` installation and this build crate cannot proceed without this knowledge.
```
To fix this issue install protoc on your system and make it available in your
system `PATH`. See the [protoc
documentation](https://grpc.io/docs/protoc-installation/) for more information.
| candle/candle-onnx/README.md/0 | {
"file_path": "candle/candle-onnx/README.md",
"repo_id": "candle",
"token_count": 180
} | 28 |
# Generated content DO NOT EDIT
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence
from os import PathLike
from candle.typing import _ArrayLike, Device, Scalar, Index, Shape
from candle import Tensor, DType, QTensor
@staticmethod
def avg_pool2d(tensor: Tensor, ksize: int, stride: int = 1) -> Tensor:
"""
Applies the 2d avg-pool function to a given tensor.#
"""
pass
@staticmethod
def gelu(tensor: Tensor) -> Tensor:
"""
Applies the Gaussian Error Linear Unit (GELU) function to a given tensor.
"""
pass
@staticmethod
def max_pool2d(tensor: Tensor, ksize: int, stride: int = 1) -> Tensor:
"""
Applies the 2d max-pool function to a given tensor.#
"""
pass
@staticmethod
def relu(tensor: Tensor) -> Tensor:
"""
Applies the Rectified Linear Unit (ReLU) function to a given tensor.
"""
pass
@staticmethod
def silu(tensor: Tensor) -> Tensor:
"""
Applies the Sigmoid Linear Unit (SiLU) function to a given tensor.
"""
pass
@staticmethod
def softmax(tensor: Tensor, dim: int) -> Tensor:
"""
Applies the Softmax function to a given tensor.#
"""
pass
@staticmethod
def tanh(tensor: Tensor) -> Tensor:
"""
Applies the tanh function to a given tensor.
"""
pass
| candle/candle-pyo3/py_src/candle/functional/__init__.pyi/0 | {
"file_path": "candle/candle-pyo3/py_src/candle/functional/__init__.pyi",
"repo_id": "candle",
"token_count": 484
} | 29 |
# This example shows how the candle Python api can be used to replicate llama.cpp.
import sys
from typing import Dict, Tuple, Any
import candle
from candle.models.llama import QuantizedLlama
from candle import utils
MAX_SEQ_LEN = 4096
def gguf_rename(tensor_name: str):
if tensor_name == "token_embd.weight":
return "tok_embeddings.weight"
if tensor_name == "output_norm.weight":
return "norm.weight"
tensor_name = tensor_name.replace("blk.", "layers.")
tensor_name = tensor_name.replace(".attn_q.", ".attention.wq.")
tensor_name = tensor_name.replace(".attn_k.", ".attention.wk.")
tensor_name = tensor_name.replace(".attn_v.", ".attention.wv.")
tensor_name = tensor_name.replace(".attn_output.", ".attention.wo.")
tensor_name = tensor_name.replace(".ffn_gate.", ".feed_forward.w1.")
tensor_name = tensor_name.replace(".ffn_down.", ".feed_forward.w2.")
tensor_name = tensor_name.replace(".ffn_up.", ".feed_forward.w3.")
tensor_name = tensor_name.replace(".attn_norm.", ".attention_norm.")
return tensor_name
def main():
if len(sys.argv) < 2:
raise ValueError("missing weight file argument")
filename = sys.argv[1]
print(f"reading model file {filename}")
if filename.endswith("gguf"):
all_tensors, metadata = utils.load_gguf(filename)
vocab = metadata["tokenizer.ggml.tokens"]
for i, v in enumerate(vocab):
vocab[i] = "\n" if v == "<0x0A>" else v.replace("▁", " ")
hparams = {k: v for (k, v) in metadata.items() if not k.startswith("tokenizer")}
print(hparams)
hparams = {
"n_vocab": len(vocab),
"n_embd": metadata["llama.embedding_length"],
"n_mult": 256,
"n_head": metadata["llama.attention.head_count"],
"n_head_kv": metadata["llama.attention.head_count_kv"],
"n_layer": metadata["llama.block_count"],
"n_rot": metadata["llama.rope.dimension_count"],
"rope_freq": metadata.get("llama.rope.freq_base", 10000.0),
"ftype": metadata["general.file_type"],
"context_length": metadata["llama.context_length"],
}
all_tensors = {gguf_rename(k): v for k, v in all_tensors.items()}
else:
all_tensors, hparams, vocab = utils.load_ggml(filename)
hparams["context_length"] = 2048
print(hparams)
model = QuantizedLlama(hparams, all_tensors)
print("model built, starting inference")
tokens = [1]
for token_idx in range(500):
last_token = tokens[-1]
lt = candle.tensor([last_token]).unsqueeze(0)
logits = model.forward(lt, len(tokens))
# Greedy sampling for now
# pr = candle.nn.softmax(logits, -1)
m = logits.get(0).argmax_keepdim(-1)
next_token = m.values()[0]
print(vocab[next_token], end="", flush=True)
tokens.append(next_token)
if __name__ == "__main__":
main()
| candle/candle-pyo3/quant-llama.py/0 | {
"file_path": "candle/candle-pyo3/quant-llama.py",
"repo_id": "candle",
"token_count": 1318
} | 30 |
# candle-transformers
| candle/candle-transformers/README.md/0 | {
"file_path": "candle/candle-transformers/README.md",
"repo_id": "candle",
"token_count": 6
} | 31 |
use super::with_tracing::{linear, Embedding, Linear};
use candle::{Result, Tensor};
use candle_nn::{layer_norm, LayerNorm, VarBuilder};
#[derive(Debug, Clone)]
pub struct Config {
pub vocab_size: usize,
pub decoder_vocab_size: Option<usize>,
pub max_position_embeddings: usize,
pub encoder_layers: usize,
pub encoder_ffn_dim: usize,
pub encoder_attention_heads: usize,
pub decoder_layers: usize,
pub decoder_ffn_dim: usize,
pub decoder_attention_heads: usize,
pub use_cache: bool,
pub is_encoder_decoder: bool,
pub activation_function: candle_nn::Activation,
pub d_model: usize,
pub decoder_start_token_id: u32,
pub scale_embedding: bool,
pub pad_token_id: u32,
pub eos_token_id: u32,
pub forced_eos_token_id: u32,
pub share_encoder_decoder_embeddings: bool,
}
impl Config {
// https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fr-en/blob/main/config.json
pub fn opus_mt_tc_big_fr_en() -> Self {
Self {
activation_function: candle_nn::Activation::Relu,
d_model: 1024,
decoder_attention_heads: 16,
decoder_ffn_dim: 4096,
decoder_layers: 6,
decoder_start_token_id: 53016,
decoder_vocab_size: Some(53017),
encoder_attention_heads: 16,
encoder_ffn_dim: 4096,
encoder_layers: 6,
eos_token_id: 43311,
forced_eos_token_id: 43311,
is_encoder_decoder: true,
max_position_embeddings: 1024,
pad_token_id: 53016,
scale_embedding: true,
share_encoder_decoder_embeddings: true,
use_cache: true,
vocab_size: 53017,
}
}
// https://huggingface.co/Helsinki-NLP/opus-mt-fr-en/blob/main/config.json
pub fn opus_mt_fr_en() -> Self {
Self {
activation_function: candle_nn::Activation::Swish,
d_model: 512,
decoder_attention_heads: 8,
decoder_ffn_dim: 2048,
decoder_layers: 6,
decoder_start_token_id: 59513,
decoder_vocab_size: Some(59514),
encoder_attention_heads: 8,
encoder_ffn_dim: 2048,
encoder_layers: 6,
eos_token_id: 0,
forced_eos_token_id: 0,
is_encoder_decoder: true,
max_position_embeddings: 512,
pad_token_id: 59513,
scale_embedding: true,
share_encoder_decoder_embeddings: true,
use_cache: true,
vocab_size: 59514,
}
}
}
#[derive(Debug, Clone)]
struct SinusoidalPositionalEmbedding {
emb: Embedding,
}
impl SinusoidalPositionalEmbedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dev = vb.device();
let dtype = vb.dtype();
let num_positions = cfg.max_position_embeddings;
let dim = cfg.d_model;
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, num_positions as u32, dev)?
.to_dtype(dtype)?
.reshape((num_positions, 1))?;
let freqs = t.matmul(&inv_freq)?;
let sin = freqs.sin()?;
let cos = freqs.cos()?;
let weights = Tensor::cat(&[&sin, &cos], 1)?.contiguous()?;
let emb = Embedding::from_weights(weights)?;
Ok(Self { emb })
}
fn forward(&self, input_ids: &Tensor, past_kv_len: usize) -> Result<Tensor> {
let seq_len = input_ids.dim(1)?;
Tensor::arange(
past_kv_len as u32,
(past_kv_len + seq_len) as u32,
input_ids.device(),
)?
.apply(&self.emb)
}
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
out_proj: Linear,
scaling: f64,
num_heads: usize,
head_dim: usize,
kv_cache: Option<(Tensor, Tensor)>,
is_decoder: bool,
}
impl Attention {
fn new(cfg: &Config, is_decoder: bool, vb: VarBuilder) -> Result<Self> {
let num_heads = if is_decoder {
cfg.decoder_attention_heads
} else {
cfg.encoder_attention_heads
};
let embed_dim = cfg.d_model;
let head_dim = embed_dim / num_heads;
let scaling = (head_dim as f64).powf(-0.5);
let q_proj = linear(embed_dim, embed_dim, vb.pp("q_proj"))?;
let k_proj = linear(embed_dim, embed_dim, vb.pp("k_proj"))?;
let v_proj = linear(embed_dim, embed_dim, vb.pp("v_proj"))?;
let out_proj = linear(embed_dim, embed_dim, vb.pp("out_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
out_proj,
scaling,
num_heads,
head_dim,
kv_cache: None,
is_decoder,
})
}
fn _shape(&self, tensor: &Tensor, bsz: usize) -> Result<Tensor> {
tensor
.reshape((bsz, (), self.num_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()
}
fn forward(
&mut self,
xs: &Tensor,
kv_states: Option<&Tensor>,
attn_mask: Option<&Tensor>,
) -> Result<Tensor> {
let (b_sz, tgt_len, _) = xs.dims3()?;
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?;
let (key_states, value_states) = match kv_states {
None => {
let key_states = self._shape(&xs.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&xs.apply(&self.v_proj)?, b_sz)?;
if self.is_decoder {
let kv_states = match &self.kv_cache {
None => (key_states, value_states),
Some((p_key_states, p_value_states)) => {
let key_states = Tensor::cat(&[p_key_states, &key_states], 2)?;
let value_states = Tensor::cat(&[p_value_states, &value_states], 2)?;
(key_states, value_states)
}
};
self.kv_cache = Some(kv_states.clone());
kv_states
} else {
(key_states, value_states)
}
}
Some(kv_states) => {
let key_states = self._shape(&kv_states.apply(&self.k_proj)?, b_sz)?;
let value_states = self._shape(&kv_states.apply(&self.v_proj)?, b_sz)?;
(key_states, value_states)
}
};
let proj_shape = (b_sz * self.num_heads, (), self.head_dim);
let query_states = self._shape(&query_states, b_sz)?.reshape(proj_shape)?;
let key_states = key_states.reshape(proj_shape)?;
let value_states = value_states.reshape(proj_shape)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
let attn_weights = match attn_mask {
None => attn_weights,
Some(attn_mask) => attn_weights.broadcast_add(attn_mask)?,
};
let attn_probs = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_probs.matmul(&value_states)?;
attn_output
.reshape((b_sz, self.num_heads, tgt_len, self.head_dim))?
.transpose(1, 2)?
.reshape((b_sz, tgt_len, self.head_dim * self.num_heads))?
.apply(&self.out_proj)
}
fn reset_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
struct EncoderLayer {
self_attn: Attention,
self_attn_layer_norm: LayerNorm,
activation_fn: candle_nn::Activation,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
}
impl EncoderLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(cfg, true, vb.pp("self_attn"))?;
let self_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
let fc1 = linear(cfg.d_model, cfg.encoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear(cfg.encoder_ffn_dim, cfg.d_model, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self {
self_attn,
self_attn_layer_norm,
activation_fn: cfg.activation_function,
fc1,
fc2,
final_layer_norm,
})
}
fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let residual = xs;
let xs = (self.self_attn.forward(xs, None, None)? + residual)?
.apply(&self.self_attn_layer_norm)?;
let residual = &xs;
let xs = xs
.apply(&self.fc1)?
.apply(&self.activation_fn)?
.apply(&self.fc2)?;
(xs + residual)?.apply(&self.final_layer_norm)
}
fn reset_kv_cache(&mut self) {
self.self_attn.reset_kv_cache()
}
}
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
self_attn_layer_norm: LayerNorm,
activation_fn: candle_nn::Activation,
encoder_attn: Attention,
encoder_attn_layer_norm: LayerNorm,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
}
impl DecoderLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(cfg, true, vb.pp("self_attn"))?;
let self_attn_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("self_attn_layer_norm"))?;
let encoder_attn = Attention::new(cfg, true, vb.pp("encoder_attn"))?;
let encoder_attn_layer_norm =
layer_norm(cfg.d_model, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
let fc1 = linear(cfg.d_model, cfg.decoder_ffn_dim, vb.pp("fc1"))?;
let fc2 = linear(cfg.decoder_ffn_dim, cfg.d_model, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(cfg.d_model, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self {
self_attn,
self_attn_layer_norm,
activation_fn: cfg.activation_function,
encoder_attn,
encoder_attn_layer_norm,
fc1,
fc2,
final_layer_norm,
})
}
fn forward(
&mut self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
attn_mask: &Tensor,
) -> Result<Tensor> {
let residual = xs;
let xs = (self.self_attn.forward(xs, None, Some(attn_mask))? + residual)?
.apply(&self.self_attn_layer_norm)?;
let xs = match encoder_xs {
None => xs,
Some(encoder_xs) => {
let residual = &xs;
let xs = self.encoder_attn.forward(&xs, Some(encoder_xs), None)?;
(residual + xs)?.apply(&self.encoder_attn_layer_norm)?
}
};
let residual = &xs;
let xs = xs
.apply(&self.fc1)?
.apply(&self.activation_fn)?
.apply(&self.fc2)?;
let xs = (xs + residual)?.apply(&self.final_layer_norm)?;
Ok(xs)
}
fn reset_kv_cache(&mut self) {
self.self_attn.reset_kv_cache();
self.encoder_attn.reset_kv_cache()
}
}
#[derive(Debug, Clone)]
pub struct Encoder {
embed_tokens: Embedding,
embed_positions: SinusoidalPositionalEmbedding,
layers: Vec<EncoderLayer>,
embed_scale: Option<f64>,
}
impl Encoder {
fn new(cfg: &Config, embed_tokens: &Embedding, vb: VarBuilder) -> Result<Self> {
let embed_positions = SinusoidalPositionalEmbedding::new(cfg, vb.pp("embed_positions"))?;
let mut layers = Vec::with_capacity(cfg.encoder_layers);
let vb_l = vb.pp("layers");
for idx in 0..cfg.encoder_layers {
let layer = EncoderLayer::new(cfg, vb_l.pp(idx))?;
layers.push(layer)
}
let embed_scale = if cfg.scale_embedding {
Some((cfg.d_model as f64).sqrt())
} else {
None
};
Ok(Self {
embed_tokens: embed_tokens.clone(),
embed_positions,
layers,
embed_scale,
})
}
pub fn forward(&mut self, xs: &Tensor, past_kv_len: usize) -> Result<Tensor> {
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
None => xs,
Some(scale) => (xs * scale)?,
};
let embed_pos = self
.embed_positions
.forward(&xs, past_kv_len)?
.unsqueeze(0)?;
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs)?
}
Ok(xs)
}
pub fn reset_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.reset_kv_cache()
}
}
}
#[derive(Debug, Clone)]
pub struct Decoder {
embed_tokens: Embedding,
embed_positions: SinusoidalPositionalEmbedding,
layers: Vec<DecoderLayer>,
embed_scale: Option<f64>,
}
impl Decoder {
fn new(cfg: &Config, embed_tokens: &Embedding, vb: VarBuilder) -> Result<Self> {
let embed_positions = SinusoidalPositionalEmbedding::new(cfg, vb.pp("embed_positions"))?;
let mut layers = Vec::with_capacity(cfg.decoder_layers);
let vb_l = vb.pp("layers");
for idx in 0..cfg.decoder_layers {
let layer = DecoderLayer::new(cfg, vb_l.pp(idx))?;
layers.push(layer)
}
let embed_scale = if cfg.scale_embedding {
Some((cfg.d_model as f64).sqrt())
} else {
None
};
Ok(Self {
embed_tokens: embed_tokens.clone(),
embed_positions,
layers,
embed_scale,
})
}
pub fn forward(
&mut self,
xs: &Tensor,
encoder_xs: Option<&Tensor>,
past_kv_len: usize,
attn_mask: &Tensor,
) -> Result<Tensor> {
let xs = xs.apply(&self.embed_tokens)?;
let xs = match self.embed_scale {
None => xs,
Some(scale) => (xs * scale)?,
};
let embed_pos = self
.embed_positions
.forward(&xs, past_kv_len)?
.unsqueeze(0)?;
let mut xs = xs.broadcast_add(&embed_pos)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, encoder_xs, attn_mask)?;
}
Ok(xs)
}
pub fn reset_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.reset_kv_cache()
}
}
}
#[derive(Debug, Clone)]
struct Model {
shared: Embedding,
encoder: Encoder,
decoder: Decoder,
}
impl Model {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let shared = Embedding::new(cfg.vocab_size, cfg.d_model, vb.pp("shared"))?;
let encoder = Encoder::new(cfg, &shared, vb.pp("encoder"))?;
let decoder = Decoder::new(cfg, &shared, vb.pp("decoder"))?;
Ok(Self {
shared,
encoder,
decoder,
})
}
fn reset_kv_cache(&mut self) {
self.encoder.reset_kv_cache();
self.decoder.reset_kv_cache();
}
}
#[derive(Debug, Clone)]
pub struct MTModel {
model: Model,
lm_head: Linear,
final_logits_bias: Tensor,
}
impl MTModel {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let target_vocab_size = cfg.decoder_vocab_size.unwrap_or(cfg.vocab_size);
let final_logits_bias = vb.get((1, target_vocab_size), "final_logits_bias")?;
let model = Model::new(cfg, vb.pp("model"))?;
let lm_head = Linear::from_weights(model.shared.embeddings().clone(), None);
Ok(Self {
model,
lm_head,
final_logits_bias,
})
}
pub fn encoder(&mut self) -> &mut Encoder {
&mut self.model.encoder
}
pub fn decoder(&mut self) -> &mut Decoder {
&mut self.model.decoder
}
pub fn decode(
&mut self,
xs: &Tensor,
encoder_xs: &Tensor,
past_kv_len: usize,
) -> Result<Tensor> {
let seq_len = xs.dim(1)?;
let mask: Vec<_> = (0..seq_len)
.flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (seq_len, seq_len), xs.device())?;
self.model
.decoder
.forward(xs, Some(encoder_xs), past_kv_len, &mask)?
.apply(&self.lm_head)?
.broadcast_add(&self.final_logits_bias)
}
pub fn reset_kv_cache(&mut self) {
self.model.reset_kv_cache();
}
}
| candle/candle-transformers/src/models/marian.rs/0 | {
"file_path": "candle/candle-transformers/src/models/marian.rs",
"repo_id": "candle",
"token_count": 8917
} | 32 |
use crate::quantized_nn::{layer_norm, linear_no_bias, Embedding, Linear};
pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{Activation, LayerNorm};
use std::sync::Arc;
pub use crate::models::stable_lm::Config;
use crate::models::stable_lm::RotaryEmbedding;
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
gate_proj: Linear,
up_proj: Linear,
down_proj: Linear,
act_fn: Activation,
span: tracing::Span,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let intermediate_sz = cfg.intermediate_size;
let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
Ok(Self {
gate_proj,
up_proj,
down_proj,
act_fn: cfg.hidden_act,
span: tracing::span!(tracing::Level::TRACE, "mlp"),
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
let rhs = xs.apply(&self.up_proj)?;
(lhs * rhs)?.apply(&self.down_proj)
}
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
o_proj: Linear,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
hidden_size: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
use_cache: bool,
rotary_ndims: usize,
span: tracing::Span,
}
impl Attention {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let head_dim = cfg.head_dim();
let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads;
let q_proj = linear_no_bias(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
let k_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
let v_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
num_heads,
num_kv_heads,
num_kv_groups: cfg.num_kv_groups(),
head_dim,
hidden_size: hidden_sz,
rotary_emb,
kv_cache: None,
use_cache: cfg.use_cache,
rotary_ndims: cfg.rotary_ndims(),
span: tracing::span!(tracing::Level::TRACE, "attn"),
})
}
fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
let n_rep = self.num_kv_groups;
if n_rep == 1 {
Ok(xs)
} else {
let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
xs.unsqueeze(2)?
.expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
.reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
}
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let _enter = self.span.enter();
let (b_sz, q_len, _) = xs.dims3()?;
let query_states = self.q_proj.forward(xs)?;
let key_states = self.k_proj.forward(xs)?;
let value_states = self.v_proj.forward(xs)?;
let query_states = query_states
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?;
let key_states = key_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let value_states = value_states
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?;
let (rot_ndims, pass_ndims) = (self.rotary_ndims, self.head_dim - self.rotary_ndims);
let query_rot = query_states.narrow(D::Minus1, 0, rot_ndims)?;
let query_pass = query_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
let key_rot = key_states.narrow(D::Minus1, 0, rot_ndims)?;
let key_pass = key_states.narrow(D::Minus1, rot_ndims, pass_ndims)?;
let (query_rot, key_rot) =
self.rotary_emb
.apply_rotary_emb_qkv(&query_rot, &key_rot, seqlen_offset)?;
let query_states = Tensor::cat(&[query_rot, query_pass], D::Minus1)?.contiguous()?;
let key_states = Tensor::cat(&[key_rot, key_pass], D::Minus1)?.contiguous()?;
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
(key_states, value_states)
}
};
if self.use_cache {
self.kv_cache = Some((key_states.clone(), value_states.clone()));
}
let key_states = self.repeat_kv(key_states)?.contiguous()?;
let value_states = self.repeat_kv(value_states)?.contiguous()?;
let attn_output = {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
attn_weights.matmul(&value_states)?
};
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, self.hidden_size))?
.apply(&self.o_proj)
}
}
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
mlp: MLP,
input_layernorm: LayerNorm,
post_attention_layernorm: LayerNorm,
span: tracing::Span,
}
impl DecoderLayer {
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
let input_layernorm = layer_norm(cfg.hidden_size, cfg.norm_eps, vb.pp("input_layernorm"))?;
let post_attention_layernorm = layer_norm(
cfg.hidden_size,
cfg.norm_eps,
vb.pp("post_attention_layernorm"),
)?;
Ok(Self {
self_attn,
mlp,
input_layernorm,
post_attention_layernorm,
span: tracing::span!(tracing::Level::TRACE, "layer"),
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let _enter = self.span.enter();
let residual = xs;
let xs = self.input_layernorm.forward(xs)?;
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
residual + xs
}
}
#[derive(Debug, Clone)]
pub struct Model {
embed_tokens: Embedding,
layers: Vec<DecoderLayer>,
norm: LayerNorm,
lm_head: Linear,
device: Device,
span: tracing::Span,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model");
let embed_tokens =
Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
let rotary_emb = Arc::new(RotaryEmbedding::new(DType::F32, cfg, vb_m.device())?);
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let norm = layer_norm(cfg.hidden_size, cfg.norm_eps, vb_m.pp("norm"))?;
let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
Ok(Self {
embed_tokens,
layers,
norm,
lm_head,
device: vb.device().clone(),
span: tracing::span!(tracing::Level::TRACE, "model"),
})
}
fn prepare_decoder_attention_mask(
&self,
b_size: usize,
tgt_len: usize,
seqlen_offset: usize,
) -> Result<Tensor> {
// Sliding window mask?
let mask: Vec<_> = (0..tgt_len)
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
.collect();
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
let mask = if seqlen_offset > 0 {
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
Tensor::cat(&[&mask0, &mask], D::Minus1)?
} else {
mask
};
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
.to_dtype(DType::F32)
}
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let _enter = self.span.enter();
let (b_size, seq_len) = input_ids.dims2()?;
let attention_mask = if seq_len <= 1 {
None
} else {
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
Some(mask)
};
let mut xs = self.embed_tokens.forward(input_ids)?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm)?
.apply(&self.lm_head)
}
}
| candle/candle-transformers/src/models/quantized_stable_lm.rs/0 | {
"file_path": "candle/candle-transformers/src/models/quantized_stable_lm.rs",
"repo_id": "candle",
"token_count": 5319
} | 33 |
//! Ancestral sampling with Euler method steps.
//!
//! Reference implementation in Rust:
//!
//! https://github.com/pykeio/diffusers/blob/250b9ad1898af41e76a74c0d8d4292652823338a/src/schedulers/euler_ancestral_discrete.rs
//!
//! Based on the original [`k-diffusion` implementation by Katherine Crowson][kd].
///
/// [kd]: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72
use super::{
schedulers::{
betas_for_alpha_bar, BetaSchedule, PredictionType, Scheduler, SchedulerConfig,
TimestepSpacing,
},
utils::interp,
};
use candle::{bail, Error, Result, Tensor};
/// The configuration for the EulerAncestral Discrete scheduler.
#[derive(Debug, Clone, Copy)]
pub struct EulerAncestralDiscreteSchedulerConfig {
/// The value of beta at the beginning of training.n
pub beta_start: f64,
/// The value of beta at the end of training.
pub beta_end: f64,
/// How beta evolved during training.
pub beta_schedule: BetaSchedule,
/// Adjust the indexes of the inference schedule by this value.
pub steps_offset: usize,
/// prediction type of the scheduler function, one of `epsilon` (predicting
/// the noise of the diffusion process), `sample` (directly predicting the noisy sample`)
/// or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
pub prediction_type: PredictionType,
/// number of diffusion steps used to train the model
pub train_timesteps: usize,
/// time step spacing for the diffusion process
pub timestep_spacing: TimestepSpacing,
}
impl Default for EulerAncestralDiscreteSchedulerConfig {
fn default() -> Self {
Self {
beta_start: 0.00085f64,
beta_end: 0.012f64,
beta_schedule: BetaSchedule::ScaledLinear,
steps_offset: 1,
prediction_type: PredictionType::Epsilon,
train_timesteps: 1000,
timestep_spacing: TimestepSpacing::Leading,
}
}
}
impl SchedulerConfig for EulerAncestralDiscreteSchedulerConfig {
fn build(&self, inference_steps: usize) -> Result<Box<dyn Scheduler>> {
Ok(Box::new(EulerAncestralDiscreteScheduler::new(
inference_steps,
*self,
)?))
}
}
/// The EulerAncestral Discrete scheduler.
#[derive(Debug, Clone)]
pub struct EulerAncestralDiscreteScheduler {
timesteps: Vec<usize>,
sigmas: Vec<f64>,
init_noise_sigma: f64,
pub config: EulerAncestralDiscreteSchedulerConfig,
}
// clip_sample: False, set_alpha_to_one: False
impl EulerAncestralDiscreteScheduler {
/// Creates a new EulerAncestral Discrete scheduler given the number of steps to be
/// used for inference as well as the number of steps that was used
/// during training.
pub fn new(
inference_steps: usize,
config: EulerAncestralDiscreteSchedulerConfig,
) -> Result<Self> {
let step_ratio = config.train_timesteps / inference_steps;
let timesteps: Vec<usize> = match config.timestep_spacing {
TimestepSpacing::Leading => (0..(inference_steps))
.map(|s| s * step_ratio + config.steps_offset)
.rev()
.collect(),
TimestepSpacing::Trailing => std::iter::successors(Some(config.train_timesteps), |n| {
if *n > step_ratio {
Some(n - step_ratio)
} else {
None
}
})
.map(|n| n - 1)
.collect(),
TimestepSpacing::Linspace => {
super::utils::linspace(0.0, (config.train_timesteps - 1) as f64, inference_steps)?
.to_vec1::<f64>()?
.iter()
.map(|&f| f as usize)
.rev()
.collect()
}
};
let betas = match config.beta_schedule {
BetaSchedule::ScaledLinear => super::utils::linspace(
config.beta_start.sqrt(),
config.beta_end.sqrt(),
config.train_timesteps,
)?
.sqr()?,
BetaSchedule::Linear => {
super::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)?
}
BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?,
};
let betas = betas.to_vec1::<f64>()?;
let mut alphas_cumprod = Vec::with_capacity(betas.len());
for &beta in betas.iter() {
let alpha = 1.0 - beta;
alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64))
}
let sigmas: Vec<f64> = alphas_cumprod
.iter()
.map(|&f| ((1. - f) / f).sqrt())
.collect();
let sigmas_xa: Vec<_> = (0..sigmas.len()).map(|i| i as f64).collect();
let mut sigmas_int = interp(
×teps.iter().map(|&t| t as f64).collect::<Vec<_>>(),
&sigmas_xa,
&sigmas,
);
sigmas_int.push(0.0);
// standard deviation of the initial noise distribution
// f64 does not implement Ord such that there is no `max`, so we need to use this workaround
let init_noise_sigma = *sigmas_int
.iter()
.chain(std::iter::once(&0.0))
.reduce(|a, b| if a > b { a } else { b })
.expect("init_noise_sigma could not be reduced from sigmas - this should never happen");
Ok(Self {
sigmas: sigmas_int,
timesteps,
init_noise_sigma,
config,
})
}
}
impl Scheduler for EulerAncestralDiscreteScheduler {
fn timesteps(&self) -> &[usize] {
self.timesteps.as_slice()
}
/// Ensures interchangeability with schedulers that need to scale the denoising model input
/// depending on the current timestep.
///
/// Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm
fn scale_model_input(&self, sample: Tensor, timestep: usize) -> Result<Tensor> {
let step_index = match self.timesteps.iter().position(|&t| t == timestep) {
Some(i) => i,
None => bail!("timestep out of this schedulers bounds: {timestep}"),
};
let sigma = self
.sigmas
.get(step_index)
.expect("step_index out of sigma bounds - this shouldn't happen");
sample / ((sigma.powi(2) + 1.).sqrt())
}
/// Performs a backward step during inference.
fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let step_index = self
.timesteps
.iter()
.position(|&p| p == timestep)
.ok_or_else(|| Error::Msg("timestep out of this schedulers bounds".to_string()))?;
let sigma_from = &self.sigmas[step_index];
let sigma_to = &self.sigmas[step_index + 1];
// 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
let pred_original_sample = match self.config.prediction_type {
PredictionType::Epsilon => (sample - (model_output * *sigma_from))?,
PredictionType::VPrediction => {
((model_output * (-sigma_from / (sigma_from.powi(2) + 1.0).sqrt()))?
+ (sample / (sigma_from.powi(2) + 1.0))?)?
}
PredictionType::Sample => bail!("prediction_type not implemented yet: sample"),
};
let sigma_up = (sigma_to.powi(2) * (sigma_from.powi(2) - sigma_to.powi(2))
/ sigma_from.powi(2))
.sqrt();
let sigma_down = (sigma_to.powi(2) - sigma_up.powi(2)).sqrt();
// 2. convert to a ODE derivative
let derivative = ((sample - pred_original_sample)? / *sigma_from)?;
let dt = sigma_down - *sigma_from;
let prev_sample = (sample + derivative * dt)?;
let noise = prev_sample.randn_like(0.0, 1.0)?;
prev_sample + noise * sigma_up
}
fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
let step_index = self
.timesteps
.iter()
.position(|&p| p == timestep)
.ok_or_else(|| Error::Msg("timestep out of this schedulers bounds".to_string()))?;
let sigma = self
.sigmas
.get(step_index)
.expect("step_index out of sigma bounds - this shouldn't happen");
original + (noise * *sigma)?
}
fn init_noise_sigma(&self) -> f64 {
match self.config.timestep_spacing {
TimestepSpacing::Trailing | TimestepSpacing::Linspace => self.init_noise_sigma,
TimestepSpacing::Leading => (self.init_noise_sigma.powi(2) + 1.0).sqrt(),
}
}
}
| candle/candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs/0 | {
"file_path": "candle/candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs",
"repo_id": "candle",
"token_count": 4176
} | 34 |
use super::Config;
use crate::quantized_nn::{layer_norm, linear, linear_no_bias, Embedding, Linear};
pub use crate::quantized_var_builder::VarBuilder;
use candle::{Device, IndexOp, Result, Tensor, D};
use candle_nn::{Conv1d, Conv1dConfig, LayerNorm, Module};
fn conv1d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
config: Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight = vb
.get((out_channels, in_channels, kernel_size), "weight")?
.dequantize(vb.device())?;
let bias = vb.get(out_channels, "bias")?.dequantize(vb.device())?;
Ok(Conv1d::new(weight, Some(bias), config))
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
#[derive(Debug, Clone)]
struct MultiHeadAttention {
query: Linear,
key: Linear,
value: Linear,
out: Linear,
n_head: usize,
span: tracing::Span,
softmax_span: tracing::Span,
matmul_span: tracing::Span,
kv_cache: Option<(Tensor, Tensor)>,
}
impl MultiHeadAttention {
fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "multi-head-attn");
let softmax_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-softmax");
let matmul_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-matmul");
let query = linear(n_state, n_state, vb.pp("q_proj"))?;
let value = linear(n_state, n_state, vb.pp("v_proj"))?;
let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
let out = linear(n_state, n_state, vb.pp("out_proj"))?;
Ok(Self {
query,
key,
value,
out,
n_head,
span,
softmax_span,
matmul_span,
kv_cache: None,
})
}
fn forward(
&mut self,
x: &Tensor,
xa: Option<&Tensor>,
mask: Option<&Tensor>,
flush_cache: bool,
) -> Result<Tensor> {
let _enter = self.span.enter();
let q = self.query.forward(x)?;
let (k, v) = match xa {
None => {
let k = self.key.forward(x)?;
let v = self.value.forward(x)?;
(k, v)
}
Some(x) => {
if flush_cache {
self.kv_cache = None;
}
if let Some((k, v)) = &self.kv_cache {
(k.clone(), v.clone())
} else {
let k = self.key.forward(x)?;
let v = self.value.forward(x)?;
self.kv_cache = Some((k.clone(), v.clone()));
(k, v)
}
}
};
let wv = self.qkv_attention(&q, &k, &v, mask)?;
let out = self.out.forward(&wv)?;
Ok(out)
}
fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
let (n_batch, n_ctx, n_state) = x.dims3()?;
let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
x.reshape(target_dims)?.transpose(1, 2)
}
fn qkv_attention(
&self,
q: &Tensor,
k: &Tensor,
v: &Tensor,
mask: Option<&Tensor>,
) -> Result<Tensor> {
let (_, n_ctx, n_state) = q.dims3()?;
let scale = ((n_state / self.n_head) as f64).powf(-0.25);
let q = (self.reshape_head(q)? * scale)?;
let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
let v = self.reshape_head(v)?.contiguous()?;
let mut qk = {
let _enter = self.matmul_span.enter();
q.matmul(&k)?
};
if let Some(mask) = mask {
let mask = mask.i((0..n_ctx, 0..n_ctx))?;
qk = qk.broadcast_add(&mask)?
}
let w = {
let _enter = self.softmax_span.enter();
candle_nn::ops::softmax_last_dim(&qk)?
};
let wv = {
let _enter = self.matmul_span.enter();
w.matmul(&v)?
}
.transpose(1, 2)?
.flatten_from(2)?;
Ok(wv)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
#[derive(Debug, Clone)]
struct ResidualAttentionBlock {
attn: MultiHeadAttention,
attn_ln: LayerNorm,
cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
mlp_linear1: Linear,
mlp_linear2: Linear,
mlp_ln: LayerNorm,
span: tracing::Span,
}
impl ResidualAttentionBlock {
fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "residual-attn");
let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
let attn_ln = layer_norm(n_state, 1e-5, vb.pp("self_attn_layer_norm"))?;
let cross_attn = if ca {
let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
let cross_attn_ln = layer_norm(n_state, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
Some((cross_attn, cross_attn_ln))
} else {
None
};
let n_mlp = n_state * 4;
let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
let mlp_ln = layer_norm(n_state, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self {
attn,
attn_ln,
cross_attn,
mlp_linear1,
mlp_linear2,
mlp_ln,
span,
})
}
fn forward(
&mut self,
x: &Tensor,
xa: Option<&Tensor>,
mask: Option<&Tensor>,
flush_kv_cache: bool,
) -> Result<Tensor> {
let _enter = self.span.enter();
let attn = self
.attn
.forward(&self.attn_ln.forward(x)?, None, mask, flush_kv_cache)?;
let mut x = (x + attn)?;
if let Some((attn, ln)) = &mut self.cross_attn {
x = (&x + attn.forward(&ln.forward(&x)?, xa, None, flush_kv_cache)?)?;
}
let mlp = x
.apply(&self.mlp_ln)?
.apply(&self.mlp_linear1)?
.gelu()?
.apply(&self.mlp_linear2)?;
x + mlp
}
}
fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
let max_timescale = 10000f32;
let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
let inv_timescales: Vec<_> = (0..channels / 2)
.map(|i| (i as f32 * (-log_timescale_increment)).exp())
.collect();
let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
.to_dtype(candle::DType::F32)?
.unsqueeze(1)?;
let sh = (length, channels / 2);
let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
Ok(sincos)
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
#[derive(Debug, Clone)]
pub struct AudioEncoder {
conv1: Conv1d,
conv2: Conv1d,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln_post: LayerNorm,
span: tracing::Span,
conv1_span: tracing::Span,
conv2_span: tracing::Span,
}
impl AudioEncoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "audio-encoder");
let conv1_span = tracing::span!(tracing::Level::TRACE, "conv1");
let conv2_span = tracing::span!(tracing::Level::TRACE, "conv2");
let n_state = cfg.d_model;
let n_head = cfg.encoder_attention_heads;
let n_ctx = cfg.max_source_positions;
let cfg1 = Conv1dConfig {
padding: 1,
stride: 1,
groups: 1,
dilation: 1,
};
let cfg2 = Conv1dConfig {
padding: 1,
stride: 2,
groups: 1,
dilation: 1,
};
let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
let blocks = (0..cfg.encoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln_post = layer_norm(n_state, 1e-5, vb.pp("layer_norm"))?;
Ok(Self {
conv1,
conv2,
positional_embedding,
blocks,
ln_post,
conv1_span,
conv2_span,
span,
})
}
pub fn forward(&mut self, x: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
let _enter = self.span.enter();
let x = {
let _enter = self.conv1_span.enter();
self.conv1.forward(x)?.gelu()?
};
let x = {
let _enter = self.conv2_span.enter();
self.conv2.forward(&x)?.gelu()?
};
let x = x.transpose(1, 2)?;
let (_bsize, seq_len, _hidden) = x.dims3()?;
let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
let mut x = x.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter_mut() {
x = block.forward(&x, None, None, flush_kv_cache)?
}
let x = self.ln_post.forward(&x)?;
Ok(x)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
#[derive(Debug, Clone)]
pub struct TextDecoder {
token_embedding: Embedding,
positional_embedding: Tensor,
blocks: Vec<ResidualAttentionBlock>,
ln: LayerNorm,
mask: Tensor,
span: tracing::Span,
span_final: tracing::Span,
}
impl TextDecoder {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "text-decoder");
let span_final = tracing::span!(tracing::Level::TRACE, "text-decoder-final");
let n_state = cfg.d_model;
let n_head = cfg.decoder_attention_heads;
let n_ctx = cfg.max_target_positions;
let token_embedding = Embedding::new(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
let positional_embedding = vb
.get((n_ctx, n_state), "embed_positions.weight")?
.dequantize(vb.device())?;
let blocks = (0..cfg.decoder_layers)
.map(|i| {
ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(format!("layers.{i}")))
})
.collect::<Result<Vec<_>>>()?;
let ln = layer_norm(n_state, 1e-5, vb.pp("layer_norm"))?;
let mask: Vec<_> = (0..n_ctx)
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect();
let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
Ok(Self {
token_embedding,
positional_embedding,
blocks,
ln,
mask,
span,
span_final,
})
}
pub fn forward(&mut self, x: &Tensor, xa: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
let _enter = self.span.enter();
let last = x.dim(D::Minus1)?;
let token_embedding = self.token_embedding.forward(x)?;
let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
let mut x = token_embedding.broadcast_add(&positional_embedding)?;
for block in self.blocks.iter_mut() {
x = block.forward(&x, Some(xa), Some(&self.mask), flush_kv_cache)?;
}
self.ln.forward(&x)
}
pub fn final_linear(&self, x: &Tensor) -> Result<Tensor> {
let b_size = x.dim(0)?;
let w = self.token_embedding.embeddings().broadcast_left(b_size)?;
let logits = {
let _enter = self.span_final.enter();
x.matmul(&w.t()?)?
};
Ok(logits)
}
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
#[derive(Debug, Clone)]
pub struct Whisper {
pub encoder: AudioEncoder,
pub decoder: TextDecoder,
pub config: Config,
}
impl Whisper {
pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
Ok(Self {
encoder,
decoder,
config,
})
}
}
| candle/candle-transformers/src/models/whisper/quantized_model.rs/0 | {
"file_path": "candle/candle-transformers/src/models/whisper/quantized_model.rs",
"repo_id": "candle",
"token_count": 6739
} | 35 |
use candle::{Device, Result, Tensor};
use candle_transformers::generation::LogitsProcessor;
#[test]
fn sample_with_zero_temperature() -> Result<()> {
let mut logits_process = LogitsProcessor::new(1337, None, None);
let logits = Tensor::new(&[0.1, 0.2, 0.3, 0.4], &Device::Cpu)?;
let token = logits_process.sample(&logits)?;
assert_eq!(token, 3);
Ok(())
}
#[test]
fn sample_with_temperature() -> Result<()> {
let mut logits_process = LogitsProcessor::new(42, Some(0.9), None);
let logits = Tensor::new(&[0.1, 0.2, 0.3, 0.4], &Device::Cpu)?;
let token = logits_process.sample(&logits)?;
assert_eq!(token, 0);
Ok(())
}
#[test]
fn sample_with_top_p() -> Result<()> {
let mut logits_process = LogitsProcessor::new(42, Some(1.0), Some(0.5));
let logits = Tensor::new(&[0.1, 0.2, 0.3, 0.4], &Device::Cpu)?;
let token = logits_process.sample(&logits)?;
assert_eq!(token, 2);
Ok(())
}
| candle/candle-transformers/tests/generation_tests.rs/0 | {
"file_path": "candle/candle-transformers/tests/generation_tests.rs",
"repo_id": "candle",
"token_count": 408
} | 36 |
cargo build --target wasm32-unknown-unknown --release
wasm-bindgen ../../target/wasm32-unknown-unknown/release/m.wasm --out-dir build --target web
wasm-bindgen ../../target/wasm32-unknown-unknown/release/m-quantized.wasm --out-dir build --target web
| candle/candle-wasm-examples/t5/build-lib.sh/0 | {
"file_path": "candle/candle-wasm-examples/t5/build-lib.sh",
"repo_id": "candle",
"token_count": 84
} | 37 |
use yew_agent::PublicWorker;
fn main() {
candle_wasm_example_whisper::Worker::register();
}
| candle/candle-wasm-examples/whisper/src/bin/worker.rs/0 | {
"file_path": "candle/candle-wasm-examples/whisper/src/bin/worker.rs",
"repo_id": "candle",
"token_count": 38
} | 38 |
use candle::{DType, IndexOp, Result, Tensor, D};
use candle_nn::{
batch_norm, conv2d, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder,
};
use image::DynamicImage;
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct Multiples {
depth: f64,
width: f64,
ratio: f64,
}
impl Multiples {
pub fn n() -> Self {
Self {
depth: 0.33,
width: 0.25,
ratio: 2.0,
}
}
pub fn s() -> Self {
Self {
depth: 0.33,
width: 0.50,
ratio: 2.0,
}
}
pub fn m() -> Self {
Self {
depth: 0.67,
width: 0.75,
ratio: 1.5,
}
}
pub fn l() -> Self {
Self {
depth: 1.00,
width: 1.00,
ratio: 1.0,
}
}
pub fn x() -> Self {
Self {
depth: 1.00,
width: 1.25,
ratio: 1.0,
}
}
fn filters(&self) -> (usize, usize, usize) {
let f1 = (256. * self.width) as usize;
let f2 = (512. * self.width) as usize;
let f3 = (512. * self.width * self.ratio) as usize;
(f1, f2, f3)
}
}
#[derive(Debug)]
struct Upsample {
scale_factor: usize,
}
impl Upsample {
fn new(scale_factor: usize) -> Result<Self> {
Ok(Upsample { scale_factor })
}
}
impl Module for Upsample {
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
let (_b_size, _channels, h, w) = xs.dims4()?;
xs.upsample_nearest2d(self.scale_factor * h, self.scale_factor * w)
}
}
#[derive(Debug)]
struct ConvBlock {
conv: Conv2d,
bn: BatchNorm,
}
impl ConvBlock {
fn load(
vb: VarBuilder,
c1: usize,
c2: usize,
k: usize,
stride: usize,
padding: Option<usize>,
) -> Result<Self> {
let padding = padding.unwrap_or(k / 2);
let cfg = Conv2dConfig {
padding,
stride,
groups: 1,
dilation: 1,
};
let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?;
let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?;
Ok(Self { conv, bn })
}
}
impl Module for ConvBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.conv.forward(xs)?.apply_t(&self.bn, false)?;
candle_nn::ops::silu(&xs)
}
}
#[derive(Debug)]
struct Bottleneck {
cv1: ConvBlock,
cv2: ConvBlock,
residual: bool,
}
impl Bottleneck {
fn load(vb: VarBuilder, c1: usize, c2: usize, shortcut: bool) -> Result<Self> {
let channel_factor = 1.;
let c_ = (c2 as f64 * channel_factor) as usize;
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 3, 1, None)?;
let cv2 = ConvBlock::load(vb.pp("cv2"), c_, c2, 3, 1, None)?;
let residual = c1 == c2 && shortcut;
Ok(Self { cv1, cv2, residual })
}
}
impl Module for Bottleneck {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let ys = self.cv2.forward(&self.cv1.forward(xs)?)?;
if self.residual {
xs + ys
} else {
Ok(ys)
}
}
}
#[derive(Debug)]
struct C2f {
cv1: ConvBlock,
cv2: ConvBlock,
bottleneck: Vec<Bottleneck>,
}
impl C2f {
fn load(vb: VarBuilder, c1: usize, c2: usize, n: usize, shortcut: bool) -> Result<Self> {
let c = (c2 as f64 * 0.5) as usize;
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, 2 * c, 1, 1, None)?;
let cv2 = ConvBlock::load(vb.pp("cv2"), (2 + n) * c, c2, 1, 1, None)?;
let mut bottleneck = Vec::with_capacity(n);
for idx in 0..n {
let b = Bottleneck::load(vb.pp(&format!("bottleneck.{idx}")), c, c, shortcut)?;
bottleneck.push(b)
}
Ok(Self {
cv1,
cv2,
bottleneck,
})
}
}
impl Module for C2f {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let ys = self.cv1.forward(xs)?;
let mut ys = ys.chunk(2, 1)?;
for m in self.bottleneck.iter() {
ys.push(m.forward(ys.last().unwrap())?)
}
let zs = Tensor::cat(ys.as_slice(), 1)?;
self.cv2.forward(&zs)
}
}
#[derive(Debug)]
struct Sppf {
cv1: ConvBlock,
cv2: ConvBlock,
k: usize,
}
impl Sppf {
fn load(vb: VarBuilder, c1: usize, c2: usize, k: usize) -> Result<Self> {
let c_ = c1 / 2;
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 1, 1, None)?;
let cv2 = ConvBlock::load(vb.pp("cv2"), c_ * 4, c2, 1, 1, None)?;
Ok(Self { cv1, cv2, k })
}
}
impl Module for Sppf {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_, _, _, _) = xs.dims4()?;
let xs = self.cv1.forward(xs)?;
let xs2 = xs
.pad_with_zeros(2, self.k / 2, self.k / 2)?
.pad_with_zeros(3, self.k / 2, self.k / 2)?
.max_pool2d_with_stride(self.k, 1)?;
let xs3 = xs2
.pad_with_zeros(2, self.k / 2, self.k / 2)?
.pad_with_zeros(3, self.k / 2, self.k / 2)?
.max_pool2d_with_stride(self.k, 1)?;
let xs4 = xs3
.pad_with_zeros(2, self.k / 2, self.k / 2)?
.pad_with_zeros(3, self.k / 2, self.k / 2)?
.max_pool2d_with_stride(self.k, 1)?;
self.cv2.forward(&Tensor::cat(&[&xs, &xs2, &xs3, &xs4], 1)?)
}
}
#[derive(Debug)]
struct Dfl {
conv: Conv2d,
num_classes: usize,
}
impl Dfl {
fn load(vb: VarBuilder, num_classes: usize) -> Result<Self> {
let conv = conv2d_no_bias(num_classes, 1, 1, Default::default(), vb.pp("conv"))?;
Ok(Self { conv, num_classes })
}
}
impl Module for Dfl {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (b_sz, _channels, anchors) = xs.dims3()?;
let xs = xs
.reshape((b_sz, 4, self.num_classes, anchors))?
.transpose(2, 1)?;
let xs = candle_nn::ops::softmax(&xs, 1)?;
self.conv.forward(&xs)?.reshape((b_sz, 4, anchors))
}
}
#[derive(Debug)]
struct DarkNet {
b1_0: ConvBlock,
b1_1: ConvBlock,
b2_0: C2f,
b2_1: ConvBlock,
b2_2: C2f,
b3_0: ConvBlock,
b3_1: C2f,
b4_0: ConvBlock,
b4_1: C2f,
b5: Sppf,
}
impl DarkNet {
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
let (w, r, d) = (m.width, m.ratio, m.depth);
let b1_0 = ConvBlock::load(vb.pp("b1.0"), 3, (64. * w) as usize, 3, 2, Some(1))?;
let b1_1 = ConvBlock::load(
vb.pp("b1.1"),
(64. * w) as usize,
(128. * w) as usize,
3,
2,
Some(1),
)?;
let b2_0 = C2f::load(
vb.pp("b2.0"),
(128. * w) as usize,
(128. * w) as usize,
(3. * d).round() as usize,
true,
)?;
let b2_1 = ConvBlock::load(
vb.pp("b2.1"),
(128. * w) as usize,
(256. * w) as usize,
3,
2,
Some(1),
)?;
let b2_2 = C2f::load(
vb.pp("b2.2"),
(256. * w) as usize,
(256. * w) as usize,
(6. * d).round() as usize,
true,
)?;
let b3_0 = ConvBlock::load(
vb.pp("b3.0"),
(256. * w) as usize,
(512. * w) as usize,
3,
2,
Some(1),
)?;
let b3_1 = C2f::load(
vb.pp("b3.1"),
(512. * w) as usize,
(512. * w) as usize,
(6. * d).round() as usize,
true,
)?;
let b4_0 = ConvBlock::load(
vb.pp("b4.0"),
(512. * w) as usize,
(512. * w * r) as usize,
3,
2,
Some(1),
)?;
let b4_1 = C2f::load(
vb.pp("b4.1"),
(512. * w * r) as usize,
(512. * w * r) as usize,
(3. * d).round() as usize,
true,
)?;
let b5 = Sppf::load(
vb.pp("b5.0"),
(512. * w * r) as usize,
(512. * w * r) as usize,
5,
)?;
Ok(Self {
b1_0,
b1_1,
b2_0,
b2_1,
b2_2,
b3_0,
b3_1,
b4_0,
b4_1,
b5,
})
}
fn forward(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
let x1 = self.b1_1.forward(&self.b1_0.forward(xs)?)?;
let x2 = self
.b2_2
.forward(&self.b2_1.forward(&self.b2_0.forward(&x1)?)?)?;
let x3 = self.b3_1.forward(&self.b3_0.forward(&x2)?)?;
let x4 = self.b4_1.forward(&self.b4_0.forward(&x3)?)?;
let x5 = self.b5.forward(&x4)?;
Ok((x2, x3, x5))
}
}
#[derive(Debug)]
struct YoloV8Neck {
up: Upsample,
n1: C2f,
n2: C2f,
n3: ConvBlock,
n4: C2f,
n5: ConvBlock,
n6: C2f,
}
impl YoloV8Neck {
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
let up = Upsample::new(2)?;
let (w, r, d) = (m.width, m.ratio, m.depth);
let n = (3. * d).round() as usize;
let n1 = C2f::load(
vb.pp("n1"),
(512. * w * (1. + r)) as usize,
(512. * w) as usize,
n,
false,
)?;
let n2 = C2f::load(
vb.pp("n2"),
(768. * w) as usize,
(256. * w) as usize,
n,
false,
)?;
let n3 = ConvBlock::load(
vb.pp("n3"),
(256. * w) as usize,
(256. * w) as usize,
3,
2,
Some(1),
)?;
let n4 = C2f::load(
vb.pp("n4"),
(768. * w) as usize,
(512. * w) as usize,
n,
false,
)?;
let n5 = ConvBlock::load(
vb.pp("n5"),
(512. * w) as usize,
(512. * w) as usize,
3,
2,
Some(1),
)?;
let n6 = C2f::load(
vb.pp("n6"),
(512. * w * (1. + r)) as usize,
(512. * w * r) as usize,
n,
false,
)?;
Ok(Self {
up,
n1,
n2,
n3,
n4,
n5,
n6,
})
}
fn forward(&self, p3: &Tensor, p4: &Tensor, p5: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
let x = self
.n1
.forward(&Tensor::cat(&[&self.up.forward(p5)?, p4], 1)?)?;
let head_1 = self
.n2
.forward(&Tensor::cat(&[&self.up.forward(&x)?, p3], 1)?)?;
let head_2 = self
.n4
.forward(&Tensor::cat(&[&self.n3.forward(&head_1)?, &x], 1)?)?;
let head_3 = self
.n6
.forward(&Tensor::cat(&[&self.n5.forward(&head_2)?, p5], 1)?)?;
Ok((head_1, head_2, head_3))
}
}
#[derive(Debug)]
struct DetectionHead {
dfl: Dfl,
cv2: [(ConvBlock, ConvBlock, Conv2d); 3],
cv3: [(ConvBlock, ConvBlock, Conv2d); 3],
ch: usize,
no: usize,
}
#[derive(Debug)]
struct PoseHead {
detect: DetectionHead,
cv4: [(ConvBlock, ConvBlock, Conv2d); 3],
kpt: (usize, usize),
}
fn make_anchors(
xs0: &Tensor,
xs1: &Tensor,
xs2: &Tensor,
(s0, s1, s2): (usize, usize, usize),
grid_cell_offset: f64,
) -> Result<(Tensor, Tensor)> {
let dev = xs0.device();
let mut anchor_points = vec![];
let mut stride_tensor = vec![];
for (xs, stride) in [(xs0, s0), (xs1, s1), (xs2, s2)] {
// xs is only used to extract the h and w dimensions.
let (_, _, h, w) = xs.dims4()?;
let sx = (Tensor::arange(0, w as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
let sy = (Tensor::arange(0, h as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
let sx = sx
.reshape((1, sx.elem_count()))?
.repeat((h, 1))?
.flatten_all()?;
let sy = sy
.reshape((sy.elem_count(), 1))?
.repeat((1, w))?
.flatten_all()?;
anchor_points.push(Tensor::stack(&[&sx, &sy], D::Minus1)?);
stride_tensor.push((Tensor::ones(h * w, DType::F32, dev)? * stride as f64)?);
}
let anchor_points = Tensor::cat(anchor_points.as_slice(), 0)?;
let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?;
Ok((anchor_points, stride_tensor))
}
struct DetectionHeadOut {
pred: Tensor,
anchors: Tensor,
strides: Tensor,
}
fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> {
let chunks = distance.chunk(2, 1)?;
let lt = &chunks[0];
let rb = &chunks[1];
let x1y1 = anchor_points.sub(lt)?;
let x2y2 = anchor_points.add(rb)?;
let c_xy = ((&x1y1 + &x2y2)? * 0.5)?;
let wh = (&x2y2 - &x1y1)?;
Tensor::cat(&[c_xy, wh], 1)
}
impl DetectionHead {
fn load(vb: VarBuilder, nc: usize, filters: (usize, usize, usize)) -> Result<Self> {
let ch = 16;
let dfl = Dfl::load(vb.pp("dfl"), ch)?;
let c1 = usize::max(filters.0, nc);
let c2 = usize::max(filters.0 / 4, ch * 4);
let cv3 = [
Self::load_cv3(vb.pp("cv3.0"), c1, nc, filters.0)?,
Self::load_cv3(vb.pp("cv3.1"), c1, nc, filters.1)?,
Self::load_cv3(vb.pp("cv3.2"), c1, nc, filters.2)?,
];
let cv2 = [
Self::load_cv2(vb.pp("cv2.0"), c2, ch, filters.0)?,
Self::load_cv2(vb.pp("cv2.1"), c2, ch, filters.1)?,
Self::load_cv2(vb.pp("cv2.2"), c2, ch, filters.2)?,
];
let no = nc + ch * 4;
Ok(Self {
dfl,
cv2,
cv3,
ch,
no,
})
}
fn load_cv3(
vb: VarBuilder,
c1: usize,
nc: usize,
filter: usize,
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?;
let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?;
let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?;
Ok((block0, block1, conv))
}
fn load_cv2(
vb: VarBuilder,
c2: usize,
ch: usize,
filter: usize,
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
let block0 = ConvBlock::load(vb.pp("0"), filter, c2, 3, 1, None)?;
let block1 = ConvBlock::load(vb.pp("1"), c2, c2, 3, 1, None)?;
let conv = conv2d(c2, 4 * ch, 1, Default::default(), vb.pp("2"))?;
Ok((block0, block1, conv))
}
fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<DetectionHeadOut> {
let forward_cv = |xs, i: usize| {
let xs_2 = self.cv2[i].0.forward(xs)?;
let xs_2 = self.cv2[i].1.forward(&xs_2)?;
let xs_2 = self.cv2[i].2.forward(&xs_2)?;
let xs_3 = self.cv3[i].0.forward(xs)?;
let xs_3 = self.cv3[i].1.forward(&xs_3)?;
let xs_3 = self.cv3[i].2.forward(&xs_3)?;
Tensor::cat(&[&xs_2, &xs_3], 1)
};
let xs0 = forward_cv(xs0, 0)?;
let xs1 = forward_cv(xs1, 1)?;
let xs2 = forward_cv(xs2, 2)?;
let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?;
let anchors = anchors.transpose(0, 1)?.unsqueeze(0)?;
let strides = strides.transpose(0, 1)?;
let reshape = |xs: &Tensor| {
let d = xs.dim(0)?;
let el = xs.elem_count();
xs.reshape((d, self.no, el / (d * self.no)))
};
let ys0 = reshape(&xs0)?;
let ys1 = reshape(&xs1)?;
let ys2 = reshape(&xs2)?;
let x_cat = Tensor::cat(&[ys0, ys1, ys2], 2)?;
let box_ = x_cat.i((.., ..self.ch * 4))?;
let cls = x_cat.i((.., self.ch * 4..))?;
let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors)?;
let dbox = dbox.broadcast_mul(&strides)?;
let pred = Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)?;
Ok(DetectionHeadOut {
pred,
anchors,
strides,
})
}
}
impl PoseHead {
// kpt: keypoints, (17, 3)
// nc: num-classes, 80
fn load(
vb: VarBuilder,
nc: usize,
kpt: (usize, usize),
filters: (usize, usize, usize),
) -> Result<Self> {
let detect = DetectionHead::load(vb.clone(), nc, filters)?;
let nk = kpt.0 * kpt.1;
let c4 = usize::max(filters.0 / 4, nk);
let cv4 = [
Self::load_cv4(vb.pp("cv4.0"), c4, nk, filters.0)?,
Self::load_cv4(vb.pp("cv4.1"), c4, nk, filters.1)?,
Self::load_cv4(vb.pp("cv4.2"), c4, nk, filters.2)?,
];
Ok(Self { detect, cv4, kpt })
}
fn load_cv4(
vb: VarBuilder,
c1: usize,
nc: usize,
filter: usize,
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?;
let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?;
let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?;
Ok((block0, block1, conv))
}
fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> {
let d = self.detect.forward(xs0, xs1, xs2)?;
let forward_cv = |xs: &Tensor, i: usize| {
let (b_sz, _, h, w) = xs.dims4()?;
let xs = self.cv4[i].0.forward(xs)?;
let xs = self.cv4[i].1.forward(&xs)?;
let xs = self.cv4[i].2.forward(&xs)?;
xs.reshape((b_sz, self.kpt.0 * self.kpt.1, h * w))
};
let xs0 = forward_cv(xs0, 0)?;
let xs1 = forward_cv(xs1, 1)?;
let xs2 = forward_cv(xs2, 2)?;
let xs = Tensor::cat(&[xs0, xs1, xs2], D::Minus1)?;
let (b_sz, _nk, hw) = xs.dims3()?;
let xs = xs.reshape((b_sz, self.kpt.0, self.kpt.1, hw))?;
let ys01 = ((xs.i((.., .., 0..2))? * 2.)?.broadcast_add(&d.anchors)? - 0.5)?
.broadcast_mul(&d.strides)?;
let ys2 = candle_nn::ops::sigmoid(&xs.i((.., .., 2..3))?)?;
let ys = Tensor::cat(&[ys01, ys2], 2)?.flatten(1, 2)?;
Tensor::cat(&[d.pred, ys], 1)
}
}
#[derive(Debug)]
pub struct YoloV8 {
net: DarkNet,
fpn: YoloV8Neck,
head: DetectionHead,
}
impl YoloV8 {
pub fn load(vb: VarBuilder, m: Multiples, num_classes: usize) -> Result<Self> {
let net = DarkNet::load(vb.pp("net"), m)?;
let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?;
let head = DetectionHead::load(vb.pp("head"), num_classes, m.filters())?;
Ok(Self { net, fpn, head })
}
}
impl Module for YoloV8 {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (xs1, xs2, xs3) = self.net.forward(xs)?;
let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
Ok(self.head.forward(&xs1, &xs2, &xs3)?.pred)
}
}
#[derive(Debug)]
pub struct YoloV8Pose {
net: DarkNet,
fpn: YoloV8Neck,
head: PoseHead,
}
impl YoloV8Pose {
pub fn load(
vb: VarBuilder,
m: Multiples,
num_classes: usize,
kpt: (usize, usize),
) -> Result<Self> {
let net = DarkNet::load(vb.pp("net"), m)?;
let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?;
let head = PoseHead::load(vb.pp("head"), num_classes, kpt, m.filters())?;
Ok(Self { net, fpn, head })
}
}
impl Module for YoloV8Pose {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (xs1, xs2, xs3) = self.net.forward(xs)?;
let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
self.head.forward(&xs1, &xs2, &xs3)
}
}
#[derive(Debug, Clone, Copy, PartialEq, serde::Serialize, serde::Deserialize)]
pub struct KeyPoint {
pub x: f32,
pub y: f32,
pub mask: f32,
}
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
pub struct Bbox {
pub xmin: f32,
pub ymin: f32,
pub xmax: f32,
pub ymax: f32,
pub confidence: f32,
pub keypoints: Vec<KeyPoint>,
}
// Intersection over union of two bounding boxes.
fn iou(b1: &Bbox, b2: &Bbox) -> f32 {
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
let i_xmin = b1.xmin.max(b2.xmin);
let i_xmax = b1.xmax.min(b2.xmax);
let i_ymin = b1.ymin.max(b2.ymin);
let i_ymax = b1.ymax.min(b2.ymax);
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
i_area / (b1_area + b2_area - i_area)
}
pub fn report_detect(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
conf_threshold: f32,
iou_threshold: f32,
) -> Result<Vec<Vec<Bbox>>> {
let (pred_size, npreds) = pred.dims2()?;
let nclasses = pred_size - 4;
let conf_threshold = conf_threshold.clamp(0.0, 1.0);
let iou_threshold = iou_threshold.clamp(0.0, 1.0);
// The bounding boxes grouped by (maximum) class index.
let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect();
// Extract the bounding boxes for which confidence is above the threshold.
for index in 0..npreds {
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
let confidence = *pred[4..].iter().max_by(|x, y| x.total_cmp(y)).unwrap();
if confidence > conf_threshold {
let mut class_index = 0;
for i in 0..nclasses {
if pred[4 + i] > pred[4 + class_index] {
class_index = i
}
}
if pred[class_index + 4] > 0. {
let bbox = Bbox {
xmin: pred[0] - pred[2] / 2.,
ymin: pred[1] - pred[3] / 2.,
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
keypoints: vec![],
};
bboxes[class_index].push(bbox)
}
}
}
non_maximum_suppression(&mut bboxes, iou_threshold);
// Annotate the original image and print boxes information.
let (initial_h, initial_w) = (img.height() as f32, img.width() as f32);
let w_ratio = initial_w / w as f32;
let h_ratio = initial_h / h as f32;
for (class_index, bboxes_for_class) in bboxes.iter_mut().enumerate() {
for b in bboxes_for_class.iter_mut() {
crate::console_log!("{}: {:?}", crate::coco_classes::NAMES[class_index], b);
b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.);
b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.);
b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.);
b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.);
}
}
Ok(bboxes)
}
fn non_maximum_suppression(bboxes: &mut [Vec<Bbox>], threshold: f32) {
// Perform non-maximum suppression.
for bboxes_for_class in bboxes.iter_mut() {
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
let mut current_index = 0;
for index in 0..bboxes_for_class.len() {
let mut drop = false;
for prev_index in 0..current_index {
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
if iou > threshold {
drop = true;
break;
}
}
if !drop {
bboxes_for_class.swap(current_index, index);
current_index += 1;
}
}
bboxes_for_class.truncate(current_index);
}
}
pub fn report_pose(
pred: &Tensor,
img: DynamicImage,
w: usize,
h: usize,
confidence_threshold: f32,
nms_threshold: f32,
) -> Result<Vec<Bbox>> {
let (pred_size, npreds) = pred.dims2()?;
if pred_size != 17 * 3 + 4 + 1 {
candle::bail!("unexpected pred-size {pred_size}");
}
let mut bboxes = vec![];
// Extract the bounding boxes for which confidence is above the threshold.
for index in 0..npreds {
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
let confidence = pred[4];
if confidence > confidence_threshold {
let keypoints = (0..17)
.map(|i| KeyPoint {
x: pred[3 * i + 5],
y: pred[3 * i + 6],
mask: pred[3 * i + 7],
})
.collect::<Vec<_>>();
let bbox = Bbox {
xmin: pred[0] - pred[2] / 2.,
ymin: pred[1] - pred[3] / 2.,
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
keypoints,
};
bboxes.push(bbox)
}
}
let mut bboxes = vec![bboxes];
non_maximum_suppression(&mut bboxes, nms_threshold);
let mut bboxes = bboxes.into_iter().next().unwrap();
let (initial_h, initial_w) = (img.height() as f32, img.width() as f32);
let w_ratio = initial_w / w as f32;
let h_ratio = initial_h / h as f32;
for b in bboxes.iter_mut() {
crate::console_log!("detected {b:?}");
b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.);
b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.);
b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.);
b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.);
for kp in b.keypoints.iter_mut() {
kp.x = (kp.x * w_ratio).clamp(0., initial_w - 1.);
kp.y = (kp.y * h_ratio).clamp(0., initial_h - 1.);
}
}
Ok(bboxes)
}
| candle/candle-wasm-examples/yolo/src/model.rs/0 | {
"file_path": "candle/candle-wasm-examples/yolo/src/model.rs",
"repo_id": "candle",
"token_count": 14731
} | 39 |
{
"editor.formatOnSave": true,
"editor.defaultFormatter": "esbenp.prettier-vscode",
"editor.codeActionsOnSave": {
"source.fixAll": "explicit"
},
"eslint.validate": ["javascript", "svelte"]
}
| chat-ui/.vscode/settings.json/0 | {
"file_path": "chat-ui/.vscode/settings.json",
"repo_id": "chat-ui",
"token_count": 83
} | 40 |
import { COOKIE_NAME, EXPOSE_API, MESSAGES_BEFORE_LOGIN } from "$env/static/private";
import type { Handle } from "@sveltejs/kit";
import {
PUBLIC_GOOGLE_ANALYTICS_ID,
PUBLIC_ORIGIN,
PUBLIC_APP_DISCLAIMER,
} from "$env/static/public";
import { collections } from "$lib/server/database";
import { base } from "$app/paths";
import { findUser, refreshSessionCookie, requiresUser } from "$lib/server/auth";
import { ERROR_MESSAGES } from "$lib/stores/errors";
import { sha256 } from "$lib/utils/sha256";
import { addWeeks } from "date-fns";
export const handle: Handle = async ({ event, resolve }) => {
if (event.url.pathname.startsWith(`${base}/api/`) && EXPOSE_API !== "true") {
return new Response("API is disabled", { status: 403 });
}
function errorResponse(status: number, message: string) {
const sendJson =
event.request.headers.get("accept")?.includes("application/json") ||
event.request.headers.get("content-type")?.includes("application/json");
return new Response(sendJson ? JSON.stringify({ error: message }) : message, {
status,
headers: {
"content-type": sendJson ? "application/json" : "text/plain",
},
});
}
const token = event.cookies.get(COOKIE_NAME);
let secretSessionId: string;
let sessionId: string;
if (token) {
secretSessionId = token;
sessionId = await sha256(token);
const user = await findUser(sessionId);
if (user) {
event.locals.user = user;
}
} else {
// if the user doesn't have any cookie, we generate one for him
secretSessionId = crypto.randomUUID();
sessionId = await sha256(secretSessionId);
if (await collections.sessions.findOne({ sessionId })) {
return errorResponse(500, "Session ID collision");
}
}
event.locals.sessionId = sessionId;
// CSRF protection
const requestContentType = event.request.headers.get("content-type")?.split(";")[0] ?? "";
/** https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form#attr-enctype */
const nativeFormContentTypes = [
"multipart/form-data",
"application/x-www-form-urlencoded",
"text/plain",
];
if (event.request.method === "POST") {
refreshSessionCookie(event.cookies, event.locals.sessionId);
if (nativeFormContentTypes.includes(requestContentType)) {
const referer = event.request.headers.get("referer");
if (!referer) {
return errorResponse(403, "Non-JSON form requests need to have a referer");
}
const validOrigins = [
new URL(event.request.url).origin,
...(PUBLIC_ORIGIN ? [new URL(PUBLIC_ORIGIN).origin] : []),
];
if (!validOrigins.includes(new URL(referer).origin)) {
return errorResponse(403, "Invalid referer for POST request");
}
}
}
if (event.request.method === "POST") {
// if the request is a POST request we refresh the cookie
refreshSessionCookie(event.cookies, secretSessionId);
await collections.sessions.updateOne(
{ sessionId },
{ $set: { updatedAt: new Date(), expiresAt: addWeeks(new Date(), 2) } }
);
}
if (
!event.url.pathname.startsWith(`${base}/login`) &&
!event.url.pathname.startsWith(`${base}/admin`) &&
!["GET", "OPTIONS", "HEAD"].includes(event.request.method)
) {
if (
!event.locals.user &&
requiresUser &&
!((MESSAGES_BEFORE_LOGIN ? parseInt(MESSAGES_BEFORE_LOGIN) : 0) > 0)
) {
return errorResponse(401, ERROR_MESSAGES.authOnly);
}
// if login is not required and the call is not from /settings and we display the ethics modal with PUBLIC_APP_DISCLAIMER
// we check if the user has accepted the ethics modal first.
// If login is required, `ethicsModalAcceptedAt` is already true at this point, so do not pass this condition. This saves a DB call.
if (
!requiresUser &&
!event.url.pathname.startsWith(`${base}/settings`) &&
!!PUBLIC_APP_DISCLAIMER
) {
const hasAcceptedEthicsModal = await collections.settings.countDocuments({
sessionId: event.locals.sessionId,
ethicsModalAcceptedAt: { $exists: true },
});
if (!hasAcceptedEthicsModal) {
return errorResponse(405, "You need to accept the welcome modal first");
}
}
}
let replaced = false;
const response = await resolve(event, {
transformPageChunk: (chunk) => {
// For some reason, Sveltekit doesn't let us load env variables from .env in the app.html template
if (replaced || !chunk.html.includes("%gaId%")) {
return chunk.html;
}
replaced = true;
return chunk.html.replace("%gaId%", PUBLIC_GOOGLE_ANALYTICS_ID);
},
});
return response;
};
| chat-ui/src/hooks.server.ts/0 | {
"file_path": "chat-ui/src/hooks.server.ts",
"repo_id": "chat-ui",
"token_count": 1640
} | 41 |
<script lang="ts">
import type { WebSearchUpdate } from "$lib/types/MessageUpdate";
import CarbonError from "~icons/carbon/error-filled";
import EosIconsLoading from "~icons/eos-icons/loading";
import IconInternet from "./icons/IconInternet.svelte";
export let classNames = "";
export let webSearchMessages: WebSearchUpdate[] = [];
$: sources = webSearchMessages.find((m) => m.sources)?.sources;
$: error = webSearchMessages.find((m) => m.messageType === "error");
$: loading = !sources && !error;
</script>
<details
class="flex w-fit rounded-xl border border-gray-200 bg-white shadow-sm dark:border-gray-800 dark:bg-gray-900 {classNames} max-w-full"
>
<summary class="grid min-w-72 select-none grid-cols-[40px,1fr] items-center gap-2.5 p-2">
<div
class="relative grid aspect-square place-content-center overflow-hidden rounded-lg bg-gray-100 dark:bg-gray-800"
>
<svg
class="absolute inset-0 text-gray-300 transition-opacity dark:text-gray-700 {loading
? 'opacity-100'
: 'opacity-0'}"
width="40"
height="40"
viewBox="0 0 38 38"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
class="loading-path"
d="M8 2.5H30C30 2.5 35.5 2.5 35.5 8V30C35.5 30 35.5 35.5 30 35.5H8C8 35.5 2.5 35.5 2.5 30V8C2.5 8 2.5 2.5 8 2.5Z"
stroke="currentColor"
stroke-width="1"
stroke-linecap="round"
id="shape"
/>
</svg>
<IconInternet classNames="relative fill-current text-xl" />
</div>
<dl class="leading-4">
<dd class="text-sm">Web Search</dd>
<dt class="flex items-center gap-1 truncate whitespace-nowrap text-[.82rem] text-gray-400">
{#if error}
{error.message}
{:else if sources}
Completed
{:else}
{webSearchMessages[webSearchMessages.length - 1].message}
{/if}
</dt>
</dl>
</summary>
<div class="content px-5 pb-5 pt-4">
{#if webSearchMessages.length === 0}
<div class="mx-auto w-fit">
<EosIconsLoading class="mb-3 h-4 w-4" />
</div>
{:else}
<ol>
{#each webSearchMessages as message}
{#if message.messageType === "update"}
<li class="group border-l pb-6 last:!border-transparent last:pb-0 dark:border-gray-800">
<div class="flex items-start">
<div
class="-ml-1.5 h-3 w-3 flex-none rounded-full bg-gray-200 dark:bg-gray-600 {loading
? 'group-last:animate-pulse group-last:bg-gray-300 group-last:dark:bg-gray-500'
: ''}"
/>
<h3 class="text-md -mt-1.5 pl-2.5 text-gray-800 dark:text-gray-100">
{message.message}
</h3>
</div>
{#if message.args}
<p class="mt-1.5 pl-4 text-gray-500 dark:text-gray-400">
{message.args}
</p>
{/if}
</li>
{:else if message.messageType === "error"}
<li class="group border-l pb-6 last:!border-transparent last:pb-0 dark:border-gray-800">
<div class="flex items-start">
<CarbonError
class="-ml-1.5 h-3 w-3 flex-none scale-110 text-red-700 dark:text-red-500"
/>
<h3 class="text-md -mt-1.5 pl-2.5 text-red-700 dark:text-red-500">
{message.message}
</h3>
</div>
{#if message.args}
<p class="mt-1.5 pl-4 text-gray-500 dark:text-gray-400">
{message.args}
</p>
{/if}
</li>
{/if}
{/each}
</ol>
{/if}
</div>
</details>
<style>
details summary::-webkit-details-marker {
display: none;
}
.loading-path {
stroke-dasharray: 61.45;
animation: loading 2s linear infinite;
}
@keyframes loading {
to {
stroke-dashoffset: 122.9;
}
}
</style>
| chat-ui/src/lib/components/OpenWebSearchResults.svelte/0 | {
"file_path": "chat-ui/src/lib/components/OpenWebSearchResults.svelte",
"repo_id": "chat-ui",
"token_count": 1726
} | 42 |
<script lang="ts">
import type { Message } from "$lib/types/Message";
import { createEventDispatcher, onDestroy } from "svelte";
import CarbonSendAltFilled from "~icons/carbon/send-alt-filled";
import CarbonExport from "~icons/carbon/export";
import CarbonStopFilledAlt from "~icons/carbon/stop-filled-alt";
import CarbonClose from "~icons/carbon/close";
import CarbonCheckmark from "~icons/carbon/checkmark";
import CarbonCaretDown from "~icons/carbon/caret-down";
import EosIconsLoading from "~icons/eos-icons/loading";
import ChatMessages from "./ChatMessages.svelte";
import ChatInput from "./ChatInput.svelte";
import StopGeneratingBtn from "../StopGeneratingBtn.svelte";
import type { Model } from "$lib/types/Model";
import WebSearchToggle from "../WebSearchToggle.svelte";
import LoginModal from "../LoginModal.svelte";
import type { WebSearchUpdate } from "$lib/types/MessageUpdate";
import { page } from "$app/stores";
import FileDropzone from "./FileDropzone.svelte";
import RetryBtn from "../RetryBtn.svelte";
import UploadBtn from "../UploadBtn.svelte";
import file2base64 from "$lib/utils/file2base64";
import type { Assistant } from "$lib/types/Assistant";
import { base } from "$app/paths";
import ContinueBtn from "../ContinueBtn.svelte";
export let messages: Message[] = [];
export let loading = false;
export let pending = false;
export let shared = false;
export let currentModel: Model;
export let models: Model[];
export let assistant: Assistant | undefined = undefined;
export let webSearchMessages: WebSearchUpdate[] = [];
export let preprompt: string | undefined = undefined;
export let files: File[] = [];
$: isReadOnly = !models.some((model) => model.id === currentModel.id);
let loginModalOpen = false;
let message: string;
let timeout: ReturnType<typeof setTimeout>;
let isSharedRecently = false;
$: $page.params.id && (isSharedRecently = false);
const dispatch = createEventDispatcher<{
message: string;
share: void;
stop: void;
retry: { id: Message["id"]; content: string };
continue: { id: Message["id"] };
}>();
const handleSubmit = () => {
if (loading) return;
dispatch("message", message);
message = "";
};
let lastTarget: EventTarget | null = null;
let onDrag = false;
const onDragEnter = (e: DragEvent) => {
lastTarget = e.target;
onDrag = true;
};
const onDragLeave = (e: DragEvent) => {
if (e.target === lastTarget) {
onDrag = false;
}
};
const onDragOver = (e: DragEvent) => {
e.preventDefault();
};
$: lastIsError = messages[messages.length - 1]?.from === "user" && !loading;
$: sources = files.map((file) => file2base64(file));
function onShare() {
dispatch("share");
isSharedRecently = true;
if (timeout) {
clearTimeout(timeout);
}
timeout = setTimeout(() => {
isSharedRecently = false;
}, 2000);
}
onDestroy(() => {
if (timeout) {
clearTimeout(timeout);
}
});
</script>
<div class="relative min-h-0 min-w-0">
{#if loginModalOpen}
<LoginModal
on:close={() => {
loginModalOpen = false;
}}
/>
{/if}
<ChatMessages
{loading}
{pending}
{currentModel}
{models}
{assistant}
{messages}
readOnly={isReadOnly}
isAuthor={!shared}
{webSearchMessages}
{preprompt}
on:message={(ev) => {
if ($page.data.loginRequired) {
loginModalOpen = true;
} else {
dispatch("message", ev.detail);
}
}}
on:vote
on:continue
on:retry={(ev) => {
if (!loading) dispatch("retry", ev.detail);
}}
/>
<div
class="dark:via-gray-80 pointer-events-none absolute inset-x-0 bottom-0 z-0 mx-auto flex w-full max-w-3xl flex-col items-center justify-center bg-gradient-to-t from-white via-white/80 to-white/0 px-3.5 py-4 max-md:border-t max-md:bg-white sm:px-5 md:py-8 xl:max-w-4xl dark:border-gray-800 dark:from-gray-900 dark:to-gray-900/0 max-md:dark:bg-gray-900 [&>*]:pointer-events-auto"
>
{#if sources.length}
<div class="flex flex-row flex-wrap justify-center gap-2.5 max-md:pb-3">
{#each sources as source, index}
{#await source then src}
<div class="relative h-16 w-16 overflow-hidden rounded-lg shadow-lg">
<img
src={`data:image/*;base64,${src}`}
alt="input content"
class="h-full w-full rounded-lg bg-gray-400 object-cover dark:bg-gray-900"
/>
<!-- add a button on top that deletes this image from sources -->
<button
class="absolute left-1 top-1"
on:click={() => {
files = files.filter((_, i) => i !== index);
}}
>
<CarbonClose class="text-md font-black text-gray-300 hover:text-gray-100" />
</button>
</div>
{/await}
{/each}
</div>
{/if}
<div class="w-full">
<div class="flex w-full pb-3">
{#if $page.data.settings?.searchEnabled && !assistant}
<WebSearchToggle />
{/if}
{#if loading}
<StopGeneratingBtn classNames="ml-auto" on:click={() => dispatch("stop")} />
{:else if lastIsError}
<RetryBtn
classNames="ml-auto"
on:click={() =>
dispatch("retry", {
id: messages[messages.length - 1].id,
content: messages[messages.length - 1].content,
})}
/>
{:else}
<div class="ml-auto gap-2">
{#if currentModel.multimodal}
<UploadBtn bind:files classNames="ml-auto" />
{/if}
{#if messages && messages[messages.length - 1]?.interrupted && !isReadOnly}
<ContinueBtn
on:click={() =>
dispatch("continue", {
id: messages[messages.length - 1].id,
})}
/>
{/if}
</div>
{/if}
</div>
<form
on:dragover={onDragOver}
on:dragenter={onDragEnter}
on:dragleave={onDragLeave}
tabindex="-1"
aria-label="file dropzone"
on:submit|preventDefault={handleSubmit}
class="relative flex w-full max-w-4xl flex-1 items-center rounded-xl border bg-gray-100 focus-within:border-gray-300 dark:border-gray-600 dark:bg-gray-700 dark:focus-within:border-gray-500
{isReadOnly ? 'opacity-30' : ''}"
>
{#if onDrag && currentModel.multimodal}
<FileDropzone bind:files bind:onDrag />
{:else}
<div class="flex w-full flex-1 border-none bg-transparent">
{#if lastIsError}
<ChatInput value="Sorry, something went wrong. Please try again." disabled={true} />
{:else}
<ChatInput
placeholder="Ask anything"
bind:value={message}
on:submit={handleSubmit}
on:keypress={(ev) => {
if ($page.data.loginRequired) {
ev.preventDefault();
loginModalOpen = true;
}
}}
maxRows={6}
disabled={isReadOnly || lastIsError}
/>
{/if}
{#if loading}
<button
class="btn mx-1 my-1 inline-block h-[2.4rem] self-end rounded-lg bg-transparent p-1 px-[0.7rem] text-gray-400 disabled:opacity-60 enabled:hover:text-gray-700 md:hidden dark:disabled:opacity-40 enabled:dark:hover:text-gray-100"
on:click={() => dispatch("stop")}
>
<CarbonStopFilledAlt />
</button>
<div
class="mx-1 my-1 hidden h-[2.4rem] items-center p-1 px-[0.7rem] text-gray-400 disabled:opacity-60 enabled:hover:text-gray-700 md:flex dark:disabled:opacity-40 enabled:dark:hover:text-gray-100"
>
<EosIconsLoading />
</div>
{:else}
<button
class="btn mx-1 my-1 h-[2.4rem] self-end rounded-lg bg-transparent p-1 px-[0.7rem] text-gray-400 disabled:opacity-60 enabled:hover:text-gray-700 dark:disabled:opacity-40 enabled:dark:hover:text-gray-100"
disabled={!message || isReadOnly}
type="submit"
>
<CarbonSendAltFilled />
</button>
{/if}
</div>
{/if}
</form>
<div
class="mt-2 flex justify-between self-stretch px-1 text-xs text-gray-400/90 max-md:mb-2 max-sm:gap-2"
>
<p>
Model:
{#if !assistant}
<a href="{base}/settings/{currentModel.id}" class="hover:underline"
>{currentModel.displayName}</a
>{:else}
{@const model = models.find((m) => m.id === assistant?.modelId)}
<a
href="{base}/settings/assistants/{assistant._id}"
class="inline-flex items-center border-b hover:text-gray-600 dark:border-gray-700 dark:hover:text-gray-300"
>{model?.displayName}<CarbonCaretDown class="text-xxs" /></a
>{/if} <span class="max-sm:hidden">·</span><br class="sm:hidden" /> Generated content may
be inaccurate or false.
</p>
{#if messages.length}
<button
class="flex flex-none items-center hover:text-gray-400 max-sm:rounded-lg max-sm:bg-gray-50 max-sm:px-2.5 dark:max-sm:bg-gray-800"
type="button"
class:hover:underline={!isSharedRecently}
on:click={onShare}
disabled={isSharedRecently}
>
{#if isSharedRecently}
<CarbonCheckmark class="text-[.6rem] sm:mr-1.5 sm:text-green-600" />
<div class="text-green-600 max-sm:hidden">Link copied to clipboard</div>
{:else}
<CarbonExport class="text-[.6rem] sm:mr-1.5 sm:text-primary-500" />
<div class="max-sm:hidden">Share this conversation</div>
{/if}
</button>
{/if}
</div>
</div>
</div>
</div>
| chat-ui/src/lib/components/chat/ChatWindow.svelte/0 | {
"file_path": "chat-ui/src/lib/components/chat/ChatWindow.svelte",
"repo_id": "chat-ui",
"token_count": 4036
} | 43 |
import { z } from "zod";
import type { EmbeddingEndpoint } from "../embeddingEndpoints";
import type { Tensor, Pipeline } from "@xenova/transformers";
import { pipeline } from "@xenova/transformers";
export const embeddingEndpointTransformersJSParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("transformersjs"),
});
// Use the Singleton pattern to enable lazy construction of the pipeline.
class TransformersJSModelsSingleton {
static instances: Array<[string, Promise<Pipeline>]> = [];
static async getInstance(modelName: string): Promise<Pipeline> {
const modelPipelineInstance = this.instances.find(([name]) => name === modelName);
if (modelPipelineInstance) {
const [, modelPipeline] = modelPipelineInstance;
return modelPipeline;
}
const newModelPipeline = pipeline("feature-extraction", modelName);
this.instances.push([modelName, newModelPipeline]);
return newModelPipeline;
}
}
export async function calculateEmbedding(modelName: string, inputs: string[]) {
const extractor = await TransformersJSModelsSingleton.getInstance(modelName);
const output: Tensor = await extractor(inputs, { pooling: "mean", normalize: true });
return output.tolist();
}
export function embeddingEndpointTransformersJS(
input: z.input<typeof embeddingEndpointTransformersJSParametersSchema>
): EmbeddingEndpoint {
const { model } = embeddingEndpointTransformersJSParametersSchema.parse(input);
return async ({ inputs }) => {
return calculateEmbedding(model.name, inputs);
};
}
| chat-ui/src/lib/server/embeddingEndpoints/transformersjs/embeddingEndpoints.ts/0 | {
"file_path": "chat-ui/src/lib/server/embeddingEndpoints/transformersjs/embeddingEndpoints.ts",
"repo_id": "chat-ui",
"token_count": 483
} | 44 |
import type { Message } from "$lib/types/Message";
import { format } from "date-fns";
import { generateFromDefaultEndpoint } from "../generateFromDefaultEndpoint";
import { WEBSEARCH_ALLOWLIST, WEBSEARCH_BLOCKLIST } from "$env/static/private";
import { z } from "zod";
import JSON5 from "json5";
const listSchema = z.array(z.string()).default([]);
const allowList = listSchema.parse(JSON5.parse(WEBSEARCH_ALLOWLIST));
const blockList = listSchema.parse(JSON5.parse(WEBSEARCH_BLOCKLIST));
const queryModifier = [
...allowList.map((item) => "site:" + item),
...blockList.map((item) => "-site:" + item),
].join(" ");
export async function generateQuery(messages: Message[]) {
const currentDate = format(new Date(), "MMMM d, yyyy");
const userMessages = messages.filter(({ from }) => from === "user");
const previousUserMessages = userMessages.slice(0, -1);
const lastMessage = userMessages.slice(-1)[0];
const convQuery: Array<Omit<Message, "id">> = [
{
from: "user",
content: `Previous Questions:
- Who is the president of France?
Current Question: What about Mexico?
`,
},
{
from: "assistant",
content: "President of Mexico",
},
{
from: "user",
content: `Previous questions:
- When is the next formula 1 grand prix?
Current Question: Where is it being hosted?`,
},
{
from: "assistant",
content: "location of next formula 1 grand prix",
},
{
from: "user",
content: "Current Question: What type of printhead does the Epson F2270 DTG printer use?",
},
{
from: "assistant",
content: "Epson F2270 DTG printer printhead",
},
{ from: "user", content: "What were the news yesterday?" },
{
from: "assistant",
content: `news ${format(new Date(Date.now() - 864e5), "MMMM d, yyyy")}`,
},
{ from: "user", content: "What is the current weather in Paris?" },
{ from: "assistant", content: `weather in Paris ${currentDate}` },
{
from: "user",
content:
(previousUserMessages.length > 0
? `Previous questions: \n${previousUserMessages
.map(({ content }) => `- ${content}`)
.join("\n")}`
: "") +
"\n\nCurrent Question: " +
lastMessage.content,
},
];
const webQuery = await generateFromDefaultEndpoint({
messages: convQuery,
preprompt: `You are tasked with generating web search queries. Give me an appropriate query to answer my question for google search. Answer with only the query. Today is ${currentDate}`,
});
return (queryModifier + " " + webQuery).trim();
}
| chat-ui/src/lib/server/websearch/generateQuery.ts/0 | {
"file_path": "chat-ui/src/lib/server/websearch/generateQuery.ts",
"repo_id": "chat-ui",
"token_count": 898
} | 45 |
import type { ObjectId } from "mongodb";
import type { Message } from "./Message";
import type { Timestamps } from "./Timestamps";
import type { User } from "./User";
import type { Assistant } from "./Assistant";
export interface Conversation extends Timestamps {
_id: ObjectId;
sessionId?: string;
userId?: User["_id"];
model: string;
embeddingModel: string;
title: string;
messages: Message[];
meta?: {
fromShareId?: string;
};
preprompt?: string;
assistantId?: Assistant["_id"];
}
| chat-ui/src/lib/types/Conversation.ts/0 | {
"file_path": "chat-ui/src/lib/types/Conversation.ts",
"repo_id": "chat-ui",
"token_count": 164
} | 46 |
import { sum } from "./sum";
export function concatUint8Arrays(arrays: Uint8Array[]): Uint8Array {
const totalLength = sum(arrays.map((a) => a.length));
const result = new Uint8Array(totalLength);
let offset = 0;
for (const array of arrays) {
result.set(array, offset);
offset += array.length;
}
return result;
}
| chat-ui/src/lib/utils/concatUint8Arrays.ts/0 | {
"file_path": "chat-ui/src/lib/utils/concatUint8Arrays.ts",
"repo_id": "chat-ui",
"token_count": 117
} | 47 |
<script lang="ts">
import { page } from "$app/stores";
</script>
<div
class="flex items-center justify-center bg-gradient-to-t from-gray-200 text-gray-800 dark:from-gray-700 dark:text-gray-300"
>
<div
class="align-center -mt-24 flex flex-col justify-center rounded-xl border bg-white px-8 pb-2 pt-4 text-center dark:border-gray-700 dark:bg-gray-800"
>
<h1 class="mb-2 text-5xl font-semibold">{$page.status}</h1>
<div class="-mx-8 my-2 h-px bg-gray-200 dark:bg-gray-700" />
<h2 class="max-w-sm text-lg">{$page.error?.message}</h2>
</div>
</div>
| chat-ui/src/routes/+error.svelte/0 | {
"file_path": "chat-ui/src/routes/+error.svelte",
"repo_id": "chat-ui",
"token_count": 241
} | 48 |
import { collections } from "$lib/server/database";
import { ObjectId } from "mongodb";
import { error } from "@sveltejs/kit";
import { authCondition } from "$lib/server/auth";
import { UrlDependency } from "$lib/types/UrlDependency";
export const load = async ({ params, depends, locals }) => {
let conversation;
let shared = false;
// if the conver
if (params.id.length === 7) {
// shared link of length 7
conversation = await collections.sharedConversations.findOne({
_id: params.id,
});
shared = true;
if (!conversation) {
throw error(404, "Conversation not found");
}
} else {
// todo: add validation on params.id
conversation = await collections.conversations.findOne({
_id: new ObjectId(params.id),
...authCondition(locals),
});
depends(UrlDependency.Conversation);
if (!conversation) {
const conversationExists =
(await collections.conversations.countDocuments({
_id: new ObjectId(params.id),
})) !== 0;
if (conversationExists) {
throw error(
403,
"You don't have access to this conversation. If someone gave you this link, ask them to use the 'share' feature instead."
);
}
throw error(404, "Conversation not found.");
}
}
return {
messages: conversation.messages,
title: conversation.title,
model: conversation.model,
preprompt: conversation.preprompt,
assistant: conversation.assistantId
? JSON.parse(
JSON.stringify(
await collections.assistants.findOne({
_id: new ObjectId(conversation.assistantId),
})
)
)
: null,
shared,
};
};
| chat-ui/src/routes/conversation/[id]/+page.server.ts/0 | {
"file_path": "chat-ui/src/routes/conversation/[id]/+page.server.ts",
"repo_id": "chat-ui",
"token_count": 597
} | 49 |
import { collections } from "$lib/server/database";
import { ObjectId } from "mongodb";
import type { LayoutServerLoad } from "./$types";
export const load = (async ({ locals, parent }) => {
const { settings } = await parent();
// find assistants matching the settings assistants
const assistants = await collections.assistants
.find({
_id: { $in: settings.assistants.map((el) => new ObjectId(el)) },
})
.toArray();
return {
assistants: await Promise.all(
assistants.map(async (el) => ({
...el,
_id: el._id.toString(),
createdById: undefined,
createdByMe:
el.createdById.toString() === (locals.user?._id ?? locals.sessionId).toString(),
reported:
(await collections.reports.countDocuments({
assistantId: el._id,
createdBy: locals.user?._id ?? locals.sessionId,
})) > 0,
}))
),
};
}) satisfies LayoutServerLoad;
| chat-ui/src/routes/settings/+layout.server.ts/0 | {
"file_path": "chat-ui/src/routes/settings/+layout.server.ts",
"repo_id": "chat-ui",
"token_count": 329
} | 50 |
import { sveltekit } from "@sveltejs/kit/vite";
import { defineConfig, type PluginOption } from "vite";
import Icons from "unplugin-icons/vite";
import { promises } from "fs";
// used to load fonts server side for thumbnail generation
function loadTTFAsArrayBuffer(): PluginOption {
return {
name: "load-ttf-as-array-buffer",
async transform(_src, id) {
if (id.endsWith(".ttf")) {
return `export default new Uint8Array([
${new Uint8Array(await promises.readFile(id))}
]).buffer`;
}
},
};
}
export default defineConfig({
plugins: [
sveltekit(),
Icons({
compiler: "svelte",
}),
loadTTFAsArrayBuffer(),
],
optimizeDeps: {
include: ["browser-image-resizer"],
},
});
| chat-ui/vite.config.ts/0 | {
"file_path": "chat-ui/vite.config.ts",
"repo_id": "chat-ui",
"token_count": 272
} | 51 |
# How to add one new datasets
Add datasets directly to the 🤗 Hugging Face Hub!
You can share your dataset on https://huggingface.co/datasets directly using your account, see the documentation:
* [Create a dataset and upload files on the website](https://huggingface.co/docs/datasets/upload_dataset)
* [Advanced guide using the CLI](https://huggingface.co/docs/datasets/share)
| datasets/ADD_NEW_DATASET.md/0 | {
"file_path": "datasets/ADD_NEW_DATASET.md",
"repo_id": "datasets",
"token_count": 113
} | 52 |
# Differences between Dataset and IterableDataset
There are two types of dataset objects, a [`Dataset`] and an [`IterableDataset`].
Whichever type of dataset you choose to use or create depends on the size of the dataset.
In general, an [`IterableDataset`] is ideal for big datasets (think hundreds of GBs!) due to its lazy behavior and speed advantages, while a [`Dataset`] is great for everything else.
This page will compare the differences between a [`Dataset`] and an [`IterableDataset`] to help you pick the right dataset object for you.
## Downloading and streaming
When you have a regular [`Dataset`], you can access it using `my_dataset[0]`. This provides random access to the rows.
Such datasets are also called "map-style" datasets.
For example you can download ImageNet-1k like this and access any row:
```python
from datasets import load_dataset
imagenet = load_dataset("imagenet-1k", split="train") # downloads the full dataset
print(imagenet[0])
```
But one caveat is that you must have the entire dataset stored on your disk or in memory, which blocks you from accessing datasets bigger than the disk.
Because it can become inconvenient for big datasets, there exists another type of dataset, the [`IterableDataset`].
When you have an `IterableDataset`, you can access it using a `for` loop to load the data progressively as you iterate over the dataset.
This way, only a small fraction of examples is loaded in memory, and you don't write anything on disk.
For example, you can stream the ImageNet-1k dataset without downloading it on disk:
```python
from datasets import load_dataset
imagenet = load_dataset("imagenet-1k", split="train", streaming=True) # will start loading the data when iterated over
for example in imagenet:
print(example)
break
```
Streaming can read online data without writing any file to disk.
For example, you can stream datasets made out of multiple shards, each of which is hundreds of gigabytes like [C4](https://huggingface.co/datasets/c4), [OSCAR](https://huggingface.co/datasets/oscar) or [LAION-2B](https://huggingface.co/datasets/laion/laion2B-en).
Learn more about how to stream a dataset in the [Dataset Streaming Guide](./stream).
This is not the only difference though, because the "lazy" behavior of an `IterableDataset` is also present when it comes to dataset creation and processing.
## Creating map-style datasets and iterable datasets
You can create a [`Dataset`] using lists or dictionaries, and the data is entirely converted to Arrow so you can easily access any row:
```python
my_dataset = Dataset.from_dict({"col_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]})
print(my_dataset[0])
```
To create an `IterableDataset` on the other hand, you must provide a "lazy" way to load the data.
In Python, we generally use generator functions. These functions `yield` one example at a time, which means you can't access a row by slicing it like a regular `Dataset`:
```python
def my_generator(n):
for i in range(n):
yield {"col_1": i}
my_iterable_dataset = IterableDataset.from_generator(my_generator, gen_kwargs={"n": 10})
for example in my_iterable_dataset:
print(example)
break
```
## Loading local files entirely and progressively
It is possible to convert local or remote data files to an Arrow [`Dataset`] using [`load_dataset`]:
```python
data_files = {"train": ["path/to/data.csv"]}
my_dataset = load_dataset("csv", data_files=data_files, split="train")
print(my_dataset[0])
```
However, this requires a conversion step from CSV to Arrow format, which takes time and disk space if your dataset is big.
To save disk space and skip the conversion step, you can define an `IterableDataset` by streaming from the local files directly.
This way, the data is read progressively from the local files as you iterate over the dataset:
```python
data_files = {"train": ["path/to/data.csv"]}
my_iterable_dataset = load_dataset("csv", data_files=data_files, split="train", streaming=True)
for example in my_iterable_dataset: # this reads the CSV file progressively as you iterate over the dataset
print(example)
break
```
Many file formats are supported, like CSV, JSONL, and Parquet, as well as image and audio files.
You can find more information in the corresponding guides for loading [tabular](./tabular_load), [text](./nlp_load), [vision](./image_load), and [audio](./audio_load]) datasets.
## Eager data processing and lazy data processing
When you process a [`Dataset`] object using [`Dataset.map`], the entire dataset is processed immediately and returned.
This is similar to how `pandas` works for example.
```python
my_dataset = my_dataset.map(process_fn) # process_fn is applied on all the examples of the dataset
print(my_dataset[0])
```
On the other hand, due to the "lazy" nature of an `IterableDataset`, calling [`IterableDataset.map`] does not apply your `map` function over the full dataset.
Instead, your `map` function is applied on-the-fly.
Because of that, you can chain multiple processing steps and they will all run at once when you start iterating over the dataset:
```python
my_iterable_dataset = my_iterable_dataset.map(process_fn_1)
my_iterable_dataset = my_iterable_dataset.filter(filter_fn)
my_iterable_dataset = my_iterable_dataset.map(process_fn_2)
# process_fn_1, filter_fn and process_fn_2 are applied on-the-fly when iterating over the dataset
for example in my_iterable_dataset:
print(example)
break
```
## Exact and fast approximate shuffling
When you shuffle a [`Dataset`] using [`Dataset.shuffle`], you apply an exact shuffling of the dataset.
It works by taking a list of indices `[0, 1, 2, ... len(my_dataset) - 1]` and shuffling this list.
Then, accessing `my_dataset[0]` returns the row and index defined by the first element of the indices mapping that has been shuffled:
```python
my_dataset = my_dataset.shuffle(seed=42)
print(my_dataset[0])
```
Since we don't have random access to the rows in the case of an `IterableDataset`, we can't use a shuffled list of indices and access a row at an arbitrary position.
This prevents the use of exact shuffling.
Instead, a fast approximate shuffling is used in [`IterableDataset.shuffle`].
It uses a shuffle buffer to sample random examples iteratively from the dataset.
Since the dataset is still read iteratively, it provides excellent speed performance:
```python
my_iterable_dataset = my_iterable_dataset.shuffle(seed=42, buffer_size=100)
for example in my_iterable_dataset:
print(example)
break
```
But using a shuffle buffer is not enough to provide a satisfactory shuffling for machine learning model training. So [`IterableDataset.shuffle`] also shuffles the dataset shards if your dataset is made of multiple files or sources:
```python
# Stream from the internet
my_iterable_dataset = load_dataset("deepmind/code_contests", split="train", streaming=True)
my_iterable_dataset.n_shards # 39
# Stream from local files
data_files = {"train": [f"path/to/data_{i}.csv" for i in range(1024)]}
my_iterable_dataset = load_dataset("csv", data_files=data_files, split="train", streaming=True)
my_iterable_dataset.n_shards # 1024
# From a generator function
def my_generator(n, sources):
for source in sources:
for example_id_for_current_source in range(n):
yield {"example_id": f"{source}_{example_id_for_current_source}"}
gen_kwargs = {"n": 10, "sources": [f"path/to/data_{i}" for i in range(1024)]}
my_iterable_dataset = IterableDataset.from_generator(my_generator, gen_kwargs=gen_kwargs)
my_iterable_dataset.n_shards # 1024
```
## Speed differences
Regular [`Dataset`] objects are based on Arrow which provides fast random access to the rows.
Thanks to memory mapping and the fact that Arrow is an in-memory format, reading data from disk doesn't do expensive system calls and deserialization.
It provides even faster data loading when iterating using a `for` loop by iterating on contiguous Arrow record batches.
However as soon as your [`Dataset`] has an indices mapping (via [`Dataset.shuffle`] for example), the speed can become 10x slower.
This is because there is an extra step to get the row index to read using the indices mapping, and most importantly, you aren't reading contiguous chunks of data anymore.
To restore the speed, you'd need to rewrite the entire dataset on your disk again using [`Dataset.flatten_indices`], which removes the indices mapping.
This may take a lot of time depending of the size of your dataset though:
```python
my_dataset[0] # fast
my_dataset = my_dataset.shuffle(seed=42)
my_dataset[0] # up to 10x slower
my_dataset = my_dataset.flatten_indices() # rewrite the shuffled dataset on disk as contiguous chunks of data
my_dataset[0] # fast again
```
In this case, we recommend switching to an [`IterableDataset`] and leveraging its fast approximate shuffling method [`IterableDataset.shuffle`].
It only shuffles the shards order and adds a shuffle buffer to your dataset, which keeps the speed of your dataset optimal.
You can also reshuffle the dataset easily:
```python
for example in enumerate(my_iterable_dataset): # fast
pass
shuffled_iterable_dataset = my_iterable_dataset.shuffle(seed=42, buffer_size=100)
for example in enumerate(shuffled_iterable_dataset): # as fast as before
pass
shuffled_iterable_dataset = my_iterable_dataset.shuffle(seed=1337, buffer_size=100) # reshuffling using another seed is instantaneous
for example in enumerate(shuffled_iterable_dataset): # still as fast as before
pass
```
If you're using your dataset on multiple epochs, the effective seed to shuffle the shards order in the shuffle buffer is `seed + epoch`.
It makes it easy to reshuffle a dataset between epochs:
```python
for epoch in range(n_epochs):
my_iterable_dataset.set_epoch(epoch)
for example in my_iterable_dataset: # fast + reshuffled at each epoch using `effective_seed = seed + epoch`
pass
```
## Switch from map-style to iterable
If you want to benefit from the "lazy" behavior of an [`IterableDataset`] or their speed advantages, you can switch your map-style [`Dataset`] to an [`IterableDataset`]:
```python
my_iterable_dataset = my_dataset.to_iterable_dataset()
```
If you want to shuffle your dataset or [use it with a PyTorch DataLoader](./use_with_pytorch#stream-data), we recommend generating a sharded [`IterableDataset`]:
```python
my_iterable_dataset = my_dataset.to_iterable_dataset(num_shards=1024)
my_iterable_dataset.n_shards # 1024
```
| datasets/docs/source/about_mapstyle_vs_iterable.mdx/0 | {
"file_path": "datasets/docs/source/about_mapstyle_vs_iterable.mdx",
"repo_id": "datasets",
"token_count": 3261
} | 53 |
# Image classification
Image classification datasets are used to train a model to classify an entire image. There are a wide variety of applications enabled by these datasets such as identifying endangered wildlife species or screening for disease in medical images. This guide will show you how to apply transformations to an image classification dataset.
Before you start, make sure you have up-to-date versions of `albumentations` and `cv2` installed:
```bash
pip install -U albumentations opencv-python
```
This guide uses the [Beans](https://huggingface.co/datasets/beans) dataset for identifying the type of bean plant disease based on an image of its leaf.
Load the dataset and take a look at an example:
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("beans")
>>> dataset["train"][10]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x500 at 0x7F8D2F4D7A10>,
'image_file_path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/angular_leaf_spot/angular_leaf_spot_train.204.jpg',
'labels': 0}
```
The dataset has three fields:
* `image`: a PIL image object.
* `image_file_path`: the path to the image file.
* `labels`: the label or category of the image.
Next, check out an image:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/img_clf.png">
</div>
Now apply some augmentations with `albumentations`. You'll randomly crop the image, flip it horizontally, and adjust its brightness.
```py
>>> import cv2
>>> import albumentations
>>> import numpy as np
>>> transform = albumentations.Compose([
... albumentations.RandomCrop(width=256, height=256),
... albumentations.HorizontalFlip(p=0.5),
... albumentations.RandomBrightnessContrast(p=0.2),
... ])
```
Create a function to apply the transformation to the images:
```py
>>> def transforms(examples):
... examples["pixel_values"] = [
... transform(image=np.array(image))["image"] for image in examples["image"]
... ]
...
... return examples
```
Use the [`~Dataset.set_transform`] function to apply the transformation on-the-fly to batches of the dataset to consume less disk space:
```py
>>> dataset.set_transform(transforms)
```
You can verify the transformation worked by indexing into the `pixel_values` of the first example:
```py
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> img = dataset["train"][0]["pixel_values"]
>>> plt.imshow(img)
```
<div class="flex justify-center">
<img class="block dark:hidden" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/img_clf_aug.png">
<img class="hidden dark:block" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/img_clf_aug.png"/>
</div>
<Tip>
Now that you know how to process a dataset for image classification, learn
[how to train an image classification model](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)
and use it for inference.
</Tip> | datasets/docs/source/image_classification.mdx/0 | {
"file_path": "datasets/docs/source/image_classification.mdx",
"repo_id": "datasets",
"token_count": 1043
} | 54 |
# Main classes
## DatasetInfo
[[autodoc]] datasets.DatasetInfo
## Dataset
The base class [`Dataset`] implements a Dataset backed by an Apache Arrow table.
[[autodoc]] datasets.Dataset
- add_column
- add_item
- from_file
- from_buffer
- from_pandas
- from_dict
- from_generator
- data
- cache_files
- num_columns
- num_rows
- column_names
- shape
- unique
- flatten
- cast
- cast_column
- remove_columns
- rename_column
- rename_columns
- select_columns
- class_encode_column
- __len__
- __iter__
- iter
- formatted_as
- set_format
- set_transform
- reset_format
- with_format
- with_transform
- __getitem__
- cleanup_cache_files
- map
- filter
- select
- sort
- shuffle
- train_test_split
- shard
- to_tf_dataset
- push_to_hub
- save_to_disk
- load_from_disk
- flatten_indices
- to_csv
- to_pandas
- to_dict
- to_json
- to_parquet
- to_sql
- to_iterable_dataset
- add_faiss_index
- add_faiss_index_from_external_arrays
- save_faiss_index
- load_faiss_index
- add_elasticsearch_index
- load_elasticsearch_index
- list_indexes
- get_index
- drop_index
- search
- search_batch
- get_nearest_examples
- get_nearest_examples_batch
- info
- split
- builder_name
- citation
- config_name
- dataset_size
- description
- download_checksums
- download_size
- features
- homepage
- license
- size_in_bytes
- supervised_keys
- version
- from_csv
- from_json
- from_parquet
- from_text
- from_sql
- prepare_for_task
- align_labels_with_mapping
[[autodoc]] datasets.concatenate_datasets
[[autodoc]] datasets.interleave_datasets
[[autodoc]] datasets.distributed.split_dataset_by_node
[[autodoc]] datasets.enable_caching
[[autodoc]] datasets.disable_caching
[[autodoc]] datasets.is_caching_enabled
## DatasetDict
Dictionary with split names as keys ('train', 'test' for example), and `Dataset` objects as values.
It also has dataset transform methods like map or filter, to process all the splits at once.
[[autodoc]] datasets.DatasetDict
- data
- cache_files
- num_columns
- num_rows
- column_names
- shape
- unique
- cleanup_cache_files
- map
- filter
- sort
- shuffle
- set_format
- reset_format
- formatted_as
- with_format
- with_transform
- flatten
- cast
- cast_column
- remove_columns
- rename_column
- rename_columns
- select_columns
- class_encode_column
- push_to_hub
- save_to_disk
- load_from_disk
- from_csv
- from_json
- from_parquet
- from_text
- prepare_for_task
<a id='package_reference_features'></a>
## IterableDataset
The base class [`IterableDataset`] implements an iterable Dataset backed by python generators.
[[autodoc]] datasets.IterableDataset
- from_generator
- remove_columns
- select_columns
- cast_column
- cast
- __iter__
- iter
- map
- rename_column
- filter
- shuffle
- skip
- take
- info
- split
- builder_name
- citation
- config_name
- dataset_size
- description
- download_checksums
- download_size
- features
- homepage
- license
- size_in_bytes
- supervised_keys
- version
## IterableDatasetDict
Dictionary with split names as keys ('train', 'test' for example), and `IterableDataset` objects as values.
[[autodoc]] datasets.IterableDatasetDict
- map
- filter
- shuffle
- with_format
- cast
- cast_column
- remove_columns
- rename_column
- rename_columns
- select_columns
## Features
[[autodoc]] datasets.Features
[[autodoc]] datasets.Sequence
[[autodoc]] datasets.ClassLabel
[[autodoc]] datasets.Value
[[autodoc]] datasets.Translation
[[autodoc]] datasets.TranslationVariableLanguages
[[autodoc]] datasets.Array2D
[[autodoc]] datasets.Array3D
[[autodoc]] datasets.Array4D
[[autodoc]] datasets.Array5D
[[autodoc]] datasets.Audio
[[autodoc]] datasets.Image
## MetricInfo
[[autodoc]] datasets.MetricInfo
## Metric
The base class `Metric` implements a Metric backed by one or several [`Dataset`].
[[autodoc]] datasets.Metric
## Filesystems
[[autodoc]] datasets.filesystems.S3FileSystem
[[autodoc]] datasets.filesystems.extract_path_from_uri
[[autodoc]] datasets.filesystems.is_remote_filesystem
## Fingerprint
[[autodoc]] datasets.fingerprint.Hasher
| datasets/docs/source/package_reference/main_classes.mdx/0 | {
"file_path": "datasets/docs/source/package_reference/main_classes.mdx",
"repo_id": "datasets",
"token_count": 1908
} | 55 |
# Use with PyTorch
This document is a quick introduction to using `datasets` with PyTorch, with a particular focus on how to get
`torch.Tensor` objects out of our datasets, and how to use a PyTorch `DataLoader` and a Hugging Face `Dataset`
with the best performance.
## Dataset format
By default, datasets return regular python objects: integers, floats, strings, lists, etc.
To get PyTorch tensors instead, you can set the format of the dataset to `pytorch` using [`Dataset.with_format`]:
```py
>>> from datasets import Dataset
>>> data = [[1, 2],[3, 4]]
>>> ds = Dataset.from_dict({"data": data})
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': tensor([1, 2])}
>>> ds[:2]
{'data': tensor([[1, 2],
[3, 4]])}
```
<Tip>
A [`Dataset`] object is a wrapper of an Arrow table, which allows fast zero-copy reads from arrays in the dataset to PyTorch tensors.
</Tip>
To load the data as tensors on a GPU, specify the `device` argument:
```py
>>> import torch
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> ds = ds.with_format("torch", device=device)
>>> ds[0]
{'data': tensor([1, 2], device='cuda:0')}
```
## N-dimensional arrays
If your dataset consists of N-dimensional arrays, you will see that by default they are considered as nested lists.
In particular, a PyTorch formatted dataset outputs nested lists instead of a single tensor:
```py
>>> from datasets import Dataset
>>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]]
>>> ds = Dataset.from_dict({"data": data})
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': [tensor([1, 2]), tensor([3, 4])]}
```
To get a single tensor, you must explicitly use the [`Array`] feature type and specify the shape of your tensors:
```py
>>> from datasets import Dataset, Features, Array2D
>>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]]
>>> features = Features({"data": Array2D(shape=(2, 2), dtype='int32')})
>>> ds = Dataset.from_dict({"data": data}, features=features)
>>> ds = ds.with_format("torch")
>>> ds[0]
{'data': tensor([[1, 2],
[3, 4]])}
>>> ds[:2]
{'data': tensor([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])}
```
## Other feature types
[`ClassLabel`] data are properly converted to tensors:
```py
>>> from datasets import Dataset, Features, ClassLabel
>>> labels = [0, 0, 1]
>>> features = Features({"label": ClassLabel(names=["negative", "positive"])})
>>> ds = Dataset.from_dict({"label": labels}, features=features)
>>> ds = ds.with_format("torch")
>>> ds[:3]
{'label': tensor([0, 0, 1])}
```
String and binary objects are unchanged, since PyTorch only supports numbers.
The [`Image`] and [`Audio`] feature types are also supported.
<Tip>
To use the [`Image`] feature type, you'll need to install the `vision` extra as
`pip install datasets[vision]`.
</Tip>
```py
>>> from datasets import Dataset, Features, Audio, Image
>>> images = ["path/to/image.png"] * 10
>>> features = Features({"image": Image()})
>>> ds = Dataset.from_dict({"image": images}, features=features)
>>> ds = ds.with_format("torch")
>>> ds[0]["image"].shape
torch.Size([512, 512, 4])
>>> ds[0]
{'image': tensor([[[255, 215, 106, 255],
[255, 215, 106, 255],
...,
[255, 255, 255, 255],
[255, 255, 255, 255]]], dtype=torch.uint8)}
>>> ds[:2]["image"].shape
torch.Size([2, 512, 512, 4])
>>> ds[:2]
{'image': tensor([[[[255, 215, 106, 255],
[255, 215, 106, 255],
...,
[255, 255, 255, 255],
[255, 255, 255, 255]]]], dtype=torch.uint8)}
```
<Tip>
To use the [`Audio`] feature type, you'll need to install the `audio` extra as
`pip install datasets[audio]`.
</Tip>
```py
>>> from datasets import Dataset, Features, Audio, Image
>>> audio = ["path/to/audio.wav"] * 10
>>> features = Features({"audio": Audio()})
>>> ds = Dataset.from_dict({"audio": audio}, features=features)
>>> ds = ds.with_format("torch")
>>> ds[0]["audio"]["array"]
tensor([ 6.1035e-05, 1.5259e-05, 1.6785e-04, ..., -1.5259e-05,
-1.5259e-05, 1.5259e-05])
>>> ds[0]["audio"]["sampling_rate"]
tensor(44100)
```
## Data loading
Like `torch.utils.data.Dataset` objects, a [`Dataset`] can be passed directly to a PyTorch `DataLoader`:
```py
>>> import numpy as np
>>> from datasets import Dataset
>>> from torch.utils.data import DataLoader
>>> data = np.random.rand(16)
>>> label = np.random.randint(0, 2, size=16)
>>> ds = Dataset.from_dict({"data": data, "label": label}).with_format("torch")
>>> dataloader = DataLoader(ds, batch_size=4)
>>> for batch in dataloader:
... print(batch)
{'data': tensor([0.0047, 0.4979, 0.6726, 0.8105]), 'label': tensor([0, 1, 0, 1])}
{'data': tensor([0.4832, 0.2723, 0.4259, 0.2224]), 'label': tensor([0, 0, 0, 0])}
{'data': tensor([0.5837, 0.3444, 0.4658, 0.6417]), 'label': tensor([0, 1, 0, 0])}
{'data': tensor([0.7022, 0.1225, 0.7228, 0.8259]), 'label': tensor([1, 1, 1, 1])}
```
### Optimize data loading
There are several ways you can increase the speed your data is loaded which can save you time, especially if you are working with large datasets.
PyTorch offers parallelized data loading, retrieving batches of indices instead of individually, and streaming to iterate over the dataset without downloading it on disk.
#### Use multiple Workers
You can parallelize data loading with the `num_workers` argument of a PyTorch `DataLoader` and get a higher throughput.
Under the hood, the `DataLoader` starts `num_workers` processes.
Each process reloads the dataset passed to the `DataLoader` and is used to query examples.
Reloading the dataset inside a worker doesn't fill up your RAM, since it simply memory-maps the dataset again from your disk.
```py
>>> import numpy as np
>>> from datasets import Dataset, load_from_disk
>>> from torch.utils.data import DataLoader
>>> data = np.random.rand(10_000)
>>> Dataset.from_dict({"data": data}).save_to_disk("my_dataset")
>>> ds = load_from_disk("my_dataset").with_format("torch")
>>> dataloader = DataLoader(ds, batch_size=32, num_workers=4)
```
### Stream data
Stream a dataset by loading it as an [`IterableDataset`]. This allows you to progressively iterate over a remote dataset without downloading it on disk and or over local data files.
Learn more about which type of dataset is best for your use case in the [choosing between a regular dataset or an iterable dataset](./about_mapstyle_vs_iterable) guide.
An iterable dataset from `datasets` inherits from `torch.utils.data.IterableDataset` so you can pass it to a `torch.utils.data.DataLoader`:
```py
>>> import numpy as np
>>> from datasets import Dataset, load_dataset
>>> from torch.utils.data import DataLoader
>>> data = np.random.rand(10_000)
>>> Dataset.from_dict({"data": data}).push_to_hub("<username>/my_dataset") # Upload to the Hugging Face Hub
>>> my_iterable_dataset = load_dataset("<username>/my_dataset", streaming=True, split="train")
>>> dataloader = DataLoader(my_iterable_dataset, batch_size=32)
```
If the dataset is split in several shards (i.e. if the dataset consists of multiple data files), then you can stream in parallel using `num_workers`:
```py
>>> my_iterable_dataset = load_dataset("deepmind/code_contests", streaming=True, split="train")
>>> my_iterable_dataset.n_shards
39
>>> dataloader = DataLoader(my_iterable_dataset, batch_size=32, num_workers=4)
```
In this case each worker is given a subset of the list of shards to stream from.
### Distributed
To split your dataset across your training nodes, you can use [`datasets.distributed.split_dataset_by_node`]:
```python
import os
from datasets.distributed import split_dataset_by_node
ds = split_dataset_by_node(ds, rank=int(os.environ["RANK"]), world_size=int(os.environ["WORLD_SIZE"]))
```
This works for both map-style datasets and iterable datasets.
The dataset is split for the node at rank `rank` in a pool of nodes of size `world_size`.
For map-style datasets:
Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset.
For iterable datasets:
If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`),
then the shards are evenly assigned across the nodes, which is the most optimized.
Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples.
This can also be combined with a `torch.utils.data.DataLoader` if you want each node to use multiple workers to load the data.
| datasets/docs/source/use_with_pytorch.mdx/0 | {
"file_path": "datasets/docs/source/use_with_pytorch.mdx",
"repo_id": "datasets",
"token_count": 3104
} | 56 |
# Metric Card for Code Eval
## Metric description
The CodeEval metric estimates the pass@k metric for code synthesis.
It implements the evaluation harness for the HumanEval problem solving dataset described in the paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374).
## How to use
The Code Eval metric calculates how good are predictions given a set of references. Its arguments are:
`predictions`: a list of candidates to evaluate. Each candidate should be a list of strings with several code candidates to solve the problem.
`references`: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate.
`k`: number of code candidates to consider in the evaluation. The default value is `[1, 10, 100]`.
`num_workers`: the number of workers used to evaluate the candidate programs (The default value is `4`).
`timeout`: The maximum time taken to produce a prediction before it is considered a "timeout". The default value is `3.0` (i.e. 3 seconds).
```python
from datasets import load_metric
code_eval = load_metric("code_eval")
test_cases = ["assert add(2,3)==5"]
candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
```
N.B.
This metric exists to run untrusted model-generated code. Users are strongly encouraged not to do so outside of a robust security sandbox. Before running this metric and once you've taken the necessary precautions, you will need to set the `HF_ALLOW_CODE_EVAL` environment variable. Use it at your own risk:
```python
import os
os.environ["HF_ALLOW_CODE_EVAL"] = "1"`
```
## Output values
The Code Eval metric outputs two things:
`pass_at_k`: a dictionary with the pass rates for each k value defined in the arguments.
`results`: a dictionary with granular results of each unit test.
### Values from popular papers
The [original CODEX paper](https://arxiv.org/pdf/2107.03374.pdf) reported that the CODEX-12B model had a pass@k score of 28.8% at `k=1`, 46.8% at `k=10` and 72.3% at `k=100`. However, since the CODEX model is not open source, it is hard to verify these numbers.
## Examples
Full match at `k=1`:
```python
from datasets import load_metric
code_eval = load_metric("code_eval")
test_cases = ["assert add(2,3)==5"]
candidates = [["def add(a, b): return a+b"]]
pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1])
print(pass_at_k)
{'pass@1': 1.0}
```
No match for k = 1:
```python
from datasets import load_metric
code_eval = load_metric("code_eval")
test_cases = ["assert add(2,3)==5"]
candidates = [["def add(a,b): return a*b"]]
pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1])
print(pass_at_k)
{'pass@1': 0.0}
```
Partial match at k=1, full match at k=2:
```python
from datasets import load_metric
code_eval = load_metric("code_eval")
test_cases = ["assert add(2,3)==5"]
candidates = [["def add(a, b): return a+b", "def add(a,b): return a*b"]]
pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
print(pass_at_k)
{'pass@1': 0.5, 'pass@2': 1.0}
```
## Limitations and bias
As per the warning included in the metric code itself:
> This program exists to execute untrusted model-generated code. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the accompanying paper. Once you have read this disclaimer and taken appropriate precautions, uncomment the following line and proceed at your own risk:
More information about the limitations of the code can be found on the [Human Eval Github repository](https://github.com/openai/human-eval).
## Citation
```bibtex
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
## Further References
- [Human Eval Github repository](https://github.com/openai/human-eval)
- [OpenAI Codex website](https://openai.com/blog/openai-codex/)
| datasets/metrics/code_eval/README.md/0 | {
"file_path": "datasets/metrics/code_eval/README.md",
"repo_id": "datasets",
"token_count": 1698
} | 57 |
# Metric Card for FrugalScore
## Metric Description
FrugalScore is a reference-based metric for Natural Language Generation (NLG) model evaluation. It is based on a distillation approach that allows to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance.
The FrugalScore models are obtained by continuing the pretraining of small models on a synthetic dataset constructed using summarization, backtranslation and denoising models. During the training, the small models learn the internal mapping of the expensive metric, including any similarity function.
## How to use
When loading FrugalScore, you can indicate the model you wish to use to compute the score. The default model is `moussaKam/frugalscore_tiny_bert-base_bert-score`, and a full list of models can be found in the [Limitations and bias](#Limitations-and-bias) section.
```python
>>> from datasets import load_metric
>>> frugalscore = load_metric("frugalscore", "moussaKam/frugalscore_medium_bert-base_mover-score")
```
FrugalScore calculates how good are the predictions given some references, based on a set of scores.
The inputs it takes are:
`predictions`: a list of strings representing the predictions to score.
`references`: a list of string representing the references for each prediction.
Its optional arguments are:
`batch_size`: the batch size for predictions (default value is `32`).
`max_length`: the maximum sequence length (default value is `128`).
`device`: either "gpu" or "cpu" (default value is `None`).
```python
>>> results = frugalscore.compute(predictions=['hello there', 'huggingface'], references=['hello world', 'hugging face'], batch_size=16, max_length=64, device="gpu")
```
## Output values
The output of FrugalScore is a dictionary with the list of scores for each prediction-reference pair:
```python
{'scores': [0.6307541, 0.6449357]}
```
### Values from popular papers
The [original FrugalScore paper](https://arxiv.org/abs/2110.08559) reported that FrugalScore-Tiny retains 97.7/94.7% of the original performance compared to [BertScore](https://huggingface.co/metrics/bertscore) while running 54 times faster and having 84 times less parameters.
## Examples
Maximal values (exact match between `references` and `predictions`):
```python
>>> from datasets import load_metric
>>> frugalscore = load_metric("frugalscore")
>>> results = frugalscore.compute(predictions=['hello world'], references=['hello world'])
>>> print(results)
{'scores': [0.9891098]}
```
Partial values:
```python
>>> from datasets import load_metric
>>> frugalscore = load_metric("frugalscore")
>>> results = frugalscore.compute(predictions=['hello world'], references=['hugging face'])
>>> print(results)
{'scores': [0.42482382]}
```
## Limitations and bias
FrugalScore is based on [BertScore](https://huggingface.co/metrics/bertscore) and [MoverScore](https://arxiv.org/abs/1909.02622), and the models used are based on the original models used for these scores.
The full list of available models for FrugalScore is:
| FrugalScore | Student | Teacher | Method |
|----------------------------------------------------|-------------|----------------|------------|
| [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore |
| [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore |
| [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore |
| [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore |
| [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore |
| [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore |
| [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore |
| [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
Depending on the size of the model picked, the loading time will vary: the `tiny` models will load very quickly, whereas the `medium` ones can take several minutes, depending on your Internet connection.
## Citation
```bibtex
@article{eddine2021frugalscore,
title={FrugalScore: Learning Cheaper, Lighter and Faster Evaluation Metrics for Automatic Text Generation},
author={Eddine, Moussa Kamal and Shang, Guokan and Tixier, Antoine J-P and Vazirgiannis, Michalis},
journal={arXiv preprint arXiv:2110.08559},
year={2021}
}
```
## Further References
- [Original FrugalScore code](https://github.com/moussaKam/FrugalScore)
- [FrugalScore paper](https://arxiv.org/abs/2110.08559)
| datasets/metrics/frugalscore/README.md/0 | {
"file_path": "datasets/metrics/frugalscore/README.md",
"repo_id": "datasets",
"token_count": 2127
} | 58 |
# Metric Card for Mean IoU
## Metric Description
IoU (Intersection over Union) is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth.
For binary (two classes) or multi-class segmentation, the *mean IoU* of the image is calculated by taking the IoU of each class and averaging them.
## How to Use
The Mean IoU metric takes two numeric arrays as input corresponding to the predicted and ground truth segmentations:
```python
>>> import numpy as np
>>> mean_iou = datasets.load_metric("mean_iou")
>>> predicted = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> ground_truth = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255)
```
### Inputs
**Mandatory inputs**
- `predictions` (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
- `references` (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
- `num_labels` (`int`): Number of classes (categories).
- `ignore_index` (`int`): Index that will be ignored during evaluation.
**Optional inputs**
- `nan_to_num` (`int`): If specified, NaN values will be replaced by the number defined by the user.
- `label_map` (`dict`): If specified, dictionary mapping old label indices to new label indices.
- `reduce_labels` (`bool`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. The default value is `False`.
### Output Values
The metric returns a dictionary with the following elements:
- `mean_iou` (`float`): Mean Intersection-over-Union (IoU averaged over all categories).
- `mean_accuracy` (`float`): Mean accuracy (averaged over all categories).
- `overall_accuracy` (`float`): Overall accuracy on all images.
- `per_category_accuracy` (`ndarray` of shape `(num_labels,)`): Per category accuracy.
- `per_category_iou` (`ndarray` of shape `(num_labels,)`): Per category IoU.
The values of all of the scores reported range from from `0.0` (minimum) and `1.0` (maximum).
Output Example:
```python
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
```
#### Values from Popular Papers
The [leaderboard for the CityScapes dataset](https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes) reports a Mean IOU ranging from 64 to 84; that of [ADE20k](https://paperswithcode.com/sota/semantic-segmentation-on-ade20k) ranges from 30 to a peak of 59.9, indicating that the dataset is more difficult for current approaches (as of 2022).
### Examples
```python
>>> from datasets import load_metric
>>> import numpy as np
>>> mean_iou = load_metric("mean_iou")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predictions = [predicted_1, predicted_2, predicted_3]
>>> references = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predictions, references=references, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
```
## Limitations and Bias
Mean IOU is an average metric, so it will not show you where model predictions differ from the ground truth (i.e. if there are particular regions or classes that the model does poorly on). Further error analysis is needed to gather actional insights that can be used to inform model improvements.
## Citation(s)
```bibtex
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}"
```
## Further References
- [Wikipedia article - Jaccard Index](https://en.wikipedia.org/wiki/Jaccard_index)
| datasets/metrics/mean_iou/README.md/0 | {
"file_path": "datasets/metrics/mean_iou/README.md",
"repo_id": "datasets",
"token_count": 1803
} | 59 |
# Metric Card for ROUGE
## Metric Description
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)
## How to Use
At minimum, this metric takes as input a list of predictions and a list of references:
```python
>>> rouge = datasets.load_metric('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results["rouge1"].mid.fmeasure)
1.0
```
### Inputs
- **predictions** (`list`): list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
- **references** (`list`): list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
- **rouge_types** (`list`): A list of rouge types to calculate. Defaults to `['rouge1', 'rouge2', 'rougeL', 'rougeLsum']`.
- Valid rouge types:
- `"rouge1"`: unigram (1-gram) based scoring
- `"rouge2"`: bigram (2-gram) based scoring
- `"rougeL"`: Longest common subsequence based scoring.
- `"rougeLSum"`: splits text using `"\n"`
- See [here](https://github.com/huggingface/datasets/issues/617) for more information
- **use_aggregator** (`boolean`): If True, returns aggregates. Defaults to `True`.
- **use_stemmer** (`boolean`): If `True`, uses Porter stemmer to strip word suffixes. Defaults to `False`.
### Output Values
The output is a dictionary with one entry for each rouge type in the input list `rouge_types`. If `use_aggregator=False`, each dictionary entry is a list of Score objects, with one score for each sentence. Each Score object includes the `precision`, `recall`, and `fmeasure`. E.g. if `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=False`, the output is:
```python
{'rouge1': [Score(precision=1.0, recall=0.5, fmeasure=0.6666666666666666), Score(precision=1.0, recall=1.0, fmeasure=1.0)], 'rouge2': [Score(precision=0.0, recall=0.0, fmeasure=0.0), Score(precision=1.0, recall=1.0, fmeasure=1.0)]}
```
If `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=True`, the output is of the following format:
```python
{'rouge1': AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)), 'rouge2': AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))}
```
The `precision`, `recall`, and `fmeasure` values all have a range of 0 to 1.
#### Values from Popular Papers
### Examples
An example without aggregation:
```python
>>> rouge = datasets.load_metric('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
[Score(precision=0.5, recall=0.5, fmeasure=0.5), Score(precision=0.0, recall=0.0, fmeasure=0.0)]
```
The same example, but with aggregation:
```python
>>> rouge = datasets.load_metric('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references,
... use_aggregator=True)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=0.0, recall=0.0, fmeasure=0.0), mid=Score(precision=0.25, recall=0.25, fmeasure=0.25), high=Score(precision=0.5, recall=0.5, fmeasure=0.5))
```
The same example, but only calculating `rouge_1`:
```python
>>> rouge = datasets.load_metric('rouge')
>>> predictions = ["hello goodbye", "ankh morpork"]
>>> references = ["goodbye", "general kenobi"]
>>> results = rouge.compute(predictions=predictions,
... references=references,
... rouge_types=['rouge_1'],
... use_aggregator=True)
>>> print(list(results.keys()))
['rouge1']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=0.0, recall=0.0, fmeasure=0.0), mid=Score(precision=0.25, recall=0.25, fmeasure=0.25), high=Score(precision=0.5, recall=0.5, fmeasure=0.5))
```
## Limitations and Bias
See [Schluter (2017)](https://aclanthology.org/E17-2007/) for an in-depth discussion of many of ROUGE's limits.
## Citation
```bibtex
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
```
## Further References
- This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge) | datasets/metrics/rouge/README.md/0 | {
"file_path": "datasets/metrics/rouge/README.md",
"repo_id": "datasets",
"token_count": 2244
} | 60 |
# Metric Card for SuperGLUE
## Metric description
This metric is used to compute the SuperGLUE evaluation metric associated to each of the subsets of the [SuperGLUE dataset](https://huggingface.co/datasets/super_glue).
SuperGLUE is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard.
## How to use
There are two steps: (1) loading the SuperGLUE metric relevant to the subset of the dataset being used for evaluation; and (2) calculating the metric.
1. **Loading the relevant SuperGLUE metric** : the subsets of SuperGLUE are the following: `boolq`, `cb`, `copa`, `multirc`, `record`, `rte`, `wic`, `wsc`, `wsc.fixed`, `axb`, `axg`.
More information about the different subsets of the SuperGLUE dataset can be found on the [SuperGLUE dataset page](https://huggingface.co/datasets/super_glue) and on the [official dataset website](https://super.gluebenchmark.com/).
2. **Calculating the metric**: the metric takes two inputs : one list with the predictions of the model to score and one list of reference labels. The structure of both inputs depends on the SuperGlUE subset being used:
Format of `predictions`:
- for `record`: list of question-answer dictionaries with the following keys:
- `idx`: index of the question as specified by the dataset
- `prediction_text`: the predicted answer text
- for `multirc`: list of question-answer dictionaries with the following keys:
- `idx`: index of the question-answer pair as specified by the dataset
- `prediction`: the predicted answer label
- otherwise: list of predicted labels
Format of `references`:
- for `record`: list of question-answers dictionaries with the following keys:
- `idx`: index of the question as specified by the dataset
- `answers`: list of possible answers
- otherwise: list of reference labels
```python
from datasets import load_metric
super_glue_metric = load_metric('super_glue', 'copa')
predictions = [0, 1]
references = [0, 1]
results = super_glue_metric.compute(predictions=predictions, references=references)
```
## Output values
The output of the metric depends on the SuperGLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
`exact_match`: A given predicted string's exact match score is 1 if it is the exact same as its reference string, and is 0 otherwise. (See [Exact Match](https://huggingface.co/metrics/exact_match) for more information).
`f1`: the harmonic mean of the precision and recall (see [F1 score](https://huggingface.co/metrics/f1) for more information). Its range is 0-1 -- its lowest possible value is 0, if either the precision or the recall is 0, and its highest possible value is 1.0, which means perfect precision and recall.
`matthews_correlation`: a measure of the quality of binary and multiclass classifications (see [Matthews Correlation](https://huggingface.co/metrics/matthews_correlation) for more information). Its range of values is between -1 and +1, where a coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction.
### Values from popular papers
The [original SuperGLUE paper](https://arxiv.org/pdf/1905.00537.pdf) reported average scores ranging from 47 to 71.5%, depending on the model used (with all evaluation values scaled by 100 to make computing the average possible).
For more recent model performance, see the [dataset leaderboard](https://super.gluebenchmark.com/leaderboard).
## Examples
Maximal values for the COPA subset (which outputs `accuracy`):
```python
from datasets import load_metric
super_glue_metric = load_metric('super_glue', 'copa') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
predictions = [0, 1]
references = [0, 1]
results = super_glue_metric.compute(predictions=predictions, references=references)
print(results)
{'accuracy': 1.0}
```
Minimal values for the MultiRC subset (which outputs `pearson` and `spearmanr`):
```python
from datasets import load_metric
super_glue_metric = load_metric('super_glue', 'multirc')
predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]
references = [1,0]
results = super_glue_metric.compute(predictions=predictions, references=references)
print(results)
{'exact_match': 0.0, 'f1_m': 0.0, 'f1_a': 0.0}
```
Partial match for the COLA subset (which outputs `matthews_correlation`)
```python
from datasets import load_metric
super_glue_metric = load_metric('super_glue', 'axb')
references = [0, 1]
predictions = [1,1]
results = super_glue_metric.compute(predictions=predictions, references=references)
print(results)
{'matthews_correlation': 0.0}
```
## Limitations and bias
This metric works only with datasets that have the same format as the [SuperGLUE dataset](https://huggingface.co/datasets/super_glue).
The dataset also includes Winogender, a subset of the dataset that is designed to measure gender bias in coreference resolution systems. However, as noted in the SuperGLUE paper, this subset has its limitations: *"It offers only positive predictive value: A poor bias score is clear evidence that a model exhibits gender bias, but a good score does not mean that the model is unbiased.[...] Also, Winogender does not cover all forms of social bias, or even all forms of gender. For instance, the version of the data used here offers no coverage of gender-neutral they or non-binary pronouns."
## Citation
```bibtex
@article{wang2019superglue,
title={Super{GLUE}: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
```
## Further References
- [SuperGLUE benchmark homepage](https://super.gluebenchmark.com/)
| datasets/metrics/super_glue/README.md/0 | {
"file_path": "datasets/metrics/super_glue/README.md",
"repo_id": "datasets",
"token_count": 1767
} | 61 |
# Lint as: python3
""" HuggingFace/Datasets is an open library of datasets.
Note:
VERSION needs to be formatted following the MAJOR.MINOR.PATCH convention
(we need to follow this convention to be able to retrieve versioned scripts)
Simple check list for release from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py
Steps to make a release:
0. Prerequisites:
- Dependencies:
- twine: `pip install twine`
- Create an account in (and join the 'datasets' project):
- PyPI: https://pypi.org/
- Test PyPI: https://test.pypi.org/
- Don't break `transformers`: run the `transformers` CI using the `main` branch and make sure it's green.
- In `transformers`, use `datasets @ git+https://github.com/huggingface/datasets@main#egg=datasets`
Add a step to install `datasets@main` after `save_cache` in .circleci/create_circleci_config.py:
```
steps.append({"run": {"name": "Install `datasets@main`", "command": 'pip uninstall datasets -y && pip install "datasets @ git+https://github.com/huggingface/datasets@main#egg=datasets"'}})
```
- and then run the CI
1. Create the release branch from main branch:
```
git checkout main
git pull upstream main
git checkout -b release-VERSION
```
2. Change the version to the release VERSION in:
- __init__.py
- setup.py
3. Commit these changes, push and create a Pull Request:
```
git add -u
git commit -m "Release: VERSION"
git push upstream release-VERSION
```
- Go to: https://github.com/huggingface/datasets/pull/new/release
- Create pull request
4. From your local release branch, build both the sources and the wheel. Do not change anything in setup.py between
creating the wheel and the source distribution (obviously).
- First, delete any building directories that may exist from previous builds:
- build
- dist
- From the top level directory, build the wheel and the sources:
```
python setup.py bdist_wheel
python setup.py sdist
```
- You should now have a /dist directory with both .whl and .tar.gz source versions.
5. Check that everything looks correct by uploading the package to the test PyPI server:
```
twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/
```
Check that you can install it in a virtualenv/notebook by running:
```
pip install huggingface_hub fsspec aiohttp pyarrow-hotfix
pip install -U tqdm
pip install -i https://testpypi.python.org/pypi datasets
```
6. Upload the final version to the actual PyPI:
```
twine upload dist/* -r pypi
```
7. Make the release on GitHub once everything is looking hunky-dory:
- Merge the release Pull Request
- Create a new release: https://github.com/huggingface/datasets/releases/new
- Choose a tag: Introduce the new VERSION as tag, that will be created when you publish the release
- Create new tag VERSION on publish
- Release title: Introduce the new VERSION as well
- Describe the release
- Use "Generate release notes" button for automatic generation
- Publish release
8. Set the dev version
- Create the dev-version branch from the main branch:
```
git checkout main
git pull upstream main
git branch -D dev-version
git checkout -b dev-version
```
- Change the version to X.X.X+1.dev0 (e.g. VERSION=1.18.3 -> 1.18.4.dev0) in:
- __init__.py
- setup.py
- Commit these changes, push and create a Pull Request:
```
git add -u
git commit -m "Set dev version"
git push upstream dev-version
```
- Go to: https://github.com/huggingface/datasets/pull/new/dev-version
- Create pull request
- Merge the dev version Pull Request
"""
from setuptools import find_packages, setup
REQUIRED_PKGS = [
# For file locking
"filelock",
# We use numpy>=1.17 to have np.random.Generator (Dataset shuffling)
"numpy>=1.17",
# Backend and serialization.
# Minimum 8.0.0 to be able to use .to_reader()
"pyarrow>=8.0.0",
# As long as we allow pyarrow < 14.0.1, to fix vulnerability CVE-2023-47248
"pyarrow-hotfix",
# For smart caching dataset processing
"dill>=0.3.0,<0.3.9", # tmp pin until dill has official support for determinism see https://github.com/uqfoundation/dill/issues/19
# For performance gains with apache arrow
"pandas",
# for downloading datasets over HTTPS
"requests>=2.19.0",
# progress bars in download and scripts
"tqdm>=4.62.1",
# for fast hashing
"xxhash",
# for better multiprocessing
"multiprocess",
# to save datasets locally or on any filesystem
# minimum 2023.1.0 to support protocol=kwargs in fsspec's `open`, `get_fs_token_paths`, etc.: see https://github.com/fsspec/filesystem_spec/pull/1143
"fsspec[http]>=2023.1.0,<=2023.10.0",
# for data streaming via http
"aiohttp",
# To get datasets from the Datasets Hub on huggingface.co
"huggingface_hub>=0.19.4",
# Utilities from PyPA to e.g., compare versions
"packaging",
# To parse YAML metadata from dataset cards
"pyyaml>=5.1",
]
AUDIO_REQUIRE = [
"soundfile>=0.12.1",
"librosa",
]
VISION_REQUIRE = [
"Pillow>=6.2.1",
]
BENCHMARKS_REQUIRE = [
"tensorflow==2.12.0",
"torch==2.0.1",
"transformers==4.30.1",
]
TESTS_REQUIRE = [
# test dependencies
"absl-py",
"joblib<1.3.0", # joblibspark doesn't support recent joblib versions
"joblibspark",
"pytest",
"pytest-datadir",
"pytest-xdist",
# optional dependencies
"apache-beam>=2.26.0,<2.44.0;python_version<'3.10'", # doesn't support recent dill versions for recent python versions
"elasticsearch<8.0.0", # 8.0 asks users to provide hosts or cloud_id when instantiating ElasticSearch()
"faiss-cpu>=1.6.4",
"jax>=0.3.14; sys_platform != 'win32'",
"jaxlib>=0.3.14; sys_platform != 'win32'",
"lz4",
"pyspark>=3.4", # https://issues.apache.org/jira/browse/SPARK-40991 fixed in 3.4.0
"py7zr",
"rarfile>=4.0",
"sqlalchemy",
"s3fs>=2021.11.1", # aligned with fsspec[http]>=2021.11.1; test only on python 3.7 for now
"tensorflow>=2.3,!=2.6.0,!=2.6.1; sys_platform != 'darwin' or platform_machine != 'arm64'",
"tensorflow-macos; sys_platform == 'darwin' and platform_machine == 'arm64'",
"tiktoken",
"torch>=2.0.0",
"soundfile>=0.12.1",
"transformers",
"typing-extensions>=4.6.1", # due to conflict between apache-beam and pydantic
"zstandard",
]
METRICS_TESTS_REQUIRE = [
# metrics dependencies
"accelerate", # for frugalscore (calls transformers' Trainer)
"bert_score>=0.3.6",
"jiwer",
"langdetect",
"mauve-text",
"nltk",
"rouge_score",
"sacrebleu",
"sacremoses",
"scikit-learn",
"scipy",
"sentencepiece", # for bleurt
"seqeval",
"spacy>=3.0.0",
"tldextract",
# to speed up pip backtracking
"toml>=0.10.1",
"typer<0.5.0", # pinned to work with Spacy==3.4.3 on Windows: see https://github.com/tiangolo/typer/issues/427
"requests_file>=1.5.1",
"tldextract>=3.1.0",
"texttable>=1.6.3",
"Werkzeug>=1.0.1",
"six~=1.15.0",
]
TESTS_REQUIRE.extend(VISION_REQUIRE)
TESTS_REQUIRE.extend(AUDIO_REQUIRE)
QUALITY_REQUIRE = ["ruff>=0.1.5"]
DOCS_REQUIRE = [
# Might need to add doc-builder and some specific deps in the future
"s3fs",
# Following dependencies are required for the Python reference to be built properly
"transformers",
"torch",
"tensorflow>=2.2.0,!=2.6.0,!=2.6.1; sys_platform != 'darwin' or platform_machine != 'arm64'",
"tensorflow-macos; sys_platform == 'darwin' and platform_machine == 'arm64'",
]
EXTRAS_REQUIRE = {
"audio": AUDIO_REQUIRE,
"vision": VISION_REQUIRE,
"apache-beam": ["apache-beam>=2.26.0,<2.44.0"],
"tensorflow": [
"tensorflow>=2.2.0,!=2.6.0,!=2.6.1; sys_platform != 'darwin' or platform_machine != 'arm64'",
"tensorflow-macos; sys_platform == 'darwin' and platform_machine == 'arm64'",
],
"tensorflow_gpu": ["tensorflow-gpu>=2.2.0,!=2.6.0,!=2.6.1"],
"torch": ["torch"],
"jax": ["jax>=0.3.14", "jaxlib>=0.3.14"],
"s3": ["s3fs"],
"streaming": [], # for backward compatibility
"dev": TESTS_REQUIRE + QUALITY_REQUIRE + DOCS_REQUIRE,
"tests": TESTS_REQUIRE,
"metrics-tests": METRICS_TESTS_REQUIRE,
"quality": QUALITY_REQUIRE,
"benchmarks": BENCHMARKS_REQUIRE,
"docs": DOCS_REQUIRE,
}
setup(
name="datasets",
version="2.16.2.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="HuggingFace community-driven open-source library of datasets",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
author="HuggingFace Inc.",
author_email="[email protected]",
url="https://github.com/huggingface/datasets",
download_url="https://github.com/huggingface/datasets/tags",
license="Apache 2.0",
package_dir={"": "src"},
packages=find_packages("src"),
package_data={
"datasets": ["py.typed"],
"datasets.utils.resources": ["*.json", "*.yaml", "*.tsv"],
},
entry_points={"console_scripts": ["datasets-cli=datasets.commands.datasets_cli:main"]},
python_requires=">=3.8.0",
install_requires=REQUIRED_PKGS,
extras_require=EXTRAS_REQUIRE,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords="datasets machine learning datasets metrics",
zip_safe=False, # Required for mypy to find the py.typed file
)
| datasets/setup.py/0 | {
"file_path": "datasets/setup.py",
"repo_id": "datasets",
"token_count": 4173
} | 62 |
import contextlib
import copy
import fnmatch
import json
import math
import posixpath
import re
import warnings
from io import BytesIO
from pathlib import Path
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
import fsspec
import numpy as np
from huggingface_hub import (
CommitInfo,
CommitOperationAdd,
CommitOperationDelete,
DatasetCard,
DatasetCardData,
HfApi,
)
from . import config
from .arrow_dataset import PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED, Dataset
from .features import Features
from .features.features import FeatureType
from .info import DatasetInfo, DatasetInfosDict
from .naming import _split_re
from .splits import NamedSplit, Split, SplitDict, SplitInfo
from .table import Table
from .tasks import TaskTemplate
from .utils import logging
from .utils.deprecation_utils import deprecated
from .utils.doc_utils import is_documented_by
from .utils.hub import list_files_info
from .utils.metadata import MetadataConfigs
from .utils.py_utils import asdict, glob_pattern_to_regex, string_to_dict
from .utils.typing import PathLike
logger = logging.get_logger(__name__)
class DatasetDict(dict):
"""A dictionary (dict of str: datasets.Dataset) with dataset transforms methods (map, filter, etc.)"""
def _check_values_type(self):
for dataset in self.values():
if not isinstance(dataset, Dataset):
raise TypeError(f"Values in `DatasetDict` should be of type `Dataset` but got type '{type(dataset)}'")
def _check_values_features(self):
items = list(self.items())
for item_a, item_b in zip(items[:-1], items[1:]):
if item_a[1].features != item_b[1].features:
raise ValueError(
f"All datasets in `DatasetDict` should have the same features but features for '{item_a[0]}' and '{item_b[0]}' don't match: {item_a[1].features} != {item_b[1].features}"
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
# Here `del` is used to del the pyarrow tables. This properly closes the files used for memory mapped tables
for dataset in self.values():
if hasattr(dataset, "_data"):
del dataset._data
if hasattr(dataset, "_indices"):
del dataset._indices
def __getitem__(self, k) -> Dataset:
if isinstance(k, (str, NamedSplit)) or len(self) == 0:
return super().__getitem__(k)
else:
available_suggested_splits = [
split for split in (Split.TRAIN, Split.TEST, Split.VALIDATION) if split in self
]
suggested_split = available_suggested_splits[0] if available_suggested_splits else list(self)[0]
raise KeyError(
f"Invalid key: {k}. Please first select a split. For example: "
f"`my_dataset_dictionary['{suggested_split}'][{k}]`. "
f"Available splits: {sorted(self)}"
)
@property
def data(self) -> Dict[str, Table]:
"""The Apache Arrow tables backing each split.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.data
```
"""
self._check_values_type()
return {k: dataset.data for k, dataset in self.items()}
@property
def cache_files(self) -> Dict[str, Dict]:
"""The cache files containing the Apache Arrow table backing each split.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.cache_files
{'test': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-test.arrow'}],
'train': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-train.arrow'}],
'validation': [{'filename': '/root/.cache/huggingface/datasets/rotten_tomatoes_movie_review/default/1.0.0/40d411e45a6ce3484deed7cc15b82a53dad9a72aafd9f86f8f227134bec5ca46/rotten_tomatoes_movie_review-validation.arrow'}]}
```
"""
self._check_values_type()
return {k: dataset.cache_files for k, dataset in self.items()}
@property
def num_columns(self) -> Dict[str, int]:
"""Number of columns in each split of the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.num_columns
{'test': 2, 'train': 2, 'validation': 2}
```
"""
self._check_values_type()
return {k: dataset.num_columns for k, dataset in self.items()}
@property
def num_rows(self) -> Dict[str, int]:
"""Number of rows in each split of the dataset (same as :func:`datasets.Dataset.__len__`).
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.num_rows
{'test': 1066, 'train': 8530, 'validation': 1066}
```
"""
self._check_values_type()
return {k: dataset.num_rows for k, dataset in self.items()}
@property
def column_names(self) -> Dict[str, List[str]]:
"""Names of the columns in each split of the dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.column_names
{'test': ['text', 'label'],
'train': ['text', 'label'],
'validation': ['text', 'label']}
```
"""
self._check_values_type()
return {k: dataset.column_names for k, dataset in self.items()}
@property
def shape(self) -> Dict[str, Tuple[int]]:
"""Shape of each split of the dataset (number of columns, number of rows).
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.shape
{'test': (1066, 2), 'train': (8530, 2), 'validation': (1066, 2)}
```
"""
self._check_values_type()
return {k: dataset.shape for k, dataset in self.items()}
def flatten(self, max_depth=16) -> "DatasetDict":
"""Flatten the Apache Arrow Table of each split (nested features are flatten).
Each column with a struct type is flattened into one column per struct field.
Other columns are left unchanged.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("squad")
>>> ds["train"].features
{'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None),
'title': Value(dtype='string', id=None)}
>>> ds.flatten()
DatasetDict({
train: Dataset({
features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
num_rows: 87599
})
validation: Dataset({
features: ['id', 'title', 'context', 'question', 'answers.text', 'answers.answer_start'],
num_rows: 10570
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.flatten(max_depth=max_depth) for k, dataset in self.items()})
def unique(self, column: str) -> Dict[str, List]:
"""Return a list of the unique elements in a column for each split.
This is implemented in the low-level backend and as such, very fast.
Args:
column (`str`):
column name (list all the column names with [`~datasets.Dataset.column_names`])
Returns:
Dict[`str`, `list`]: Dictionary of unique elements in the given column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.unique("label")
{'test': [1, 0], 'train': [1, 0], 'validation': [1, 0]}
```
"""
self._check_values_type()
return {k: dataset.unique(column) for k, dataset in self.items()}
def cleanup_cache_files(self) -> Dict[str, int]:
"""Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is one.
Be careful when running this command that no other process is currently using other cache files.
Return:
`Dict` with the number of removed files for each split
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.cleanup_cache_files()
{'test': 0, 'train': 0, 'validation': 0}
```
"""
self._check_values_type()
return {k: dataset.cleanup_cache_files() for k, dataset in self.items()}
def __repr__(self):
repr = "\n".join([f"{k}: {v}" for k, v in self.items()])
repr = re.sub(r"^", " " * 4, repr, 0, re.M)
return f"DatasetDict({{\n{repr}\n}})"
def cast(self, features: Features) -> "DatasetDict":
"""
Cast the dataset to a new set of features.
The transformation is applied to all the datasets of the dataset dictionary.
You can also remove a column using [`Dataset.map`] with `feature` but `cast`
is in-place (doesn't copy the data to a new dataset) and is thus faster.
Args:
features ([`Features`]):
New features to cast the dataset to.
The name and order of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> new_features = ds["train"].features.copy()
>>> new_features['label'] = ClassLabel(names=['bad', 'good'])
>>> new_features['text'] = Value('large_string')
>>> ds = ds.cast(new_features)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='large_string', id=None)}
```
"""
self._check_values_type()
return DatasetDict({k: dataset.cast(features=features) for k, dataset in self.items()})
def cast_column(self, column: str, feature) -> "DatasetDict":
"""Cast column to feature for decoding.
Args:
column (`str`):
Column name.
feature ([`Feature`]):
Target feature.
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
self._check_values_type()
return DatasetDict({k: dataset.cast_column(column=column, feature=feature) for k, dataset in self.items()})
def remove_columns(self, column_names: Union[str, List[str]]) -> "DatasetDict":
"""
Remove one or several column(s) from each split in the dataset
and the features associated to the column(s).
The transformation is applied to all the splits of the dataset dictionary.
You can also remove a column using [`Dataset.map`] with `remove_columns` but the present method
is in-place (doesn't copy the data to a new dataset) and is thus faster.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to remove.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.remove_columns("label")
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 8530
})
validation: Dataset({
features: ['text'],
num_rows: 1066
})
test: Dataset({
features: ['text'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.remove_columns(column_names=column_names) for k, dataset in self.items()})
def rename_column(self, original_column_name: str, new_column_name: str) -> "DatasetDict":
"""
Rename a column in the dataset and move the features associated to the original column under the new column name.
The transformation is applied to all the datasets of the dataset dictionary.
You can also rename a column using [`~Dataset.map`] with `remove_columns` but the present method:
- takes care of moving the original features under the new column name.
- doesn't copy the data to a new dataset and is thus much faster.
Args:
original_column_name (`str`):
Name of the column to rename.
new_column_name (`str`):
New name for the column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.rename_column("label", "label_new")
DatasetDict({
train: Dataset({
features: ['text', 'label_new'],
num_rows: 8530
})
validation: Dataset({
features: ['text', 'label_new'],
num_rows: 1066
})
test: Dataset({
features: ['text', 'label_new'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict(
{
k: dataset.rename_column(original_column_name=original_column_name, new_column_name=new_column_name)
for k, dataset in self.items()
}
)
def rename_columns(self, column_mapping: Dict[str, str]) -> "DatasetDict":
"""
Rename several columns in the dataset, and move the features associated to the original columns under
the new column names.
The transformation is applied to all the datasets of the dataset dictionary.
Args:
column_mapping (`Dict[str, str]`):
A mapping of columns to rename to their new names.
Returns:
[`DatasetDict`]: A copy of the dataset with renamed columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.rename_columns({'text': 'text_new', 'label': 'label_new'})
DatasetDict({
train: Dataset({
features: ['text_new', 'label_new'],
num_rows: 8530
})
validation: Dataset({
features: ['text_new', 'label_new'],
num_rows: 1066
})
test: Dataset({
features: ['text_new', 'label_new'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.rename_columns(column_mapping=column_mapping) for k, dataset in self.items()})
def select_columns(self, column_names: Union[str, List[str]]) -> "DatasetDict":
"""Select one or several column(s) from each split in the dataset and
the features associated to the column(s).
The transformation is applied to all the splits of the dataset
dictionary.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to keep.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.select_columns("text")
DatasetDict({
train: Dataset({
features: ['text'],
num_rows: 8530
})
validation: Dataset({
features: ['text'],
num_rows: 1066
})
test: Dataset({
features: ['text'],
num_rows: 1066
})
})
```
"""
self._check_values_type()
return DatasetDict({k: dataset.select_columns(column_names=column_names) for k, dataset in self.items()})
def class_encode_column(self, column: str, include_nulls: bool = False) -> "DatasetDict":
"""Casts the given column as [`~datasets.features.ClassLabel`] and updates the tables.
Args:
column (`str`):
The name of the column to cast.
include_nulls (`bool`, defaults to `False`):
Whether to include null values in the class labels. If `True`, the null values will be encoded as the `"None"` class label.
<Added version="1.14.2"/>
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("boolq")
>>> ds["train"].features
{'answer': Value(dtype='bool', id=None),
'passage': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)}
>>> ds = ds.class_encode_column("answer")
>>> ds["train"].features
{'answer': ClassLabel(num_classes=2, names=['False', 'True'], id=None),
'passage': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)}
```
"""
self._check_values_type()
return DatasetDict(
{k: dataset.class_encode_column(column=column, include_nulls=include_nulls) for k, dataset in self.items()}
)
@contextlib.contextmanager
def formatted_as(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""To be used in a `with` statement. Set `__getitem__` return format (type and columns).
The transformation is applied to all the datasets of the dataset dictionary.
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to False):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
"""
self._check_values_type()
old_format_type = {k: dataset._format_type for k, dataset in self.items()}
old_format_kwargs = {k: dataset._format_kwargs for k, dataset in self.items()}
old_format_columns = {k: dataset._format_columns for k, dataset in self.items()}
old_output_all_columns = {k: dataset._output_all_columns for k, dataset in self.items()}
try:
self.set_format(type, columns, output_all_columns, **format_kwargs)
yield
finally:
for k, dataset in self.items():
dataset.set_format(
old_format_type[k], old_format_columns[k], old_output_all_columns[k], **old_format_kwargs[k]
)
def set_format(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
):
"""Set `__getitem__` return format (type and columns).
The format is set for every dataset in the dataset dictionary.
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to False):
Keep un-formatted columns as well in the output (as python objects),
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
It is possible to call `map` after calling `set_format`. Since `map` may add new columns, then the list of formatted columns
gets updated. In this case, if you apply `map` on a dataset to add a new column, then this column will be formatted:
`new formatted columns = (all columns - previously unformatted columns)`
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x["text"], truncation=True, padding=True), batched=True)
>>> ds.set_format(type="numpy", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds["train"].format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'numpy'}
```
"""
self._check_values_type()
for dataset in self.values():
dataset.set_format(type=type, columns=columns, output_all_columns=output_all_columns, **format_kwargs)
def reset_format(self):
"""Reset `__getitem__` return format to python objects and all columns.
The transformation is applied to all the datasets of the dataset dictionary.
Same as `self.set_format()`
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x["text"], truncation=True, padding=True), batched=True)
>>> ds.set_format(type="numpy", columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds["train"].format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'numpy'}
>>> ds.reset_format()
>>> ds["train"].format
{'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
'format_kwargs': {},
'output_all_columns': False,
'type': None}
```
"""
self._check_values_type()
for dataset in self.values():
dataset.set_format()
def set_transform(
self,
transform: Optional[Callable],
columns: Optional[List] = None,
output_all_columns: bool = False,
):
"""Set ``__getitem__`` return format using this transform. The transform is applied on-the-fly on batches when ``__getitem__`` is called.
The transform is set for every dataset in the dataset dictionary
As :func:`datasets.Dataset.set_format`, this can be reset using :func:`datasets.Dataset.reset_format`
Args:
transform (`Callable`, optional): user-defined formatting transform, replaces the format defined by :func:`datasets.Dataset.set_format`
A formatting function is a callable that takes a batch (as a dict) as input and returns a batch.
This function is applied right before returning the objects in ``__getitem__``.
columns (`List[str]`, optional): columns to format in the output
If specified, then the input batch of the transform only contains those columns.
output_all_columns (`bool`, default to False): keep un-formatted columns as well in the output (as python objects)
If set to True, then the other un-formatted columns are kept with the output of the transform.
"""
self._check_values_type()
for dataset in self.values():
dataset.set_format("custom", columns=columns, output_all_columns=output_all_columns, transform=transform)
def with_format(
self,
type: Optional[str] = None,
columns: Optional[List] = None,
output_all_columns: bool = False,
**format_kwargs,
) -> "DatasetDict":
"""Set `__getitem__` return format (type and columns). The data formatting is applied on-the-fly.
The format `type` (for example "numpy") is used to format batches when using `__getitem__`.
The format is set for every dataset in the dataset dictionary.
It's also possible to use custom transforms for formatting using [`~datasets.Dataset.with_transform`].
Contrary to [`~datasets.DatasetDict.set_format`], `with_format` returns a new [`DatasetDict`] object with new [`Dataset`] objects.
Args:
type (`str`, *optional*):
Output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'pandas', 'arrow', 'jax']`.
`None` means `__getitem__` returns python objects (default).
columns (`List[str]`, *optional*):
Columns to format in the output.
`None` means `__getitem__` returns all columns (default).
output_all_columns (`bool`, defaults to `False`):
Keep un-formatted columns as well in the output (as python objects).
**format_kwargs (additional keyword arguments):
Keywords arguments passed to the convert function like `np.array`, `torch.tensor` or `tensorflow.ragged.constant`.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
>>> ds["train"].format
{'columns': ['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'],
'format_kwargs': {},
'output_all_columns': False,
'type': None}
>>> ds = ds.with_format(type='tensorflow', columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'])
>>> ds["train"].format
{'columns': ['input_ids', 'token_type_ids', 'attention_mask', 'label'],
'format_kwargs': {},
'output_all_columns': False,
'type': 'tensorflow'}
```
"""
dataset = copy.deepcopy(self)
dataset.set_format(type=type, columns=columns, output_all_columns=output_all_columns, **format_kwargs)
return dataset
def with_transform(
self,
transform: Optional[Callable],
columns: Optional[List] = None,
output_all_columns: bool = False,
) -> "DatasetDict":
"""Set `__getitem__` return format using this transform. The transform is applied on-the-fly on batches when `__getitem__` is called.
The transform is set for every dataset in the dataset dictionary
As [`~datasets.Dataset.set_format`], this can be reset using [`~datasets.Dataset.reset_format`].
Contrary to [`~datasets.DatasetDict.set_transform`], `with_transform` returns a new [`DatasetDict`] object with new [`Dataset`] objects.
Args:
transform (`Callable`, *optional*):
User-defined formatting transform, replaces the format defined by [`~datasets.Dataset.set_format`].
A formatting function is a callable that takes a batch (as a dict) as input and returns a batch.
This function is applied right before returning the objects in `__getitem__`.
columns (`List[str]`, *optional*):
Columns to format in the output.
If specified, then the input batch of the transform only contains those columns.
output_all_columns (`bool`, defaults to False):
Keep un-formatted columns as well in the output (as python objects).
If set to `True`, then the other un-formatted columns are kept with the output of the transform.
Example:
```py
>>> from datasets import load_dataset
>>> from transformers import AutoTokenizer
>>> ds = load_dataset("rotten_tomatoes")
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def encode(example):
... return tokenizer(example['text'], truncation=True, padding=True, return_tensors="pt")
>>> ds = ds.with_transform(encode)
>>> ds["train"][0]
{'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1]),
'input_ids': tensor([ 101, 1103, 2067, 1110, 17348, 1106, 1129, 1103, 6880, 1432,
112, 188, 1207, 107, 14255, 1389, 107, 1105, 1115, 1119,
112, 188, 1280, 1106, 1294, 170, 24194, 1256, 3407, 1190,
170, 11791, 5253, 188, 1732, 7200, 10947, 12606, 2895, 117,
179, 7766, 118, 172, 15554, 1181, 3498, 6961, 3263, 1137,
188, 1566, 7912, 14516, 6997, 119, 102]),
'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0])}
```
"""
dataset = copy.deepcopy(self)
dataset.set_transform(transform=transform, columns=columns, output_all_columns=output_all_columns)
return dataset
def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
with_rank: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
desc: Optional[str] = None,
) -> "DatasetDict":
"""Apply a function to all the elements in the table (individually or in batches)
and update the table (if function does updated examples).
The transformation is applied to all the datasets of the dataset dictionary.
Args:
function (`callable`): with one of the following signature:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], indices: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
with_rank (`bool`, defaults to `False`):
Provide process rank to `function`. Note that in this case the
signature of `function` should be `def function(example[, idx], rank): ...`.
input_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`,
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the batch_size should be
dropped instead of being processed by the function.
remove_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, default `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
features (`[datasets.Features]`, *optional*, defaults to `None`):
Use a specific [`Features`] to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`):
Disallow null values in the table.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
num_proc (`int`, *optional*, defaults to `None`):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
desc (`str`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> ds["train"][0:3]["text"]
['Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .',
'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .',
'Review: effective but too-tepid biopic']
# process a batch of examples
>>> ds = ds.map(lambda example: tokenizer(example["text"]), batched=True)
# set number of processors
>>> ds = ds.map(add_prefix, num_proc=4)
```
"""
self._check_values_type()
if cache_file_names is None:
cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.map(
function=function,
with_indices=with_indices,
with_rank=with_rank,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_names[k],
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
fn_kwargs=fn_kwargs,
num_proc=num_proc,
desc=desc,
)
for k, dataset in self.items()
}
)
def filter(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
with_rank: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
num_proc: Optional[int] = None,
desc: Optional[str] = None,
) -> "DatasetDict":
"""Apply a filter function to all the elements in the table in batches
and update the table so that the dataset only includes examples according to the filter function.
The transformation is applied to all the datasets of the dataset dictionary.
Args:
function (`Callable`): Callable with one of the following signatures:
- `function(example: Dict[str, Any]) -> bool` if `batched=False` and `with_indices=False` and `with_rank=False`
- `function(example: Dict[str, Any], *extra_args) -> bool` if `batched=False` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
- `function(batch: Dict[str, List]) -> List[bool]` if `batched=True` and `with_indices=False` and `with_rank=False`
- `function(batch: Dict[str, List], *extra_args) -> List[bool]` if `batched=True` and `with_indices=True` and/or `with_rank=True` (one extra arg for each)
If no function is provided, defaults to an always `True` function: `lambda x: True`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the
signature of `function` should be `def function(example, idx[, rank]): ...`.
with_rank (`bool`, defaults to `False`):
Provide process rank to `function`. Note that in this case the
signature of `function` should be `def function(example[, idx], rank): ...`.
input_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`
`batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if chaching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
num_proc (`int`, *optional*, defaults to `None`):
Number of processes for multiprocessing. By default it doesn't
use multiprocessing.
desc (`str`, *optional*, defaults to `None`):
Meaningful description to be displayed alongside with the progress bar while filtering examples.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds.filter(lambda x: x["label"] == 1)
DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 4265
})
validation: Dataset({
features: ['text', 'label'],
num_rows: 533
})
test: Dataset({
features: ['text', 'label'],
num_rows: 533
})
})
```
"""
self._check_values_type()
if cache_file_names is None:
cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.filter(
function=function,
with_indices=with_indices,
with_rank=with_rank,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
cache_file_name=cache_file_names[k],
writer_batch_size=writer_batch_size,
fn_kwargs=fn_kwargs,
num_proc=num_proc,
desc=desc,
)
for k, dataset in self.items()
}
)
def flatten_indices(
self,
keep_in_memory: bool = False,
cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
features: Optional[Features] = None,
disable_nullable: bool = False,
num_proc: Optional[int] = None,
new_fingerprint: Optional[str] = None,
) -> "DatasetDict":
"""Create and cache a new Dataset by flattening the indices mapping.
Args:
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
cache_file_names (`Dict[str, str]`, *optional*, default `None`):
Provide the name of a path for the cache file. It is used to store the
results of the computation instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
features (`Optional[datasets.Features]`, defaults to `None`):
Use a specific [`Features`] to store the cache file
instead of the automatically generated one.
disable_nullable (`bool`, defaults to `False`):
Allow null values in the table.
num_proc (`int`, optional, default `None`):
Max number of processes when generating cache. Already cached shards are loaded sequentially
new_fingerprint (`str`, *optional*, defaults to `None`):
The new fingerprint of the dataset after transform.
If `None`, the new fingerprint is computed using a hash of the previous fingerprint, and the transform arguments
"""
self._check_values_type()
if cache_file_names is None:
cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.flatten_indices(
keep_in_memory=keep_in_memory,
cache_file_name=cache_file_names[k],
writer_batch_size=writer_batch_size,
features=features,
disable_nullable=disable_nullable,
num_proc=num_proc,
new_fingerprint=new_fingerprint,
)
for k, dataset in self.items()
}
)
def sort(
self,
column_names: Union[str, Sequence[str]],
reverse: Union[bool, Sequence[bool]] = False,
kind="deprecated",
null_placement: str = "at_end",
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
indices_cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
) -> "DatasetDict":
"""Create a new dataset sorted according to a single or multiple columns.
Args:
column_names (`Union[str, Sequence[str]]`):
Column name(s) to sort by.
reverse (`Union[bool, Sequence[bool]]`, defaults to `False`):
If `True`, sort by descending order rather than ascending. If a single bool is provided,
the value is applied to the sorting of all column names. Otherwise a list of bools with the
same length and order as column_names must be provided.
kind (`str`, *optional*):
Pandas algorithm for sorting selected in `{quicksort, mergesort, heapsort, stable}`,
The default is `quicksort`. Note that both `stable` and `mergesort` use timsort under the covers and, in general,
the actual implementation will vary with data type. The `mergesort` option is retained for backwards compatibility.
<Deprecated version="2.8.0">
`kind` was deprecated in version 2.10.0 and will be removed in 3.0.0.
</Deprecated>
null_placement (`str`, defaults to `at_end`):
Put `None` values at the beginning if `at_start` or `first` or at the end if `at_end` or `last`
keep_in_memory (`bool`, defaults to `False`):
Keep the sorted indices in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the sorted indices
can be identified, use it instead of recomputing.
indices_cache_file_names (`[Dict[str, str]]`, *optional*, defaults to `None`):
Provide the name of a path for the cache file. It is used to store the
indices mapping instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
Higher value gives smaller cache files, lower value consume less temporary memory.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('rotten_tomatoes')
>>> ds['train']['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> sorted_ds = ds.sort('label')
>>> sorted_ds['train']['label'][:10]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> another_sorted_ds = ds.sort(['label', 'text'], reverse=[True, False])
>>> another_sorted_ds['train']['label'][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
"""
self._check_values_type()
if indices_cache_file_names is None:
indices_cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.sort(
column_names=column_names,
reverse=reverse,
kind=kind,
null_placement=null_placement,
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
indices_cache_file_name=indices_cache_file_names[k],
writer_batch_size=writer_batch_size,
)
for k, dataset in self.items()
}
)
def shuffle(
self,
seeds: Optional[Union[int, Dict[str, Optional[int]]]] = None,
seed: Optional[int] = None,
generators: Optional[Dict[str, np.random.Generator]] = None,
keep_in_memory: bool = False,
load_from_cache_file: Optional[bool] = None,
indices_cache_file_names: Optional[Dict[str, Optional[str]]] = None,
writer_batch_size: Optional[int] = 1000,
) -> "DatasetDict":
"""Create a new Dataset where the rows are shuffled.
The transformation is applied to all the datasets of the dataset dictionary.
Currently shuffling uses numpy random generators.
You can either supply a NumPy BitGenerator to use, or a seed to initiate NumPy's default random generator (PCG64).
Args:
seeds (`Dict[str, int]` or `int`, *optional*):
A seed to initialize the default BitGenerator if `generator=None`.
If `None`, then fresh, unpredictable entropy will be pulled from the OS.
If an `int` or `array_like[ints]` is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state.
You can provide one `seed` per dataset in the dataset dictionary.
seed (`int`, *optional*):
A seed to initialize the default BitGenerator if `generator=None`. Alias for seeds (a `ValueError` is raised if both are provided).
generators (`Dict[str, *optional*, np.random.Generator]`):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
You have to provide one `generator` per dataset in the dataset dictionary.
keep_in_memory (`bool`, defaults to `False`):
Keep the dataset in memory instead of writing it to a cache file.
load_from_cache_file (`Optional[bool]`, defaults to `True` if caching is enabled):
If a cache file storing the current computation from `function`
can be identified, use it instead of recomputing.
indices_cache_file_names (`Dict[str, str]`, *optional*):
Provide the name of a path for the cache file. It is used to store the
indices mappings instead of the automatically generated cache file name.
You have to provide one `cache_file_name` per dataset in the dataset dictionary.
writer_batch_size (`int`, defaults to `1000`):
Number of rows per write operation for the cache file writer.
This value is a good trade-off between memory usage during the processing, and processing speed.
Higher value makes the processing do fewer lookups, lower value consume less temporary memory while running `map`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes")
>>> ds["train"]["label"][:10]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
# set a seed
>>> shuffled_ds = ds.shuffle(seed=42)
>>> shuffled_ds["train"]["label"][:10]
[0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
```
"""
self._check_values_type()
if seed is not None and seeds is not None:
raise ValueError("Please specify seed or seeds, but not both")
seeds = seed if seed is not None else seeds
if seeds is None:
seeds = {k: None for k in self}
elif not isinstance(seeds, dict):
seeds = {k: seeds for k in self}
if generators is None:
generators = {k: None for k in self}
if indices_cache_file_names is None:
indices_cache_file_names = {k: None for k in self}
return DatasetDict(
{
k: dataset.shuffle(
seed=seeds[k],
generator=generators[k],
keep_in_memory=keep_in_memory,
load_from_cache_file=load_from_cache_file,
indices_cache_file_name=indices_cache_file_names[k],
writer_batch_size=writer_batch_size,
)
for k, dataset in self.items()
}
)
def save_to_disk(
self,
dataset_dict_path: PathLike,
fs="deprecated",
max_shard_size: Optional[Union[str, int]] = None,
num_shards: Optional[Dict[str, int]] = None,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
):
"""
Saves a dataset dict to a filesystem using `fsspec.spec.AbstractFileSystem`.
For [`Image`] and [`Audio`] data:
All the Image() and Audio() data are stored in the arrow files.
If you want to store paths or urls, please use the Value("string") type.
Args:
dataset_dict_path (`str`):
Path (e.g. `dataset/train`) or remote URI
(e.g. `s3://my-bucket/dataset/train`) of the dataset dict directory where the dataset dict will be
saved to.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem where the dataset will be saved to.
<Deprecated version="2.8.0">
`fs` was deprecated in version 2.8.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`
</Deprecated>
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"50MB"`).
num_shards (`Dict[str, int]`, *optional*):
Number of shards to write. By default the number of shards depends on `max_shard_size` and `num_proc`.
You need to provide the number of shards for each dataset in the dataset dictionary.
Use a dictionary to define a different num_shards for each split.
<Added version="2.8.0"/>
num_proc (`int`, *optional*, default `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.8.0"/>
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.8.0"/>
Example:
```python
>>> dataset_dict.save_to_disk("path/to/dataset/directory")
>>> dataset_dict.save_to_disk("path/to/dataset/directory", max_shard_size="1GB")
>>> dataset_dict.save_to_disk("path/to/dataset/directory", num_shards={"train": 1024, "test": 8})
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.8.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs: fsspec.AbstractFileSystem
fs, _, _ = fsspec.get_fs_token_paths(dataset_dict_path, storage_options=storage_options)
if num_shards is None:
num_shards = {k: None for k in self}
elif not isinstance(num_shards, dict):
raise ValueError(
"Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
)
fs.makedirs(dataset_dict_path, exist_ok=True)
with fs.open(posixpath.join(dataset_dict_path, config.DATASETDICT_JSON_FILENAME), "w", encoding="utf-8") as f:
json.dump({"splits": list(self)}, f)
for k, dataset in self.items():
dataset.save_to_disk(
posixpath.join(dataset_dict_path, k),
num_shards=num_shards.get(k),
max_shard_size=max_shard_size,
num_proc=num_proc,
storage_options=storage_options,
)
@staticmethod
def load_from_disk(
dataset_dict_path: PathLike,
fs="deprecated",
keep_in_memory: Optional[bool] = None,
storage_options: Optional[dict] = None,
) -> "DatasetDict":
"""
Load a dataset that was previously saved using [`save_to_disk`] from a filesystem using `fsspec.spec.AbstractFileSystem`.
Args:
dataset_dict_path (`str`):
Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3//my-bucket/dataset/train"`)
of the dataset dict directory where the dataset dict will be loaded from.
fs (`fsspec.spec.AbstractFileSystem`, *optional*):
Instance of the remote filesystem where the dataset will be saved to.
<Deprecated version="2.8.0">
`fs` was deprecated in version 2.8.0 and will be removed in 3.0.0.
Please use `storage_options` instead, e.g. `storage_options=fs.storage_options`
</Deprecated>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the
dataset will not be copied in-memory unless explicitly enabled by setting
`datasets.config.IN_MEMORY_MAX_SIZE` to nonzero. See more details in the
[improve performance](../cache#improve-performance) section.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.8.0"/>
Returns:
[`DatasetDict`]
Example:
```py
>>> ds = load_from_disk('path/to/dataset/directory')
```
"""
if fs != "deprecated":
warnings.warn(
"'fs' was deprecated in favor of 'storage_options' in version 2.8.0 and will be removed in 3.0.0.\n"
"You can remove this warning by passing 'storage_options=fs.storage_options' instead.",
FutureWarning,
)
storage_options = fs.storage_options
fs: fsspec.AbstractFileSystem
fs, _, [dataset_dict_path] = fsspec.get_fs_token_paths(dataset_dict_path, storage_options=storage_options)
dataset_dict_json_path = posixpath.join(dataset_dict_path, config.DATASETDICT_JSON_FILENAME)
dataset_state_json_path = posixpath.join(dataset_dict_path, config.DATASET_STATE_JSON_FILENAME)
dataset_info_path = posixpath.join(dataset_dict_path, config.DATASET_INFO_FILENAME)
if not fs.isfile(dataset_dict_json_path):
if fs.isfile(dataset_info_path) and fs.isfile(dataset_state_json_path):
raise FileNotFoundError(
f"No such file: '{dataset_dict_json_path}'. Expected to load a `DatasetDict` object, but got a `Dataset`. Please use either `datasets.load_from_disk` or `Dataset.load_from_disk` instead."
)
raise FileNotFoundError(
f"No such file: '{dataset_dict_json_path}'. Expected to load a `DatasetDict` object, but provided path is not a `DatasetDict`."
)
with fs.open(dataset_dict_json_path, "r", encoding="utf-8") as f:
splits = json.load(f)["splits"]
dataset_dict = DatasetDict()
for k in splits:
dataset_dict_split_path = posixpath.join(fs.unstrip_protocol(dataset_dict_path), k)
dataset_dict[k] = Dataset.load_from_disk(
dataset_dict_split_path, keep_in_memory=keep_in_memory, storage_options=storage_options
)
return dataset_dict
@staticmethod
def from_csv(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from CSV file(s).
Args:
path_or_paths (`dict` of path-like):
Path(s) of the CSV file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (str, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`pandas.read_csv`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_csv({'train': 'path/to/dataset.csv'})
```
"""
# Dynamic import to avoid circular dependency
from .io.csv import CsvDatasetReader
return CsvDatasetReader(
path_or_paths, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
@staticmethod
def from_json(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from JSON Lines file(s).
Args:
path_or_paths (`path-like` or list of `path-like`):
Path(s) of the JSON Lines file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (str, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`JsonConfig`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_json({'train': 'path/to/dataset.json'})
```
"""
# Dynamic import to avoid circular dependency
from .io.json import JsonDatasetReader
return JsonDatasetReader(
path_or_paths, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
@staticmethod
def from_parquet(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
columns: Optional[List[str]] = None,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from Parquet file(s).
Args:
path_or_paths (`dict` of path-like):
Path(s) of the CSV file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
columns (`List[str]`, *optional*):
If not `None`, only these columns will be read from the file.
A column name may be a prefix of a nested field, e.g. 'a' will select
'a.b', 'a.c', and 'a.d.e'.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`ParquetConfig`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_parquet({'train': 'path/to/dataset/parquet'})
```
"""
# Dynamic import to avoid circular dependency
from .io.parquet import ParquetDatasetReader
return ParquetDatasetReader(
path_or_paths,
features=features,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
columns=columns,
**kwargs,
).read()
@staticmethod
def from_text(
path_or_paths: Dict[str, PathLike],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
) -> "DatasetDict":
"""Create [`DatasetDict`] from text file(s).
Args:
path_or_paths (`dict` of path-like):
Path(s) of the text file(s).
features ([`Features`], *optional*):
Dataset features.
cache_dir (`str`, *optional*, defaults to `"~/.cache/huggingface/datasets"`):
Directory to cache data.
keep_in_memory (`bool`, defaults to `False`):
Whether to copy the data in-memory.
**kwargs (additional keyword arguments):
Keyword arguments to be passed to [`TextConfig`].
Returns:
[`DatasetDict`]
Example:
```py
>>> from datasets import DatasetDict
>>> ds = DatasetDict.from_text({'train': 'path/to/dataset.txt'})
```
"""
# Dynamic import to avoid circular dependency
from .io.text import TextDatasetReader
return TextDatasetReader(
path_or_paths, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs
).read()
@deprecated()
@is_documented_by(Dataset.prepare_for_task)
def prepare_for_task(self, task: Union[str, TaskTemplate], id: int = 0) -> "DatasetDict":
self._check_values_type()
return DatasetDict({k: dataset.prepare_for_task(task=task, id=id) for k, dataset in self.items()})
@is_documented_by(Dataset.align_labels_with_mapping)
def align_labels_with_mapping(self, label2id: Dict, label_column: str) -> "DatasetDict":
self._check_values_type()
return DatasetDict(
{
k: dataset.align_labels_with_mapping(label2id=label2id, label_column=label_column)
for k, dataset in self.items()
}
)
def push_to_hub(
self,
repo_id,
config_name: str = "default",
set_default: Optional[bool] = None,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
private: Optional[bool] = False,
token: Optional[str] = None,
revision: Optional[str] = None,
branch="deprecated",
create_pr: Optional[bool] = False,
max_shard_size: Optional[Union[int, str]] = None,
num_shards: Optional[Dict[str, int]] = None,
embed_external_files: bool = True,
) -> CommitInfo:
"""Pushes the [`DatasetDict`] to the hub as a Parquet dataset.
The [`DatasetDict`] is pushed using HTTP requests and does not need to have neither git or git-lfs installed.
Each dataset split will be pushed independently. The pushed dataset will keep the original split names.
The resulting Parquet files are self-contained by default: if your dataset contains [`Image`] or [`Audio`]
data, the Parquet files will store the bytes of your images or audio files.
You can disable this by setting `embed_external_files` to False.
Args:
repo_id (`str`):
The ID of the repository to push to in the following format: `<user>/<dataset_name>` or
`<org>/<dataset_name>`. Also accepts `<dataset_name>`, which will default to the namespace
of the logged-in user.
config_name (`str`):
Configuration name of a dataset. Defaults to "default".
set_default (`bool`, *optional*):
Whether to set this configuration as the default one. Otherwise, the default configuration is the one
named "default".
commit_message (`str`, *optional*):
Message to commit while pushing. Will default to `"Upload dataset"`.
commit_description (`str`, *optional*):
Description of the commit that will be created.
Additionally, description of the PR if a PR is created (`create_pr` is True).
<Added version="2.16.0"/>
private (`bool`, *optional*):
Whether the dataset repository should be set to private or not. Only affects repository creation:
a repository that already exists will not be affected by that parameter.
token (`str`, *optional*):
An optional authentication token for the Hugging Face Hub. If no token is passed, will default
to the token saved locally when logging in with `huggingface-cli login`. Will raise an error
if no token is passed and the user is not logged-in.
revision (`str`, *optional*):
Branch to push the uploaded files to. Defaults to the `"main"` branch.
<Added version="2.15.0"/>
branch (`str`, *optional*):
The git branch on which to push the dataset. This defaults to the default branch as specified
in your repository, which defaults to `"main"`.
<Deprecated version="2.15.0">
`branch` was deprecated in favor of `revision` in version 2.15.0 and will be removed in 3.0.0.
</Deprecated>
create_pr (`bool`, *optional*, defaults to `False`):
Whether to create a PR with the uploaded files or directly commit.
<Added version="2.15.0"/>
max_shard_size (`int` or `str`, *optional*, defaults to `"500MB"`):
The maximum size of the dataset shards to be uploaded to the hub. If expressed as a string, needs to be digits followed by a unit
(like `"500MB"` or `"1GB"`).
num_shards (`Dict[str, int]`, *optional*):
Number of shards to write. By default, the number of shards depends on `max_shard_size`.
Use a dictionary to define a different num_shards for each split.
<Added version="2.8.0"/>
embed_external_files (`bool`, defaults to `True`):
Whether to embed file bytes in the shards.
In particular, this will do the following before the push for the fields of type:
- [`Audio`] and [`Image`] removes local path information and embed file content in the Parquet files.
Return:
huggingface_hub.CommitInfo
Example:
```python
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", private=True)
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", max_shard_size="1GB")
>>> dataset_dict.push_to_hub("<organization>/<dataset_id>", num_shards={"train": 1024, "test": 8})
```
If you want to add a new configuration (or subset) to a dataset (e.g. if the dataset has multiple tasks/versions/languages):
```python
>>> english_dataset.push_to_hub("<organization>/<dataset_id>", "en")
>>> french_dataset.push_to_hub("<organization>/<dataset_id>", "fr")
>>> # later
>>> english_dataset = load_dataset("<organization>/<dataset_id>", "en")
>>> french_dataset = load_dataset("<organization>/<dataset_id>", "fr")
```
"""
if num_shards is None:
num_shards = {k: None for k in self}
elif not isinstance(num_shards, dict):
raise ValueError(
"Please provide one `num_shards` per dataset in the dataset dictionary, e.g. {{'train': 128, 'test': 4}}"
)
if branch != "deprecated":
warnings.warn(
"'branch' was deprecated in favor of 'revision' in version 2.15.0 and will be removed in 3.0.0.\n"
f"You can remove this warning by passing 'revision={branch}' instead.",
FutureWarning,
)
revision = branch
self._check_values_type()
self._check_values_features()
total_uploaded_size = 0
total_dataset_nbytes = 0
info_to_dump: DatasetInfo = next(iter(self.values())).info.copy()
info_to_dump.config_name = config_name
info_to_dump.splits = SplitDict()
for split in self.keys():
if not re.match(_split_re, split):
raise ValueError(f"Split name should match '{_split_re}' but got '{split}'.")
api = HfApi(endpoint=config.HF_ENDPOINT, token=token)
_ = api.create_repo(
repo_id,
token=token,
repo_type="dataset",
private=private,
exist_ok=True,
)
if revision is not None:
api.create_branch(repo_id, branch=revision, token=token, repo_type="dataset", exist_ok=True)
data_dir = config_name if config_name != "default" else "data" # for backward compatibility
additions = []
for split in self.keys():
logger.info(f"Pushing split {split} to the Hub.")
# The split=key needs to be removed before merging
split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub(
repo_id,
data_dir=data_dir,
split=split,
token=token,
revision=revision,
create_pr=create_pr,
max_shard_size=max_shard_size,
num_shards=num_shards.get(split),
embed_external_files=embed_external_files,
)
additions += split_additions
total_uploaded_size += uploaded_size
total_dataset_nbytes += dataset_nbytes
info_to_dump.splits[split] = SplitInfo(str(split), num_bytes=dataset_nbytes, num_examples=len(self[split]))
info_to_dump.download_checksums = None
info_to_dump.download_size = total_uploaded_size
info_to_dump.dataset_size = total_dataset_nbytes
info_to_dump.size_in_bytes = total_uploaded_size + total_dataset_nbytes
# Check if the repo already has a README.md and/or a dataset_infos.json to update them with the new split info (size and pattern)
# and delete old split shards (if they exist)
repo_with_dataset_card, repo_with_dataset_infos = False, False
repo_splits = [] # use a list to keep the order of the splits
deletions = []
repo_files_to_add = [addition.path_in_repo for addition in additions]
for repo_file in list_files_info(api, repo_id=repo_id, revision=revision, repo_type="dataset", token=token):
if repo_file.rfilename == config.REPOCARD_FILENAME:
repo_with_dataset_card = True
elif repo_file.rfilename == config.DATASETDICT_INFOS_FILENAME:
repo_with_dataset_infos = True
elif (
repo_file.rfilename.startswith(tuple(f"{data_dir}/{split}-" for split in self.keys()))
and repo_file.rfilename not in repo_files_to_add
):
deletions.append(CommitOperationDelete(path_in_repo=repo_file.rfilename))
elif fnmatch.fnmatch(
repo_file.rfilename, PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED.replace("{split}", "*")
):
repo_split = string_to_dict(
repo_file.rfilename,
glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED),
)["split"]
if repo_split not in repo_splits:
repo_splits.append(split)
# get the info from the README to update them
if repo_with_dataset_card:
dataset_card_path = api.hf_hub_download(
repo_id, config.REPOCARD_FILENAME, repo_type="dataset", revision=revision
)
dataset_card = DatasetCard.load(Path(dataset_card_path))
dataset_card_data = dataset_card.data
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
# get the deprecated dataset_infos.json to update them
elif repo_with_dataset_infos:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
else:
dataset_card = None
dataset_card_data = DatasetCardData()
metadata_configs = MetadataConfigs()
# create the metadata configs if it was uploaded with push_to_hub before metadata configs existed
if not metadata_configs and repo_splits:
default_metadata_configs_to_dump = {
"data_files": [{"split": split, "path": f"data/{split}-*"} for split in repo_splits]
}
MetadataConfigs({"default": default_metadata_configs_to_dump}).to_dataset_card_data(dataset_card_data)
metadata_config_to_dump = {
"data_files": [{"split": split, "path": f"{data_dir}/{split}-*"} for split in self.keys()],
}
if set_default and config_name != "default":
if metadata_configs:
default_config_name = metadata_configs.get_default_config_name()
if default_config_name == "default":
raise ValueError(
"There exists a configuration named 'default'. To set a different configuration as default, "
"rename the 'default' one first."
)
else:
_ = metadata_configs[default_config_name].pop("default")
metadata_config_to_dump["default"] = True
# push to the deprecated dataset_infos.json
if repo_with_dataset_infos:
dataset_infos_path = api.hf_hub_download(
repo_id, config.DATASETDICT_INFOS_FILENAME, repo_type="dataset", revision=revision
)
with open(dataset_infos_path, encoding="utf-8") as f:
dataset_infos: dict = json.load(f)
dataset_infos[config_name] = asdict(info_to_dump)
buffer = BytesIO()
buffer.write(json.dumps(dataset_infos, indent=4).encode("utf-8"))
additions.append(
CommitOperationAdd(path_in_repo=config.DATASETDICT_INFOS_FILENAME, path_or_fileobj=buffer)
)
# push to README
DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)
MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)
dataset_card = DatasetCard(f"---\n{dataset_card_data}\n---\n") if dataset_card is None else dataset_card
additions.append(
CommitOperationAdd(path_in_repo=config.REPOCARD_FILENAME, path_or_fileobj=str(dataset_card).encode())
)
commit_message = commit_message if commit_message is not None else "Upload dataset"
if len(additions) <= config.UPLOADS_MAX_NUMBER_PER_COMMIT:
commit_info = api.create_commit(
repo_id,
operations=additions + deletions,
commit_message=commit_message,
commit_description=commit_description,
token=token,
repo_type="dataset",
revision=revision,
create_pr=create_pr,
)
else:
logger.info(
f"Number of files to upload is larger than {config.UPLOADS_MAX_NUMBER_PER_COMMIT}. Splitting the push into multiple commits."
)
num_commits = math.ceil(len(additions) / config.UPLOADS_MAX_NUMBER_PER_COMMIT)
for i in range(0, num_commits):
operations = additions[
i * config.UPLOADS_MAX_NUMBER_PER_COMMIT : (i + 1) * config.UPLOADS_MAX_NUMBER_PER_COMMIT
] + (deletions if i == 0 else [])
commit_info = api.create_commit(
repo_id,
operations=operations,
commit_message=commit_message + f" (part {i:05d}-of-{num_commits:05d})",
commit_description=commit_description,
token=token,
repo_type="dataset",
revision=revision,
create_pr=create_pr,
)
logger.info(
f"Commit #{i+1} completed"
+ (f" (still {num_commits - i - 1} to go)" if num_commits - i - 1 else "")
+ "."
)
return commit_info
class IterableDatasetDict(dict):
def __repr__(self):
repr = "\n".join([f"{k}: {v}" for k, v in self.items()])
repr = re.sub(r"^", " " * 4, repr, 0, re.M)
return f"IterableDatasetDict({{\n{repr}\n}})"
def with_format(
self,
type: Optional[str] = None,
) -> "IterableDatasetDict":
"""
Return a dataset with the specified format.
This method only supports the "torch" format for now.
The format is set to all the datasets of the dataset dictionary.
Args:
type (`str`, *optional*, defaults to `None`):
If set to "torch", the returned dataset
will be a subclass of `torch.utils.data.IterableDataset` to be used in a `DataLoader`.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> def encode(example):
... return tokenizer(examples["text"], truncation=True, padding="max_length")
>>> ds = ds.map(encode, batched=True, remove_columns=["text"])
>>> ds = ds.with_format("torch")
```
"""
return IterableDatasetDict({k: dataset.with_format(type=type) for k, dataset in self.items()})
def map(
self,
function: Optional[Callable] = None,
with_indices: bool = False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: int = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[Union[str, List[str]]] = None,
fn_kwargs: Optional[dict] = None,
) -> "IterableDatasetDict":
"""
Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
If your function returns a column that already exists, then it overwrites it.
The function is applied on-the-fly on the examples when iterating over the dataset.
The transformation is applied to all the datasets of the dataset dictionary.
You can specify whether the function should be batched or not with the `batched` parameter:
- If batched is `False`, then the function takes 1 example in and should return 1 example.
An example is a dictionary, e.g. `{"text": "Hello there !"}`.
- If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
A batch is a dictionary, e.g. a batch of 1 example is `{"text": ["Hello there !"]}`.
- If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
Note that the last batch may have less than `n` examples.
A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.
Args:
function (`Callable`, *optional*, defaults to `None`):
Function applied on-the-fly on the examples when you iterate on the dataset.
It must have one of the following signatures:
- `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
- `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
- `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
- `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`
For advanced usage, the function can also return a `pyarrow.Table`.
Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
If no function is provided, default to identity function: `lambda x: x`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
input_columns (`[Union[str, List[str]]]`, *optional*, defaults to `None`):
The columns to be passed into `function`
as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`.
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
drop_last_batch (`bool`, defaults to `False`):
Whether a last batch smaller than the `batch_size` should be
dropped instead of being processed by the function.
remove_columns (`[List[str]]`, *optional*, defaults to `None`):
Remove a selection of columns while doing the mapping.
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
columns with names in `remove_columns`, these columns will be kept.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> def add_prefix(example):
... example["text"] = "Review: " + example["text"]
... return example
>>> ds = ds.map(add_prefix)
>>> next(iter(ds["train"]))
{'label': 1,
'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict(
{
k: dataset.map(
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
drop_last_batch=drop_last_batch,
remove_columns=remove_columns,
fn_kwargs=fn_kwargs,
)
for k, dataset in self.items()
}
)
def filter(
self,
function: Optional[Callable] = None,
with_indices=False,
input_columns: Optional[Union[str, List[str]]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
) -> "IterableDatasetDict":
"""Apply a filter function to all the elements so that the dataset only includes examples according to the filter function.
The filtering is done on-the-fly when iterating over the dataset.
The filtering is applied to all the datasets of the dataset dictionary.
Args:
function (`Callable`):
Callable with one of the following signatures:
- `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
- `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
- `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
- `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True`
If no function is provided, defaults to an always True function: `lambda x: True`.
with_indices (`bool`, defaults to `False`):
Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
input_columns (`str` or `List[str]`, *optional*):
The columns to be passed into `function` as
positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
batched (`bool`, defaults to `False`):
Provide batch of examples to `function`
batch_size (`int`, *optional*, defaults to `1000`):
Number of examples per batch provided to `function` if `batched=True`.
fn_kwargs (`Dict`, *optional*, defaults to `None`):
Keyword arguments to be passed to `function`
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.filter(lambda x: x["label"] == 0)
>>> list(ds["train"].take(3))
[{'label': 0, 'text': 'Review: simplistic , silly and tedious .'},
{'label': 0,
'text': "Review: it's so laddish and juvenile , only teenage boys could possibly find it funny ."},
{'label': 0,
'text': 'Review: exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}]
```
"""
return IterableDatasetDict(
{
k: dataset.filter(
function=function,
with_indices=with_indices,
input_columns=input_columns,
batched=batched,
batch_size=batch_size,
fn_kwargs=fn_kwargs,
)
for k, dataset in self.items()
}
)
def shuffle(
self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000
) -> "IterableDatasetDict":
"""
Randomly shuffles the elements of this dataset.
The shuffling is applied to all the datasets of the dataset dictionary.
This dataset fills a buffer with buffer_size elements, then randomly samples elements from this buffer,
replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or
equal to the full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will
initially select a random element from only the first 1000 elements in the buffer. Once an element is
selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element,
maintaining the 1000 element buffer.
If the dataset is made of several shards, it also does `shuffle` the order of the shards.
However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`]
then the order of the shards is kept unchanged.
Args:
seed (`int`, *optional*, defaults to `None`):
Random seed that will be used to shuffle the dataset.
It is used to sample from the shuffle buffer and also to shuffle the data shards.
generator (`numpy.random.Generator`, *optional*):
Numpy random Generator to use to compute the permutation of the dataset rows.
If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
buffer_size (`int`, defaults to `1000`):
Size of the buffer.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> list(ds["train"].take(3))
[{'label': 1,
'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
{'label': 1,
'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
{'label': 1, 'text': 'effective but too-tepid biopic'}]
>>> ds = ds.shuffle(seed=42)
>>> list(ds["train"].take(3))
[{'label': 1,
'text': "a sports movie with action that's exciting on the field and a story you care about off it ."},
{'label': 1,
'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'},
{'label': 1,
'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}]
```
"""
return IterableDatasetDict(
{
k: dataset.shuffle(seed=seed, generator=generator, buffer_size=buffer_size)
for k, dataset in self.items()
}
)
def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDatasetDict":
"""
Rename a column in the dataset, and move the features associated to the original column under the new column
name.
The renaming is applied to all the datasets of the dataset dictionary.
Args:
original_column_name (`str`):
Name of the column to rename.
new_column_name (`str`):
New name for the column.
Returns:
[`IterableDatasetDict`]: A copy of the dataset with a renamed column.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.rename_column("text", "movie_review")
>>> next(iter(ds["train"]))
{'label': 1,
'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict(
{
k: dataset.rename_column(original_column_name=original_column_name, new_column_name=new_column_name)
for k, dataset in self.items()
}
)
def rename_columns(self, column_mapping: Dict[str, str]) -> "IterableDatasetDict":
"""
Rename several columns in the dataset, and move the features associated to the original columns under
the new column names.
The renaming is applied to all the datasets of the dataset dictionary.
Args:
column_mapping (`Dict[str, str]`):
A mapping of columns to rename to their new names.
Returns:
[`IterableDatasetDict`]: A copy of the dataset with renamed columns
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.rename_columns({"text": "movie_review", "label": "rating"})
>>> next(iter(ds["train"]))
{'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .',
'rating': 1}
```
"""
return IterableDatasetDict(
{k: dataset.rename_columns(column_mapping=column_mapping) for k, dataset in self.items()}
)
def remove_columns(self, column_names: Union[str, List[str]]) -> "IterableDatasetDict":
"""
Remove one or several column(s) in the dataset and the features associated to them.
The removal is done on-the-fly on the examples when iterating over the dataset.
The removal is applied to all the datasets of the dataset dictionary.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to remove.
Returns:
[`IterableDatasetDict`]: A copy of the dataset object without the columns to remove.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.remove_columns("label")
>>> next(iter(ds["train"]))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict({k: dataset.remove_columns(column_names) for k, dataset in self.items()})
def select_columns(self, column_names: Union[str, List[str]]) -> "IterableDatasetDict":
"""Select one or several column(s) in the dataset and the features
associated to them. The selection is done on-the-fly on the examples
when iterating over the dataset. The selection is applied to all the
datasets of the dataset dictionary.
Args:
column_names (`Union[str, List[str]]`):
Name of the column(s) to keep.
Returns:
[`IterableDatasetDict`]: A copy of the dataset object with only selected columns.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds = ds.select("text")
>>> next(iter(ds["train"]))
{'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
```
"""
return IterableDatasetDict({k: dataset.select_columns(column_names) for k, dataset in self.items()})
def cast_column(self, column: str, feature: FeatureType) -> "IterableDatasetDict":
"""Cast column to feature for decoding.
The type casting is applied to all the datasets of the dataset dictionary.
Args:
column (`str`):
Column name.
feature ([`Feature`]):
Target feature.
Returns:
[`IterableDatasetDict`]
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> ds = ds.cast_column('label', ClassLabel(names=['bad', 'good']))
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
return IterableDatasetDict(
{k: dataset.cast_column(column=column, feature=feature) for k, dataset in self.items()}
)
def cast(
self,
features: Features,
) -> "IterableDatasetDict":
"""
Cast the dataset to a new set of features.
The type casting is applied to all the datasets of the dataset dictionary.
Args:
features (`Features`):
New features to cast the dataset to.
The name of the fields in the features must match the current column names.
The type of the data must also be convertible from one type to the other.
For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`map`] to update the Dataset.
Returns:
[`IterableDatasetDict`]: A copy of the dataset with casted features.
Example:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("rotten_tomatoes", streaming=True)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
>>> new_features = ds["train"].features.copy()
>>> new_features['label'] = ClassLabel(names=['bad', 'good'])
>>> new_features['text'] = Value('large_string')
>>> ds = ds.cast(new_features)
>>> ds["train"].features
{'label': ClassLabel(num_classes=2, names=['bad', 'good'], id=None),
'text': Value(dtype='large_string', id=None)}
```
"""
return IterableDatasetDict({k: dataset.cast(features=features) for k, dataset in self.items()})
| datasets/src/datasets/dataset_dict.py/0 | {
"file_path": "datasets/src/datasets/dataset_dict.py",
"repo_id": "datasets",
"token_count": 46956
} | 63 |
import inspect
import os
import random
import shutil
import tempfile
import weakref
from functools import wraps
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import xxhash
from . import config
from .naming import INVALID_WINDOWS_CHARACTERS_IN_PATH
from .utils._dill import dumps
from .utils.deprecation_utils import deprecated
from .utils.logging import get_logger
if TYPE_CHECKING:
from .arrow_dataset import Dataset
logger = get_logger(__name__)
# Fingerprinting allows to have one deterministic fingerprint per dataset state.
# A dataset fingerprint is updated after each transform.
# Re-running the same transforms on a dataset in a different session results in the same fingerprint.
# This is possible thanks to a custom hashing function that works with most python objects.
# Fingerprinting is the main mechanism that enables caching.
# The caching mechanism allows to reload an existing cache file if it's already been computed.
#################
# Caching
#################
_CACHING_ENABLED = True
_TEMP_DIR_FOR_TEMP_CACHE_FILES: Optional["_TempCacheDir"] = None
_DATASETS_WITH_TABLE_IN_TEMP_DIR: Optional[weakref.WeakSet] = None
class _TempCacheDir:
"""
A temporary directory for storing cached Arrow files with a cleanup that frees references to the Arrow files
before deleting the directory itself to avoid permission errors on Windows.
"""
def __init__(self):
self.name = tempfile.mkdtemp(prefix=config.TEMP_CACHE_DIR_PREFIX)
self._finalizer = weakref.finalize(self, self._cleanup)
def _cleanup(self):
for dset in get_datasets_with_cache_file_in_temp_dir():
dset.__del__()
if os.path.exists(self.name):
try:
shutil.rmtree(self.name)
except Exception as e:
raise OSError(
f"An error occured while trying to delete temporary cache directory {self.name}. Please delete it manually."
) from e
def cleanup(self):
if self._finalizer.detach():
self._cleanup()
def maybe_register_dataset_for_temp_dir_deletion(dataset):
"""
This function registers the datasets that have cache files in _TEMP_DIR_FOR_TEMP_CACHE_FILES in order
to properly delete them before deleting the temporary directory.
The temporary directory _TEMP_DIR_FOR_TEMP_CACHE_FILES is used when caching is disabled.
"""
if _TEMP_DIR_FOR_TEMP_CACHE_FILES is None:
return
global _DATASETS_WITH_TABLE_IN_TEMP_DIR
if _DATASETS_WITH_TABLE_IN_TEMP_DIR is None:
_DATASETS_WITH_TABLE_IN_TEMP_DIR = weakref.WeakSet()
if any(
Path(_TEMP_DIR_FOR_TEMP_CACHE_FILES.name) in Path(cache_file["filename"]).parents
for cache_file in dataset.cache_files
):
_DATASETS_WITH_TABLE_IN_TEMP_DIR.add(dataset)
def get_datasets_with_cache_file_in_temp_dir():
return list(_DATASETS_WITH_TABLE_IN_TEMP_DIR) if _DATASETS_WITH_TABLE_IN_TEMP_DIR is not None else []
def enable_caching():
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use [`~datasets.Dataset.save_to_disk`] to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use
the `download_mode` parameter in [`~datasets.load_dataset`].
"""
global _CACHING_ENABLED
_CACHING_ENABLED = True
def disable_caching():
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use [`~datasets.Dataset.save_to_disk`] to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use
the `download_mode` parameter in [`~datasets.load_dataset`].
"""
global _CACHING_ENABLED
_CACHING_ENABLED = False
@deprecated(
"Use datasets.enable_caching() or datasets.disable_caching() instead. This function will be removed in a future version of datasets."
)
def set_caching_enabled(boolean: bool):
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use :func:`datasets.Dataset.save_to_disk` to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect :func:`datasets.load_dataset`. If you want to regenerate a dataset from scratch you should use
the ``download_mode`` parameter in :func:`datasets.load_dataset`.
"""
global _CACHING_ENABLED
_CACHING_ENABLED = bool(boolean)
def is_caching_enabled() -> bool:
"""
When applying transforms on a dataset, the data are stored in cache files.
The caching mechanism allows to reload an existing cache file if it's already been computed.
Reloading a dataset is possible since the cache files are named using the dataset fingerprint, which is updated
after each transform.
If disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.
More precisely, if the caching is disabled:
- cache files are always recreated
- cache files are written to a temporary directory that is deleted when session closes
- cache files are named using a random hash instead of the dataset fingerprint
- use [`~datasets.Dataset.save_to_disk`]] to save a transformed dataset or it will be deleted when session closes
- caching doesn't affect [`~datasets.load_dataset`]. If you want to regenerate a dataset from scratch you should use
the `download_mode` parameter in [`~datasets.load_dataset`].
"""
global _CACHING_ENABLED
return bool(_CACHING_ENABLED)
def get_temporary_cache_files_directory() -> str:
"""Return a directory that is deleted when session closes."""
global _TEMP_DIR_FOR_TEMP_CACHE_FILES
if _TEMP_DIR_FOR_TEMP_CACHE_FILES is None:
_TEMP_DIR_FOR_TEMP_CACHE_FILES = _TempCacheDir()
return _TEMP_DIR_FOR_TEMP_CACHE_FILES.name
#################
# Hashing
#################
@deprecated("Use `copyreg.pickle` to register a custom reducer.")
def hashregister(*types):
def proxy(func):
for t in types:
Hasher.dispatch[t] = func
return func
return proxy
class Hasher:
"""Hasher that accepts python objects as inputs."""
dispatch: Dict = {}
def __init__(self):
self.m = xxhash.xxh64()
@classmethod
def hash_bytes(cls, value: Union[bytes, List[bytes]]) -> str:
value = [value] if isinstance(value, bytes) else value
m = xxhash.xxh64()
for x in value:
m.update(x)
return m.hexdigest()
@classmethod
@deprecated("Use `Hasher.hash` instead.")
def hash_default(cls, value: Any) -> str:
return cls.hash(value)
@classmethod
def hash(cls, value: Any) -> str:
return cls.hash_bytes(dumps(value))
def update(self, value: Any) -> None:
header_for_update = f"=={type(value)}=="
value_for_update = self.hash(value)
self.m.update(header_for_update.encode("utf8"))
self.m.update(value_for_update.encode("utf-8"))
def hexdigest(self) -> str:
return self.m.hexdigest()
#################
# Fingerprinting
#################
fingerprint_rng = random.Random()
# we show a warning only once when fingerprinting fails to avoid spam
fingerprint_warnings: Dict[str, bool] = {}
def generate_fingerprint(dataset: "Dataset") -> str:
state = dataset.__dict__
hasher = Hasher()
for key in sorted(state):
if key == "_fingerprint":
continue
hasher.update(key)
hasher.update(state[key])
# hash data files last modification timestamps as well
for cache_file in dataset.cache_files:
hasher.update(os.path.getmtime(cache_file["filename"]))
return hasher.hexdigest()
def generate_random_fingerprint(nbits: int = 64) -> str:
return f"{fingerprint_rng.getrandbits(nbits):0{nbits//4}x}"
def update_fingerprint(fingerprint, transform, transform_args):
global fingerprint_warnings
hasher = Hasher()
hasher.update(fingerprint)
try:
hasher.update(transform)
except: # noqa various errors might raise here from pickle or dill
if _CACHING_ENABLED:
if not fingerprint_warnings.get("update_fingerprint_transform_hash_failed", False):
logger.warning(
f"Transform {transform} couldn't be hashed properly, a random hash was used instead. "
"Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. "
"If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. "
"This warning is only showed once. Subsequent hashing failures won't be showed."
)
fingerprint_warnings["update_fingerprint_transform_hash_failed"] = True
else:
logger.info(f"Transform {transform} couldn't be hashed properly, a random hash was used instead.")
else:
logger.info(
f"Transform {transform} couldn't be hashed properly, a random hash was used instead. This doesn't affect caching since it's disabled."
)
return generate_random_fingerprint()
for key in sorted(transform_args):
hasher.update(key)
try:
hasher.update(transform_args[key])
except: # noqa various errors might raise here from pickle or dill
if _CACHING_ENABLED:
if not fingerprint_warnings.get("update_fingerprint_transform_hash_failed", False):
logger.warning(
f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead. "
"Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. "
"If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. "
"This warning is only showed once. Subsequent hashing failures won't be showed."
)
fingerprint_warnings["update_fingerprint_transform_hash_failed"] = True
else:
logger.info(
f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead."
)
else:
logger.info(
f"Parameter '{key}'={transform_args[key]} of the transform {transform} couldn't be hashed properly, a random hash was used instead. This doesn't affect caching since it's disabled."
)
return generate_random_fingerprint()
return hasher.hexdigest()
def validate_fingerprint(fingerprint: str, max_length=64):
"""
Make sure the fingerprint is a non-empty string that is not longer that max_length=64 by default,
so that the fingerprint can be used to name cache files without issues.
"""
if not isinstance(fingerprint, str) or not fingerprint:
raise ValueError(f"Invalid fingerprint '{fingerprint}': it should be a non-empty string.")
for invalid_char in INVALID_WINDOWS_CHARACTERS_IN_PATH:
if invalid_char in fingerprint:
raise ValueError(
f"Invalid fingerprint. Bad characters from black list '{INVALID_WINDOWS_CHARACTERS_IN_PATH}' found in '{fingerprint}'. "
f"They could create issues when creating cache files."
)
if len(fingerprint) > max_length:
raise ValueError(
f"Invalid fingerprint. Maximum lenth is {max_length} but '{fingerprint}' has length {len(fingerprint)}."
"It could create issues when creating cache files."
)
def format_transform_for_fingerprint(func: Callable, version: Optional[str] = None) -> str:
"""
Format a transform to the format that will be used to update the fingerprint.
"""
transform = f"{func.__module__}.{func.__qualname__}"
if version is not None:
transform += f"@{version}"
return transform
def format_kwargs_for_fingerprint(
func: Callable,
args: Tuple,
kwargs: Dict[str, Any],
use_kwargs: Optional[List[str]] = None,
ignore_kwargs: Optional[List[str]] = None,
randomized_function: bool = False,
) -> Dict[str, Any]:
"""
Format the kwargs of a transform to the format that will be used to update the fingerprint.
"""
kwargs_for_fingerprint = kwargs.copy()
if args:
params = [p.name for p in inspect.signature(func).parameters.values() if p != p.VAR_KEYWORD]
args = args[1:] # assume the first argument is the dataset
params = params[1:]
kwargs_for_fingerprint.update(zip(params, args))
else:
del kwargs_for_fingerprint[
next(iter(inspect.signature(func).parameters))
] # assume the first key is the dataset
# keep the right kwargs to be hashed to generate the fingerprint
if use_kwargs:
kwargs_for_fingerprint = {k: v for k, v in kwargs_for_fingerprint.items() if k in use_kwargs}
if ignore_kwargs:
kwargs_for_fingerprint = {k: v for k, v in kwargs_for_fingerprint.items() if k not in ignore_kwargs}
if randomized_function: # randomized functions have `seed` and `generator` parameters
if kwargs_for_fingerprint.get("seed") is None and kwargs_for_fingerprint.get("generator") is None:
_, seed, pos, *_ = np.random.get_state()
seed = seed[pos] if pos < 624 else seed[0]
kwargs_for_fingerprint["generator"] = np.random.default_rng(seed)
# remove kwargs that are the default values
default_values = {
p.name: p.default for p in inspect.signature(func).parameters.values() if p.default != inspect._empty
}
for default_varname, default_value in default_values.items():
if default_varname in kwargs_for_fingerprint and kwargs_for_fingerprint[default_varname] == default_value:
kwargs_for_fingerprint.pop(default_varname)
return kwargs_for_fingerprint
def fingerprint_transform(
inplace: bool,
use_kwargs: Optional[List[str]] = None,
ignore_kwargs: Optional[List[str]] = None,
fingerprint_names: Optional[List[str]] = None,
randomized_function: bool = False,
version: Optional[str] = None,
):
"""
Wrapper for dataset transforms to update the dataset fingerprint using ``update_fingerprint``
Args:
inplace (:obj:`bool`): If inplace is True, the fingerprint of the dataset is updated inplace.
Otherwise, a parameter "new_fingerprint" is passed to the wrapped method that should take care of
setting the fingerprint of the returned Dataset.
use_kwargs (:obj:`List[str]`, optional): optional white list of argument names to take into account
to update the fingerprint to the wrapped method that should take care of
setting the fingerprint of the returned Dataset. By default all the arguments are used.
ignore_kwargs (:obj:`List[str]`, optional): optional black list of argument names to take into account
to update the fingerprint. Note that ignore_kwargs prevails on use_kwargs.
fingerprint_names (:obj:`List[str]`, optional, defaults to ["new_fingerprint"]):
If the dataset transforms is not inplace and returns a DatasetDict, then it can require
several fingerprints (one per dataset in the DatasetDict). By specifying fingerprint_names,
one fingerprint named after each element of fingerprint_names is going to be passed.
randomized_function (:obj:`bool`, defaults to False): If the dataset transform is random and has
optional parameters "seed" and "generator", then you can set randomized_function to True.
This way, even if users set "seed" and "generator" to None, then the fingerprint is
going to be randomly generated depending on numpy's current state. In this case, the
generator is set to np.random.default_rng(np.random.get_state()[1][0]).
version (:obj:`str`, optional): version of the transform. The version is taken into account when
computing the fingerprint. If a datase transform changes (or at least if the output data
that are cached changes), then one should increase the version. If the version stays the
same, then old cached data could be reused that are not compatible with the new transform.
It should be in the format "MAJOR.MINOR.PATCH".
"""
if use_kwargs is not None and not isinstance(use_kwargs, list):
raise ValueError(f"use_kwargs is supposed to be a list, not {type(use_kwargs)}")
if ignore_kwargs is not None and not isinstance(ignore_kwargs, list):
raise ValueError(f"ignore_kwargs is supposed to be a list, not {type(use_kwargs)}")
if inplace and fingerprint_names:
raise ValueError("fingerprint_names are only used when inplace is False")
fingerprint_names = fingerprint_names if fingerprint_names is not None else ["new_fingerprint"]
def _fingerprint(func):
if not inplace and not all(name in func.__code__.co_varnames for name in fingerprint_names):
raise ValueError(f"function {func} is missing parameters {fingerprint_names} in signature")
if randomized_function: # randomized function have seed and generator parameters
if "seed" not in func.__code__.co_varnames:
raise ValueError(f"'seed' must be in {func}'s signature")
if "generator" not in func.__code__.co_varnames:
raise ValueError(f"'generator' must be in {func}'s signature")
# this call has to be outside the wrapper or since __qualname__ changes in multiprocessing
transform = format_transform_for_fingerprint(func, version=version)
@wraps(func)
def wrapper(*args, **kwargs):
kwargs_for_fingerprint = format_kwargs_for_fingerprint(
func,
args,
kwargs,
use_kwargs=use_kwargs,
ignore_kwargs=ignore_kwargs,
randomized_function=randomized_function,
)
if args:
dataset: Dataset = args[0]
args = args[1:]
else:
dataset: Dataset = kwargs.pop(next(iter(inspect.signature(func).parameters)))
# compute new_fingerprint and add it to the args of not in-place transforms
if inplace:
new_fingerprint = update_fingerprint(dataset._fingerprint, transform, kwargs_for_fingerprint)
else:
for fingerprint_name in fingerprint_names: # transforms like `train_test_split` have several hashes
if kwargs.get(fingerprint_name) is None:
kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name
kwargs[fingerprint_name] = update_fingerprint(
dataset._fingerprint, transform, kwargs_for_fingerprint
)
else:
validate_fingerprint(kwargs[fingerprint_name])
# Call actual function
out = func(dataset, *args, **kwargs)
# Update fingerprint of in-place transforms + update in-place history of transforms
if inplace: # update after calling func so that the fingerprint doesn't change if the function fails
dataset._fingerprint = new_fingerprint
return out
wrapper._decorator_name_ = "fingerprint"
return wrapper
return _fingerprint
| datasets/src/datasets/fingerprint.py/0 | {
"file_path": "datasets/src/datasets/fingerprint.py",
"repo_id": "datasets",
"token_count": 8037
} | 64 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import tqdm as hf_tqdm
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlite3
import sqlalchemy
class SqlDatasetReader(AbstractDatasetInputStream):
def __init__(
self,
sql: Union[str, "sqlalchemy.sql.Selectable"],
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"],
features: Optional[Features] = None,
cache_dir: str = None,
keep_in_memory: bool = False,
**kwargs,
):
super().__init__(features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, **kwargs)
self.builder = Sql(
cache_dir=cache_dir,
features=features,
sql=sql,
con=con,
**kwargs,
)
def read(self):
download_config = None
download_mode = None
verification_mode = None
base_path = None
self.builder.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
# try_from_hf_gcs=try_from_hf_gcs,
base_path=base_path,
)
# Build dataset for splits
dataset = self.builder.as_dataset(
split="train", verification_mode=verification_mode, in_memory=self.keep_in_memory
)
return dataset
class SqlDatasetWriter:
def __init__(
self,
dataset: Dataset,
name: str,
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"],
batch_size: Optional[int] = None,
num_proc: Optional[int] = None,
**to_sql_kwargs,
):
if num_proc is not None and num_proc <= 0:
raise ValueError(f"num_proc {num_proc} must be an integer > 0.")
self.dataset = dataset
self.name = name
self.con = con
self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
self.num_proc = num_proc
self.to_sql_kwargs = to_sql_kwargs
def write(self) -> int:
_ = self.to_sql_kwargs.pop("sql", None)
_ = self.to_sql_kwargs.pop("con", None)
index = self.to_sql_kwargs.pop("index", False)
written = self._write(index=index, **self.to_sql_kwargs)
return written
def _batch_sql(self, args):
offset, index, to_sql_kwargs = args
to_sql_kwargs = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs
batch = query_table(
table=self.dataset.data,
key=slice(offset, offset + self.batch_size),
indices=self.dataset._indices,
)
df = batch.to_pandas()
num_rows = df.to_sql(self.name, self.con, index=index, **to_sql_kwargs)
return num_rows or len(df)
def _write(self, index, **to_sql_kwargs) -> int:
"""Writes the pyarrow table as SQL to a database.
Caller is responsible for opening and closing the SQL connection.
"""
written = 0
if self.num_proc is None or self.num_proc == 1:
for offset in hf_tqdm(
range(0, len(self.dataset), self.batch_size),
unit="ba",
desc="Creating SQL from Arrow format",
):
written += self._batch_sql((offset, index, to_sql_kwargs))
else:
num_rows, batch_size = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for num_rows in hf_tqdm(
pool.imap(
self._batch_sql,
[(offset, index, to_sql_kwargs) for offset in range(0, num_rows, batch_size)],
),
total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
unit="ba",
desc="Creating SQL from Arrow format",
):
written += num_rows
return written
| datasets/src/datasets/io/sql.py/0 | {
"file_path": "datasets/src/datasets/io/sql.py",
"repo_id": "datasets",
"token_count": 2040
} | 65 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=True)
class LanguageModeling(TaskTemplate):
task: str = field(default="language-modeling", metadata={"include_in_asdict_even_if_is_default": True})
input_schema: ClassVar[Features] = Features({"text": Value("string")})
label_schema: ClassVar[Features] = Features({})
text_column: str = "text"
@property
def column_mapping(self) -> Dict[str, str]:
return {self.text_column: "text"}
| datasets/src/datasets/tasks/language_modeling.py/0 | {
"file_path": "datasets/src/datasets/tasks/language_modeling.py",
"repo_id": "datasets",
"token_count": 195
} | 66 |
import time
from functools import partial
from huggingface_hub import HfApi, hf_hub_url
from huggingface_hub.hf_api import RepoFile
from packaging import version
from requests import ConnectionError, HTTPError
from .. import config
from . import logging
logger = logging.get_logger(__name__)
# Retry `preupload_lfs_files` in `huggingface_hub<0.20.0` on the "500 (Internal Server Error)" and "503 (Service Unavailable)" HTTP errors
if config.HF_HUB_VERSION.release < version.parse("0.20.0").release:
def preupload_lfs_files(hf_api: HfApi, **kwargs):
max_retries = 5
base_wait_time = 1
max_wait_time = 8
retry = 0
while True:
try:
hf_api.preupload_lfs_files(**kwargs)
except (RuntimeError, HTTPError, ConnectionError) as err:
if isinstance(err, RuntimeError):
if isinstance(err.__cause__, (HTTPError, ConnectionError)):
err = err.__cause__
else:
raise err
if retry >= max_retries or err.response and err.response.status_code not in [500, 503]:
raise err
else:
sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff
logger.info(
f"{hf_api.preupload_lfs_files} timed out, retrying in {sleep_time}s... [{retry/max_retries}]"
)
time.sleep(sleep_time)
retry += 1
else:
break
else:
def preupload_lfs_files(hf_api: HfApi, **kwargs):
hf_api.preupload_lfs_files(**kwargs)
# `list_files_info` is deprecated in favor of `list_repo_tree` in `huggingface_hub>=0.20.0`
if config.HF_HUB_VERSION.release < version.parse("0.20.0").release:
def list_files_info(hf_api: HfApi, **kwargs):
yield from hf_api.list_files_info(**kwargs)
else:
def list_files_info(hf_api: HfApi, **kwargs):
kwargs = {**kwargs, "recursive": True}
for repo_path in hf_api.list_repo_tree(**kwargs):
if isinstance(repo_path, RepoFile):
yield repo_path
# bakckward compatibility
hf_hub_url = partial(hf_hub_url, repo_type="dataset")
| datasets/src/datasets/utils/hub.py/0 | {
"file_path": "datasets/src/datasets/utils/hub.py",
"repo_id": "datasets",
"token_count": 1118
} | 67 |
"""Utility helpers to handle progress bars in `datasets`.
Example:
1. Use `datasets.utils.tqdm` as you would use `tqdm.tqdm` or `tqdm.auto.tqdm`.
2. To disable progress bars, either use `disable_progress_bars()` helper or set the
environment variable `HF_DATASETS_DISABLE_PROGRESS_BARS` to 1.
3. To re-enable progress bars, use `enable_progress_bars()`.
4. To check whether progress bars are disabled, use `are_progress_bars_disabled()`.
NOTE: Environment variable `HF_DATASETS_DISABLE_PROGRESS_BARS` has the priority.
Example:
```py
from datasets.utils import (
are_progress_bars_disabled,
disable_progress_bars,
enable_progress_bars,
tqdm,
)
# Disable progress bars globally
disable_progress_bars()
# Use as normal `tqdm`
for _ in tqdm(range(5)):
do_something()
# Still not showing progress bars, as `disable=False` is overwritten to `True`.
for _ in tqdm(range(5), disable=False):
do_something()
are_progress_bars_disabled() # True
# Re-enable progress bars globally
enable_progress_bars()
# Progress bar will be shown !
for _ in tqdm(range(5)):
do_something()
```
"""
import warnings
from tqdm.auto import tqdm as old_tqdm
from ..config import HF_DATASETS_DISABLE_PROGRESS_BARS
# `HF_DATASETS_DISABLE_PROGRESS_BARS` is `Optional[bool]` while `_hf_datasets_progress_bars_disabled`
# is a `bool`. If `HF_DATASETS_DISABLE_PROGRESS_BARS` is set to True or False, it has priority.
# If `HF_DATASETS_DISABLE_PROGRESS_BARS` is None, it means the user have not set the
# environment variable and is free to enable/disable progress bars programmatically.
# TL;DR: env variable has priority over code.
#
# By default, progress bars are enabled.
_hf_datasets_progress_bars_disabled: bool = HF_DATASETS_DISABLE_PROGRESS_BARS or False
def disable_progress_bars() -> None:
"""
Disable globally progress bars used in `datasets` except if `HF_DATASETS_DISABLE_PROGRESS_BAR` environment
variable has been set.
Use [`~utils.enable_progress_bars`] to re-enable them.
"""
if HF_DATASETS_DISABLE_PROGRESS_BARS is False:
warnings.warn(
"Cannot disable progress bars: environment variable `HF_DATASETS_DISABLE_PROGRESS_BAR=0` is set and has"
" priority."
)
return
global _hf_datasets_progress_bars_disabled
_hf_datasets_progress_bars_disabled = True
def enable_progress_bars() -> None:
"""
Enable globally progress bars used in `datasets` except if `HF_DATASETS_DISABLE_PROGRESS_BAR` environment
variable has been set.
Use [`~utils.disable_progress_bars`] to disable them.
"""
if HF_DATASETS_DISABLE_PROGRESS_BARS is True:
warnings.warn(
"Cannot enable progress bars: environment variable `HF_DATASETS_DISABLE_PROGRESS_BAR=1` is set and has"
" priority."
)
return
global _hf_datasets_progress_bars_disabled
_hf_datasets_progress_bars_disabled = False
def are_progress_bars_disabled() -> bool:
"""Return whether progress bars are globally disabled or not.
Progress bars used in `datasets` can be enable or disabled globally using [`~utils.enable_progress_bars`]
and [`~utils.disable_progress_bars`] or by setting `HF_DATASETS_DISABLE_PROGRESS_BAR` as environment variable.
"""
global _hf_datasets_progress_bars_disabled
return _hf_datasets_progress_bars_disabled
class tqdm(old_tqdm):
"""
Class to override `disable` argument in case progress bars are globally disabled.
Taken from https://github.com/tqdm/tqdm/issues/619#issuecomment-619639324.
"""
def __init__(self, *args, **kwargs):
if are_progress_bars_disabled():
kwargs["disable"] = True
super().__init__(*args, **kwargs)
def __delattr__(self, attr: str) -> None:
"""Fix for https://github.com/huggingface/datasets/issues/6066"""
try:
super().__delattr__(attr)
except AttributeError:
if attr != "_lock":
raise
# backward compatibility
enable_progress_bar = enable_progress_bars
disable_progress_bar = disable_progress_bars
def is_progress_bar_enabled():
return not are_progress_bars_disabled()
| datasets/src/datasets/utils/tqdm.py/0 | {
"file_path": "datasets/src/datasets/utils/tqdm.py",
"repo_id": "datasets",
"token_count": 1661
} | 68 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def _get_expected_row_ids_and_row_dicts_for_partition_order(df, partition_order):
expected_row_ids_and_row_dicts = []
for part_id in partition_order:
partition = df.where(f"SPARK_PARTITION_ID() = {part_id}").collect()
for row_idx, row in enumerate(partition):
expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()))
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def test_repartition_df_if_needed():
spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate()
df = spark.range(100).repartition(1)
spark_builder = Spark(df)
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16)
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def test_generate_iterable_examples():
spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate()
df = spark.range(10).repartition(2)
partition_order = [1, 0]
generate_fn = _generate_iterable_examples(df, partition_order) # Reverse the partitions.
expected_row_ids_and_row_dicts = _get_expected_row_ids_and_row_dicts_for_partition_order(df, partition_order)
for i, (row_id, row_dict) in enumerate(generate_fn()):
expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def test_spark_examples_iterable():
spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate()
df = spark.range(10).repartition(1)
it = SparkExamplesIterable(df)
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(it):
assert row_id == f"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def test_spark_examples_iterable_shuffle():
spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate()
df = spark.range(30).repartition(3)
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator") as generator_mock:
generator_mock.shuffle.side_effect = lambda x: x.reverse()
expected_row_ids_and_row_dicts = _get_expected_row_ids_and_row_dicts_for_partition_order(df, [2, 1, 0])
shuffled_it = SparkExamplesIterable(df).shuffle_data_sources(generator_mock)
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(shuffled_it):
expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def test_spark_examples_iterable_shard():
spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate()
df = spark.range(20).repartition(4)
# Partitions 0 and 2
shard_it_1 = SparkExamplesIterable(df).shard_data_sources(worker_id=0, num_workers=2)
assert shard_it_1.n_shards == 2
expected_row_ids_and_row_dicts_1 = _get_expected_row_ids_and_row_dicts_for_partition_order(df, [0, 2])
for i, (row_id, row_dict) in enumerate(shard_it_1):
expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts_1[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
shard_it_2 = SparkExamplesIterable(df).shard_data_sources(worker_id=1, num_workers=2)
assert shard_it_2.n_shards == 2
expected_row_ids_and_row_dicts_2 = _get_expected_row_ids_and_row_dicts_for_partition_order(df, [1, 3])
for i, (row_id, row_dict) in enumerate(shard_it_2):
expected_row_id, expected_row_dict = expected_row_ids_and_row_dicts_2[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def test_repartition_df_if_needed_max_num_df_rows():
spark = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate()
df = spark.range(100).repartition(1)
spark_builder = Spark(df)
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1)
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| datasets/tests/packaged_modules/test_spark.py/0 | {
"file_path": "datasets/tests/packaged_modules/test_spark.py",
"repo_id": "datasets",
"token_count": 2054
} | 69 |
import os
from datasets.utils._filelock import FileLock
def test_long_path(tmpdir):
filename = "a" * 1000 + ".lock"
lock1 = FileLock(str(tmpdir / filename))
assert lock1.lock_file.endswith(".lock")
assert not lock1.lock_file.endswith(filename)
assert len(os.path.basename(lock1.lock_file)) <= 255
| datasets/tests/test_filelock.py/0 | {
"file_path": "datasets/tests/test_filelock.py",
"repo_id": "datasets",
"token_count": 120
} | 70 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def test_patch_submodule():
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
mock = "__test_patch_submodule_mock__"
with patch_submodule(_test_patching, "os.path.join", mock):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os, _PatchedModuleObj)
assert isinstance(_test_patching.os.path, _PatchedModuleObj)
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path, _PatchedModuleObj)
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os, _PatchedModuleObj)
assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj)
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path, _PatchedModuleObj)
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def test_patch_submodule_builtin():
assert _test_patching.open is open
mock = "__test_patch_submodule_builtin_mock__"
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching, "open", mock):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def test_patch_submodule_missing():
# pandas.read_csv is not present in _test_patching
mock = "__test_patch_submodule_missing_mock__"
with patch_submodule(_test_patching, "pandas.read_csv", mock):
pass
def test_patch_submodule_missing_builtin():
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
mock = "__test_patch_submodule_missing_builtin_mock__"
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching, "len", None) is None
with patch_submodule(_test_patching, "len", mock):
assert _test_patching.len is mock
assert _test_patching.len is len
def test_patch_submodule_start_and_stop():
mock = "__test_patch_submodule_start_and_stop_mock__"
patch = patch_submodule(_test_patching, "open", mock)
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def test_patch_submodule_successive():
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
mock_join = "__test_patch_submodule_successive_join__"
mock_dirname = "__test_patch_submodule_successive_dirname__"
mock_rename = "__test_patch_submodule_successive_rename__"
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching, "os.path.join", mock_join):
with patch_submodule(_test_patching, "os.rename", mock_rename):
with patch_submodule(_test_patching, "os.path.dirname", mock_dirname):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching, "os.rename", mock_rename):
with patch_submodule(_test_patching, "os.path.join", mock_join):
with patch_submodule(_test_patching, "os.path.dirname", mock_dirname):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def test_patch_submodule_doesnt_exist():
mock = "__test_patch_submodule_doesnt_exist_mock__"
with patch_submodule(_test_patching, "__module_that_doesn_exist__.__attribute_that_doesn_exist__", mock):
pass
with patch_submodule(_test_patching, "os.__attribute_that_doesn_exist__", mock):
pass
| datasets/tests/test_patching.py/0 | {
"file_path": "datasets/tests/test_patching.py",
"repo_id": "datasets",
"token_count": 2274
} | 71 |
- title: Unit 0. Welcome to the course
sections:
- local: unit0/introduction
title: Welcome to the course 🤗
- local: unit0/setup
title: Setup
- local: unit0/discord101
title: Discord 101
- title: Unit 1. Introduction to Deep Reinforcement Learning
sections:
- local: unit1/introduction
title: Introduction
- local: unit1/what-is-rl
title: What is Reinforcement Learning?
- local: unit1/rl-framework
title: The Reinforcement Learning Framework
- local: unit1/tasks
title: The type of tasks
- local: unit1/exp-exp-tradeoff
title: The Exploration/ Exploitation tradeoff
- local: unit1/two-methods
title: The two main approaches for solving RL problems
- local: unit1/deep-rl
title: The “Deep” in Deep Reinforcement Learning
- local: unit1/summary
title: Summary
- local: unit1/glossary
title: Glossary
- local: unit1/hands-on
title: Hands-on
- local: unit1/quiz
title: Quiz
- local: unit1/conclusion
title: Conclusion
- local: unit1/additional-readings
title: Additional Readings
- title: Bonus Unit 1. Introduction to Deep Reinforcement Learning with Huggy
sections:
- local: unitbonus1/introduction
title: Introduction
- local: unitbonus1/how-huggy-works
title: How Huggy works?
- local: unitbonus1/train
title: Train Huggy
- local: unitbonus1/play
title: Play with Huggy
- local: unitbonus1/conclusion
title: Conclusion
- title: Live 1. How the course work, Q&A, and playing with Huggy
sections:
- local: live1/live1
title: Live 1. How the course work, Q&A, and playing with Huggy 🐶
- title: Unit 2. Introduction to Q-Learning
sections:
- local: unit2/introduction
title: Introduction
- local: unit2/what-is-rl
title: What is RL? A short recap
- local: unit2/two-types-value-based-methods
title: The two types of value-based methods
- local: unit2/bellman-equation
title: The Bellman Equation, simplify our value estimation
- local: unit2/mc-vs-td
title: Monte Carlo vs Temporal Difference Learning
- local: unit2/mid-way-recap
title: Mid-way Recap
- local: unit2/mid-way-quiz
title: Mid-way Quiz
- local: unit2/q-learning
title: Introducing Q-Learning
- local: unit2/q-learning-example
title: A Q-Learning example
- local: unit2/q-learning-recap
title: Q-Learning Recap
- local: unit2/glossary
title: Glossary
- local: unit2/hands-on
title: Hands-on
- local: unit2/quiz2
title: Q-Learning Quiz
- local: unit2/conclusion
title: Conclusion
- local: unit2/additional-readings
title: Additional Readings
- title: Unit 3. Deep Q-Learning with Atari Games
sections:
- local: unit3/introduction
title: Introduction
- local: unit3/from-q-to-dqn
title: From Q-Learning to Deep Q-Learning
- local: unit3/deep-q-network
title: The Deep Q-Network (DQN)
- local: unit3/deep-q-algorithm
title: The Deep Q Algorithm
- local: unit3/glossary
title: Glossary
- local: unit3/hands-on
title: Hands-on
- local: unit3/quiz
title: Quiz
- local: unit3/conclusion
title: Conclusion
- local: unit3/additional-readings
title: Additional Readings
- title: Bonus Unit 2. Automatic Hyperparameter Tuning with Optuna
sections:
- local: unitbonus2/introduction
title: Introduction
- local: unitbonus2/optuna
title: Optuna
- local: unitbonus2/hands-on
title: Hands-on
- title: Unit 4. Policy Gradient with PyTorch
sections:
- local: unit4/introduction
title: Introduction
- local: unit4/what-are-policy-based-methods
title: What are the policy-based methods?
- local: unit4/advantages-disadvantages
title: The advantages and disadvantages of policy-gradient methods
- local: unit4/policy-gradient
title: Diving deeper into policy-gradient
- local: unit4/pg-theorem
title: (Optional) the Policy Gradient Theorem
- local: unit4/glossary
title: Glossary
- local: unit4/hands-on
title: Hands-on
- local: unit4/quiz
title: Quiz
- local: unit4/conclusion
title: Conclusion
- local: unit4/additional-readings
title: Additional Readings
- title: Unit 5. Introduction to Unity ML-Agents
sections:
- local: unit5/introduction
title: Introduction
- local: unit5/how-mlagents-works
title: How ML-Agents works?
- local: unit5/snowball-target
title: The SnowballTarget environment
- local: unit5/pyramids
title: The Pyramids environment
- local: unit5/curiosity
title: (Optional) What is curiosity in Deep Reinforcement Learning?
- local: unit5/hands-on
title: Hands-on
- local: unit5/bonus
title: Bonus. Learn to create your own environments with Unity and MLAgents
- local: unit5/quiz
title: Quiz
- local: unit5/conclusion
title: Conclusion
- title: Unit 6. Actor Critic methods with Robotics environments
sections:
- local: unit6/introduction
title: Introduction
- local: unit6/variance-problem
title: The Problem of Variance in Reinforce
- local: unit6/advantage-actor-critic
title: Advantage Actor Critic (A2C)
- local: unit6/hands-on
title: Advantage Actor Critic (A2C) using Robotics Simulations with Panda-Gym 🤖
- local: unit6/quiz
title: Quiz
- local: unit6/conclusion
title: Conclusion
- local: unit6/additional-readings
title: Additional Readings
- title: Unit 7. Introduction to Multi-Agents and AI vs AI
sections:
- local: unit7/introduction
title: Introduction
- local: unit7/introduction-to-marl
title: An introduction to Multi-Agents Reinforcement Learning (MARL)
- local: unit7/multi-agent-setting
title: Designing Multi-Agents systems
- local: unit7/self-play
title: Self-Play
- local: unit7/hands-on
title: Let's train our soccer team to beat your classmates' teams (AI vs. AI)
- local: unit7/quiz
title: Quiz
- local: unit7/conclusion
title: Conclusion
- local: unit7/additional-readings
title: Additional Readings
- title: Unit 8. Part 1 Proximal Policy Optimization (PPO)
sections:
- local: unit8/introduction
title: Introduction
- local: unit8/intuition-behind-ppo
title: The intuition behind PPO
- local: unit8/clipped-surrogate-objective
title: Introducing the Clipped Surrogate Objective Function
- local: unit8/visualize
title: Visualize the Clipped Surrogate Objective Function
- local: unit8/hands-on-cleanrl
title: PPO with CleanRL
- local: unit8/conclusion
title: Conclusion
- local: unit8/additional-readings
title: Additional Readings
- title: Unit 8. Part 2 Proximal Policy Optimization (PPO) with Doom
sections:
- local: unit8/introduction-sf
title: Introduction
- local: unit8/hands-on-sf
title: PPO with Sample Factory and Doom
- local: unit8/conclusion-sf
title: Conclusion
- title: Bonus Unit 3. Advanced Topics in Reinforcement Learning
sections:
- local: unitbonus3/introduction
title: Introduction
- local: unitbonus3/model-based
title: Model-Based Reinforcement Learning
- local: unitbonus3/offline-online
title: Offline vs. Online Reinforcement Learning
- local: unitbonus3/generalisation
title: Generalisation Reinforcement Learning
- local: unitbonus3/rlhf
title: Reinforcement Learning from Human Feedback
- local: unitbonus3/decision-transformers
title: Decision Transformers and Offline RL
- local: unitbonus3/language-models
title: Language models in RL
- local: unitbonus3/curriculum-learning
title: (Automatic) Curriculum Learning for RL
- local: unitbonus3/envs-to-try
title: Interesting environments to try
- local: unitbonus3/learning-agents
title: An introduction to Unreal Learning Agents
- local: unitbonus3/godotrl
title: An Introduction to Godot RL
- local: unitbonus3/student-works
title: Students projects
- local: unitbonus3/rl-documentation
title: Brief introduction to RL documentation
- title: Certification and congratulations
sections:
- local: communication/conclusion
title: Congratulations
- local: communication/certification
title: Get your certificate of completion
| deep-rl-class/units/en/_toctree.yml/0 | {
"file_path": "deep-rl-class/units/en/_toctree.yml",
"repo_id": "deep-rl-class",
"token_count": 2743
} | 72 |
# Summary [[summary]]
That was a lot of information! Let's summarize:
- Reinforcement Learning is a computational approach of learning from actions. We build an agent that learns from the environment **by interacting with it through trial and error** and receiving rewards (negative or positive) as feedback.
- The goal of any RL agent is to maximize its expected cumulative reward (also called expected return) because RL is based on the **reward hypothesis**, which is that **all goals can be described as the maximization of the expected cumulative reward.**
- The RL process is a loop that outputs a sequence of **state, action, reward and next state.**
- To calculate the expected cumulative reward (expected return), we discount the rewards: the rewards that come sooner (at the beginning of the game) **are more probable to happen since they are more predictable than the long term future reward.**
- To solve an RL problem, you want to **find an optimal policy**. The policy is the “brain” of your agent, which will tell us **what action to take given a state.** The optimal policy is the one which **gives you the actions that maximize the expected return.**
- There are two ways to find your optimal policy:
1. By training your policy directly: **policy-based methods.**
2. By training a value function that tells us the expected return the agent will get at each state and use this function to define our policy: **value-based methods.**
- Finally, we speak about Deep RL because we introduce **deep neural networks to estimate the action to take (policy-based) or to estimate the value of a state (value-based)** hence the name “deep”.
| deep-rl-class/units/en/unit1/summary.mdx/0 | {
"file_path": "deep-rl-class/units/en/unit1/summary.mdx",
"repo_id": "deep-rl-class",
"token_count": 382
} | 73 |
# Second Quiz [[quiz2]]
The best way to learn and [to avoid the illusion of competence](https://www.coursera.org/lecture/learning-how-to-learn/illusions-of-competence-BuFzf) **is to test yourself.** This will help you to find **where you need to reinforce your knowledge**.
### Q1: What is Q-Learning?
<Question
choices={[
{
text: "The algorithm we use to train our Q-function",
explain: "",
correct: true
},
{
text: "A value function",
explain: "It's an action-value function since it determines the value of being at a particular state and taking a specific action at that state",
},
{
text: "An algorithm that determines the value of being at a particular state and taking a specific action at that state",
explain: "",
correct: true
},
{
text: "A table",
explain: "Q-function is not a Q-table. The Q-function is the algorithm that will feed the Q-table."
}
]}
/>
### Q2: What is a Q-table?
<Question
choices={[
{
text: "An algorithm we use in Q-Learning",
explain: "",
},
{
text: "Q-table is the internal memory of our agent",
explain: "",
correct: true
},
{
text: "In Q-table each cell corresponds a state value",
explain: "Each cell corresponds to a state-action value pair value. Not a state value.",
}
]}
/>
### Q3: Why if we have an optimal Q-function Q* we have an optimal policy?
<details>
<summary>Solution</summary>
Because if we have an optimal Q-function, we have an optimal policy since we know for each state what is the best action to take.
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/link-value-policy.jpg" alt="link value policy"/>
</details>
### Q4: Can you explain what is Epsilon-Greedy Strategy?
<details>
<summary>Solution</summary>
Epsilon Greedy Strategy is a policy that handles the exploration/exploitation trade-off.
The idea is that we define epsilon ɛ = 1.0:
- With *probability 1 — ɛ* : we do exploitation (aka our agent selects the action with the highest state-action pair value).
- With *probability ɛ* : we do exploration (trying random action).
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-4.jpg" alt="Epsilon Greedy"/>
</details>
### Q5: How do we update the Q value of a state, action pair?
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/q-update-ex.jpg" alt="Q Update exercise"/>
<details>
<summary>Solution</summary>
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/q-update-solution.jpg" alt="Q Update exercise"/>
</details>
### Q6: What's the difference between on-policy and off-policy
<details>
<summary>Solution</summary>
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/off-on-4.jpg" alt="On/off policy"/>
</details>
Congrats on finishing this Quiz 🥳, if you missed some elements, take time to read again the chapter to reinforce (😏) your knowledge.
| deep-rl-class/units/en/unit2/quiz2.mdx/0 | {
"file_path": "deep-rl-class/units/en/unit2/quiz2.mdx",
"repo_id": "deep-rl-class",
"token_count": 1077
} | 74 |
# Hands on
<CourseFloatingBanner classNames="absolute z-10 right-0 top-0"
notebooks={[
{label: "Google Colab", value: "https://colab.research.google.com/github/huggingface/deep-rl-class/blob/main/notebooks/unit4/unit4.ipynb"}
]}
askForHelpUrl="http://hf.co/join/discord" />
Now that we've studied the theory behind Reinforce, **you’re ready to code your Reinforce agent with PyTorch**. And you'll test its robustness using CartPole-v1 and PixelCopter,.
You'll then be able to iterate and improve this implementation for more advanced environments.
<figure class="image table text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit6/envs.gif" alt="Environments"/>
</figure>
To validate this hands-on for the certification process, you need to push your trained models to the Hub and:
- Get a result of >= 350 for `Cartpole-v1`
- Get a result of >= 5 for `PixelCopter`.
To find your result, go to the leaderboard and find your model, **the result = mean_reward - std of reward**. **If you don't see your model on the leaderboard, go at the bottom of the leaderboard page and click on the refresh button**.
**If you don't find your model, go to the bottom of the page and click on the refresh button.**
For more information about the certification process, check this section 👉 https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process
And you can check your progress here 👉 https://huggingface.co/spaces/ThomasSimonini/Check-my-progress-Deep-RL-Course
**To start the hands-on click on Open In Colab button** 👇 :
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/deep-rl-class/blob/master/notebooks/unit4/unit4.ipynb)
We strongly **recommend students use Google Colab for the hands-on exercises** instead of running them on their personal computers.
By using Google Colab, **you can focus on learning and experimenting without worrying about the technical aspects** of setting up your environments.
# Unit 4: Code your first Deep Reinforcement Learning Algorithm with PyTorch: Reinforce. And test its robustness 💪
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit6/thumbnail.png" alt="thumbnail"/>
In this notebook, you'll code your first Deep Reinforcement Learning algorithm from scratch: Reinforce (also called Monte Carlo Policy Gradient).
Reinforce is a *Policy-based method*: a Deep Reinforcement Learning algorithm that tries **to optimize the policy directly without using an action-value function**.
More precisely, Reinforce is a *Policy-gradient method*, a subclass of *Policy-based methods* that aims **to optimize the policy directly by estimating the weights of the optimal policy using gradient ascent**.
To test its robustness, we're going to train it in 2 different simple environments:
- Cartpole-v1
- PixelcopterEnv
⬇️ Here is an example of what **you will achieve at the end of this notebook.** ⬇️
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit6/envs.gif" alt="Environments"/>
### 🎮 Environments:
- [CartPole-v1](https://www.gymlibrary.dev/environments/classic_control/cart_pole/)
- [PixelCopter](https://pygame-learning-environment.readthedocs.io/en/latest/user/games/pixelcopter.html)
### 📚 RL-Library:
- Python
- PyTorch
We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the GitHub Repo](https://github.com/huggingface/deep-rl-class/issues).
## Objectives of this notebook 🏆
At the end of the notebook, you will:
- Be able to **code a Reinforce algorithm from scratch using PyTorch.**
- Be able to **test the robustness of your agent using simple environments.**
- Be able to **push your trained agent to the Hub** with a nice video replay and an evaluation score 🔥.
## Prerequisites 🏗️
Before diving into the notebook, you need to:
🔲 📚 [Study Policy Gradients by reading Unit 4](https://huggingface.co/deep-rl-course/unit4/introduction)
# Let's code Reinforce algorithm from scratch 🔥
## Some advice 💡
It's better to run this colab in a copy on your Google Drive, so that **if it times out** you still have the saved notebook on your Google Drive and do not need to fill everything in from scratch.
To do that you can either do `Ctrl + S` or `File > Save a copy in Google Drive.`
## Set the GPU 💪
- To **accelerate the agent's training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type`
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step1.jpg" alt="GPU Step 1">
- `Hardware Accelerator > GPU`
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/gpu-step2.jpg" alt="GPU Step 2">
## Create a virtual display 🖥
During the notebook, we'll need to generate a replay video. To do so, with colab, **we need to have a virtual screen to be able to render the environment** (and thus record the frames).
The following cell will install the librairies and create and run a virtual screen 🖥
```python
%%capture
!apt install python-opengl
!apt install ffmpeg
!apt install xvfb
!pip install pyvirtualdisplay
!pip install pyglet==1.5.1
```
```python
# Virtual display
from pyvirtualdisplay import Display
virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()
```
## Install the dependencies 🔽
The first step is to install the dependencies. We’ll install multiple ones:
- `gym`
- `gym-games`: Extra gym environments made with PyGame.
- `huggingface_hub`: The Hub works as a central place where anyone can share and explore models and datasets. It has versioning, metrics, visualizations, and other features that will allow you to easily collaborate with others.
You may be wondering why we install gym and not gymnasium, a more recent version of gym? **Because the gym-games we are using are not updated yet with gymnasium**.
The differences you'll encounter here:
- In `gym` we don't have `terminated` and `truncated` but only `done`.
- In `gym` using `env.step()` returns `state, reward, done, info`
You can learn more about the differences between Gym and Gymnasium here 👉 https://gymnasium.farama.org/content/migration-guide/
You can see here all the Reinforce models available 👉 https://huggingface.co/models?other=reinforce
And you can find all the Deep Reinforcement Learning models here 👉 https://huggingface.co/models?pipeline_tag=reinforcement-learning
```bash
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit4/requirements-unit4.txt
```
## Import the packages 📦
In addition to importing the installed libraries, we also import:
- `imageio`: A library that will help us to generate a replay video
```python
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
%matplotlib inline
# PyTorch
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
# Gym
import gym
import gym_pygame
# Hugging Face Hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
import imageio
```
## Check if we have a GPU
- Let's check if we have a GPU
- If it's the case you should see `device:cuda0`
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```
```python
print(device)
```
We're now ready to implement our Reinforce algorithm 🔥
# First agent: Playing CartPole-v1 🤖
## Create the CartPole environment and understand how it works
### [The environment 🎮](https://www.gymlibrary.dev/environments/classic_control/cart_pole/)
### Why do we use a simple environment like CartPole-v1?
As explained in [Reinforcement Learning Tips and Tricks](https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html), when you implement your agent from scratch, you need **to be sure that it works correctly and find bugs with easy environments before going deeper** as finding bugs will be much easier in simple environments.
> Try to have some “sign of life” on toy problems
> Validate the implementation by making it run on harder and harder envs (you can compare results against the RL zoo). You usually need to run hyperparameter optimization for that step.
### The CartPole-v1 environment
> A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pendulum is placed upright on the cart and the goal is to balance the pole by applying forces in the left and right direction on the cart.
So, we start with CartPole-v1. The goal is to push the cart left or right **so that the pole stays in the equilibrium.**
The episode ends if:
- The pole Angle is greater than ±12°
- The Cart Position is greater than ±2.4
- The episode length is greater than 500
We get a reward 💰 of +1 every timestep that the Pole stays in the equilibrium.
```python
env_id = "CartPole-v1"
# Create the env
env = gym.make(env_id)
# Create the evaluation env
eval_env = gym.make(env_id)
# Get the state space and action space
s_size = env.observation_space.shape[0]
a_size = env.action_space.n
```
```python
print("_____OBSERVATION SPACE_____ \n")
print("The State Space is: ", s_size)
print("Sample observation", env.observation_space.sample()) # Get a random observation
```
```python
print("\n _____ACTION SPACE_____ \n")
print("The Action Space is: ", a_size)
print("Action Space Sample", env.action_space.sample()) # Take a random action
```
## Let's build the Reinforce Architecture
This implementation is based on three implementations:
- [PyTorch official Reinforcement Learning example](https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py)
- [Udacity Reinforce](https://github.com/udacity/deep-reinforcement-learning/blob/master/reinforce/REINFORCE.ipynb)
- [Improvement of the integration by Chris1nexus](https://github.com/huggingface/deep-rl-class/pull/95)
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit6/reinforce.png" alt="Reinforce"/>
So we want:
- Two fully connected layers (fc1 and fc2).
- To use ReLU as activation function of fc1
- To use Softmax to output a probability distribution over actions
```python
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
# Create two fully connected layers
def forward(self, x):
# Define the forward pass
# state goes to fc1 then we apply ReLU activation function
# fc1 outputs goes to fc2
# We output the softmax
def act(self, state):
"""
Given a state, take action
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()
m = Categorical(probs)
action = np.argmax(m)
return action.item(), m.log_prob(action)
```
### Solution
```python
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
self.fc1 = nn.Linear(s_size, h_size)
self.fc2 = nn.Linear(h_size, a_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.softmax(x, dim=1)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()
m = Categorical(probs)
action = np.argmax(m)
return action.item(), m.log_prob(action)
```
I made a mistake, can you guess where?
- To find out let's make a forward pass:
```python
debug_policy = Policy(s_size, a_size, 64).to(device)
debug_policy.act(env.reset())
```
- Here we see that the error says `ValueError: The value argument to log_prob must be a Tensor`
- It means that `action` in `m.log_prob(action)` must be a Tensor **but it's not.**
- Do you know why? Check the act function and try to see why it does not work.
Advice 💡: Something is wrong in this implementation. Remember that for the act function **we want to sample an action from the probability distribution over actions**.
### (Real) Solution
```python
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
self.fc1 = nn.Linear(s_size, h_size)
self.fc2 = nn.Linear(h_size, a_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.softmax(x, dim=1)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()
m = Categorical(probs)
action = m.sample()
return action.item(), m.log_prob(action)
```
By using CartPole, it was easier to debug since **we know that the bug comes from our integration and not from our simple environment**.
- Since **we want to sample an action from the probability distribution over actions**, we can't use `action = np.argmax(m)` since it will always output the action that has the highest probability.
- We need to replace this with `action = m.sample()` which will sample an action from the probability distribution P(.|s)
### Let's build the Reinforce Training Algorithm
This is the Reinforce algorithm pseudocode:
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit6/pg_pseudocode.png" alt="Policy gradient pseudocode"/>
- When we calculate the return Gt (line 6), we see that we calculate the sum of discounted rewards **starting at timestep t**.
- Why? Because our policy should only **reinforce actions on the basis of the consequences**: so rewards obtained before taking an action are useless (since they were not because of the action), **only the ones that come after the action matters**.
- Before coding this you should read this section [don't let the past distract you](https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html#don-t-let-the-past-distract-you) that explains why we use reward-to-go policy gradient.
We use an interesting technique coded by [Chris1nexus](https://github.com/Chris1nexus) to **compute the return at each timestep efficiently**. The comments explained the procedure. Don't hesitate also [to check the PR explanation](https://github.com/huggingface/deep-rl-class/pull/95)
But overall the idea is to **compute the return at each timestep efficiently**.
The second question you may ask is **why do we minimize the loss**? Didn't we talk about Gradient Ascent, not Gradient Descent earlier?
- We want to maximize our utility function $J(\theta)$, but in PyTorch and TensorFlow, it's better to **minimize an objective function.**
- So let's say we want to reinforce action 3 at a certain timestep. Before training this action P is 0.25.
- So we want to modify \\(theta \\) such that \\(\pi_\theta(a_3|s; \theta) > 0.25 \\)
- Because all P must sum to 1, max \\(pi_\theta(a_3|s; \theta)\\) will **minimize other action probability.**
- So we should tell PyTorch **to min \\(1 - \pi_\theta(a_3|s; \theta)\\).**
- This loss function approaches 0 as \\(\pi_\theta(a_3|s; \theta)\\) nears 1.
- So we are encouraging the gradient to max \\(\pi_\theta(a_3|s; \theta)\\)
```python
def reinforce(policy, optimizer, n_training_episodes, max_t, gamma, print_every):
# Help us to calculate the score during the training
scores_deque = deque(maxlen=100)
scores = []
# Line 3 of pseudocode
for i_episode in range(1, n_training_episodes+1):
saved_log_probs = []
rewards = []
state = # TODO: reset the environment
# Line 4 of pseudocode
for t in range(max_t):
action, log_prob = # TODO get the action
saved_log_probs.append(log_prob)
state, reward, done, _ = # TODO: take an env step
rewards.append(reward)
if done:
break
scores_deque.append(sum(rewards))
scores.append(sum(rewards))
# Line 6 of pseudocode: calculate the return
returns = deque(maxlen=max_t)
n_steps = len(rewards)
# Compute the discounted returns at each timestep,
# as the sum of the gamma-discounted return at time t (G_t) + the reward at time t
# In O(N) time, where N is the number of time steps
# (this definition of the discounted return G_t follows the definition of this quantity
# shown at page 44 of Sutton&Barto 2017 2nd draft)
# G_t = r_(t+1) + r_(t+2) + ...
# Given this formulation, the returns at each timestep t can be computed
# by re-using the computed future returns G_(t+1) to compute the current return G_t
# G_t = r_(t+1) + gamma*G_(t+1)
# G_(t-1) = r_t + gamma* G_t
# (this follows a dynamic programming approach, with which we memorize solutions in order
# to avoid computing them multiple times)
# This is correct since the above is equivalent to (see also page 46 of Sutton&Barto 2017 2nd draft)
# G_(t-1) = r_t + gamma*r_(t+1) + gamma*gamma*r_(t+2) + ...
## Given the above, we calculate the returns at timestep t as:
# gamma[t] * return[t] + reward[t]
#
## We compute this starting from the last timestep to the first, in order
## to employ the formula presented above and avoid redundant computations that would be needed
## if we were to do it from first to last.
## Hence, the queue "returns" will hold the returns in chronological order, from t=0 to t=n_steps
## thanks to the appendleft() function which allows to append to the position 0 in constant time O(1)
## a normal python list would instead require O(N) to do this.
for t in range(n_steps)[::-1]:
disc_return_t = (returns[0] if len(returns)>0 else 0)
returns.appendleft( ) # TODO: complete here
## standardization of the returns is employed to make training more stable
eps = np.finfo(np.float32).eps.item()
## eps is the smallest representable float, which is
# added to the standard deviation of the returns to avoid numerical instabilities
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
# Line 7:
policy_loss = []
for log_prob, disc_return in zip(saved_log_probs, returns):
policy_loss.append(-log_prob * disc_return)
policy_loss = torch.cat(policy_loss).sum()
# Line 8: PyTorch prefers gradient descent
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
if i_episode % print_every == 0:
print('Episode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)))
return scores
```
#### Solution
```python
def reinforce(policy, optimizer, n_training_episodes, max_t, gamma, print_every):
# Help us to calculate the score during the training
scores_deque = deque(maxlen=100)
scores = []
# Line 3 of pseudocode
for i_episode in range(1, n_training_episodes + 1):
saved_log_probs = []
rewards = []
state = env.reset()
# Line 4 of pseudocode
for t in range(max_t):
action, log_prob = policy.act(state)
saved_log_probs.append(log_prob)
state, reward, done, _ = env.step(action)
rewards.append(reward)
if done:
break
scores_deque.append(sum(rewards))
scores.append(sum(rewards))
# Line 6 of pseudocode: calculate the return
returns = deque(maxlen=max_t)
n_steps = len(rewards)
# Compute the discounted returns at each timestep,
# as
# the sum of the gamma-discounted return at time t (G_t) + the reward at time t
#
# In O(N) time, where N is the number of time steps
# (this definition of the discounted return G_t follows the definition of this quantity
# shown at page 44 of Sutton&Barto 2017 2nd draft)
# G_t = r_(t+1) + r_(t+2) + ...
# Given this formulation, the returns at each timestep t can be computed
# by re-using the computed future returns G_(t+1) to compute the current return G_t
# G_t = r_(t+1) + gamma*G_(t+1)
# G_(t-1) = r_t + gamma* G_t
# (this follows a dynamic programming approach, with which we memorize solutions in order
# to avoid computing them multiple times)
# This is correct since the above is equivalent to (see also page 46 of Sutton&Barto 2017 2nd draft)
# G_(t-1) = r_t + gamma*r_(t+1) + gamma*gamma*r_(t+2) + ...
## Given the above, we calculate the returns at timestep t as:
# gamma[t] * return[t] + reward[t]
#
## We compute this starting from the last timestep to the first, in order
## to employ the formula presented above and avoid redundant computations that would be needed
## if we were to do it from first to last.
## Hence, the queue "returns" will hold the returns in chronological order, from t=0 to t=n_steps
## thanks to the appendleft() function which allows to append to the position 0 in constant time O(1)
## a normal python list would instead require O(N) to do this.
for t in range(n_steps)[::-1]:
disc_return_t = returns[0] if len(returns) > 0 else 0
returns.appendleft(gamma * disc_return_t + rewards[t])
## standardization of the returns is employed to make training more stable
eps = np.finfo(np.float32).eps.item()
## eps is the smallest representable float, which is
# added to the standard deviation of the returns to avoid numerical instabilities
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)
# Line 7:
policy_loss = []
for log_prob, disc_return in zip(saved_log_probs, returns):
policy_loss.append(-log_prob * disc_return)
policy_loss = torch.cat(policy_loss).sum()
# Line 8: PyTorch prefers gradient descent
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
if i_episode % print_every == 0:
print("Episode {}\tAverage Score: {:.2f}".format(i_episode, np.mean(scores_deque)))
return scores
```
## Train it
- We're now ready to train our agent.
- But first, we define a variable containing all the training hyperparameters.
- You can change the training parameters (and should 😉)
```python
cartpole_hyperparameters = {
"h_size": 16,
"n_training_episodes": 1000,
"n_evaluation_episodes": 10,
"max_t": 1000,
"gamma": 1.0,
"lr": 1e-2,
"env_id": env_id,
"state_space": s_size,
"action_space": a_size,
}
```
```python
# Create policy and place it to the device
cartpole_policy = Policy(
cartpole_hyperparameters["state_space"],
cartpole_hyperparameters["action_space"],
cartpole_hyperparameters["h_size"],
).to(device)
cartpole_optimizer = optim.Adam(cartpole_policy.parameters(), lr=cartpole_hyperparameters["lr"])
```
```python
scores = reinforce(
cartpole_policy,
cartpole_optimizer,
cartpole_hyperparameters["n_training_episodes"],
cartpole_hyperparameters["max_t"],
cartpole_hyperparameters["gamma"],
100,
)
```
## Define evaluation method 📝
- Here we define the evaluation method that we're going to use to test our Reinforce agent.
```python
def evaluate_agent(env, max_steps, n_eval_episodes, policy):
"""
Evaluate the agent for ``n_eval_episodes`` episodes and returns average reward and std of reward.
:param env: The evaluation environment
:param n_eval_episodes: Number of episode to evaluate the agent
:param policy: The Reinforce agent
"""
episode_rewards = []
for episode in range(n_eval_episodes):
state = env.reset()
step = 0
done = False
total_rewards_ep = 0
for step in range(max_steps):
action, _ = policy.act(state)
new_state, reward, done, info = env.step(action)
total_rewards_ep += reward
if done:
break
state = new_state
episode_rewards.append(total_rewards_ep)
mean_reward = np.mean(episode_rewards)
std_reward = np.std(episode_rewards)
return mean_reward, std_reward
```
## Evaluate our agent 📈
```python
evaluate_agent(
eval_env, cartpole_hyperparameters["max_t"], cartpole_hyperparameters["n_evaluation_episodes"], cartpole_policy
)
```
### Publish our trained model on the Hub 🔥
Now that we saw we got good results after the training, we can publish our trained model on the hub 🤗 with one line of code.
Here's an example of a Model Card:
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit6/modelcard.png"/>
### Push to the Hub
#### Do not modify this code
```python
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.repocard import metadata_eval_result, metadata_save
from pathlib import Path
import datetime
import json
import imageio
import tempfile
import os
```
```python
def record_video(env, policy, out_directory, fps=30):
"""
Generate a replay video of the agent
:param env
:param Qtable: Qtable of our agent
:param out_directory
:param fps: how many frame per seconds (with taxi-v3 and frozenlake-v1 we use 1)
"""
images = []
done = False
state = env.reset()
img = env.render(mode="rgb_array")
images.append(img)
while not done:
# Take the action (index) that have the maximum expected future reward given that state
action, _ = policy.act(state)
state, reward, done, info = env.step(action) # We directly put next_state = state for recording logic
img = env.render(mode="rgb_array")
images.append(img)
imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)], fps=fps)
```
```python
def push_to_hub(repo_id,
model,
hyperparameters,
eval_env,
video_fps=30
):
"""
Evaluate, Generate a video and Upload a model to Hugging Face Hub.
This method does the complete pipeline:
- It evaluates the model
- It generates the model card
- It generates a replay video of the agent
- It pushes everything to the Hub
:param repo_id: repo_id: id of the model repository from the Hugging Face Hub
:param model: the pytorch model we want to save
:param hyperparameters: training hyperparameters
:param eval_env: evaluation environment
:param video_fps: how many frame per seconds to record our video replay
"""
_, repo_name = repo_id.split("/")
api = HfApi()
# Step 1: Create the repo
repo_url = api.create_repo(
repo_id=repo_id,
exist_ok=True,
)
with tempfile.TemporaryDirectory() as tmpdirname:
local_directory = Path(tmpdirname)
# Step 2: Save the model
torch.save(model, local_directory / "model.pt")
# Step 3: Save the hyperparameters to JSON
with open(local_directory / "hyperparameters.json", "w") as outfile:
json.dump(hyperparameters, outfile)
# Step 4: Evaluate the model and build JSON
mean_reward, std_reward = evaluate_agent(eval_env,
hyperparameters["max_t"],
hyperparameters["n_evaluation_episodes"],
model)
# Get datetime
eval_datetime = datetime.datetime.now()
eval_form_datetime = eval_datetime.isoformat()
evaluate_data = {
"env_id": hyperparameters["env_id"],
"mean_reward": mean_reward,
"n_evaluation_episodes": hyperparameters["n_evaluation_episodes"],
"eval_datetime": eval_form_datetime,
}
# Write a JSON file
with open(local_directory / "results.json", "w") as outfile:
json.dump(evaluate_data, outfile)
# Step 5: Create the model card
env_name = hyperparameters["env_id"]
metadata = {}
metadata["tags"] = [
env_name,
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class"
]
# Add metrics
eval = metadata_eval_result(
model_pretty_name=repo_name,
task_pretty_name="reinforcement-learning",
task_id="reinforcement-learning",
metrics_pretty_name="mean_reward",
metrics_id="mean_reward",
metrics_value=f"{mean_reward:.2f} +/- {std_reward:.2f}",
dataset_pretty_name=env_name,
dataset_id=env_name,
)
# Merges both dictionaries
metadata = {**metadata, **eval}
model_card = f"""
# **Reinforce** Agent playing **{env_id}**
This is a trained model of a **Reinforce** agent playing **{env_id}** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
"""
readme_path = local_directory / "README.md"
readme = ""
if readme_path.exists():
with readme_path.open("r", encoding="utf8") as f:
readme = f.read()
else:
readme = model_card
with readme_path.open("w", encoding="utf-8") as f:
f.write(readme)
# Save our metrics to Readme metadata
metadata_save(readme_path, metadata)
# Step 6: Record a video
video_path = local_directory / "replay.mp4"
record_video(env, model, video_path, video_fps)
# Step 7. Push everything to the Hub
api.upload_folder(
repo_id=repo_id,
folder_path=local_directory,
path_in_repo=".",
)
print(f"Your model is pushed to the Hub. You can view your model here: {repo_url}")
```
By using `push_to_hub`, **you evaluate, record a replay, generate a model card of your agent, and push it to the Hub**.
This way:
- You can **showcase our work** 🔥
- You can **visualize your agent playing** 👀
- You can **share an agent with the community that others can use** 💾
- You can **access a leaderboard 🏆 to see how well your agent is performing compared to your classmates** 👉 https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
To be able to share your model with the community there are three more steps to follow:
1️⃣ (If it's not already done) create an account to HF ➡ https://huggingface.co/join
2️⃣ Sign in and then, you need to store your authentication token from the Hugging Face website.
- Create a new token (https://huggingface.co/settings/tokens) **with write role**
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/create-token.jpg" alt="Create HF Token">
```python
notebook_login()
```
If you don't want to use Google Colab or a Jupyter Notebook, you need to use this command instead: `huggingface-cli login` (or `login`)
3️⃣ We're now ready to push our trained agent to the 🤗 Hub 🔥 using `package_to_hub()` function
```python
repo_id = "" # TODO Define your repo id {username/Reinforce-{model-id}}
push_to_hub(
repo_id,
cartpole_policy, # The model we want to save
cartpole_hyperparameters, # Hyperparameters
eval_env, # Evaluation environment
video_fps=30
)
```
Now that we tested the robustness of our implementation, let's try a more complex environment: PixelCopter 🚁
## Second agent: PixelCopter 🚁
### Study the PixelCopter environment 👀
- [The Environment documentation](https://pygame-learning-environment.readthedocs.io/en/latest/user/games/pixelcopter.html)
```python
env_id = "Pixelcopter-PLE-v0"
env = gym.make(env_id)
eval_env = gym.make(env_id)
s_size = env.observation_space.shape[0]
a_size = env.action_space.n
```
```python
print("_____OBSERVATION SPACE_____ \n")
print("The State Space is: ", s_size)
print("Sample observation", env.observation_space.sample()) # Get a random observation
```
```python
print("\n _____ACTION SPACE_____ \n")
print("The Action Space is: ", a_size)
print("Action Space Sample", env.action_space.sample()) # Take a random action
```
The observation space (7) 👀:
- player y position
- player velocity
- player distance to floor
- player distance to ceiling
- next block x distance to player
- next blocks top y location
- next blocks bottom y location
The action space(2) 🎮:
- Up (press accelerator)
- Do nothing (don't press accelerator)
The reward function 💰:
- For each vertical block it passes, it gains a positive reward of +1. Each time a terminal state is reached it receives a negative reward of -1.
### Define the new Policy 🧠
- We need to have a deeper neural network since the environment is more complex
```python
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
# Define the three layers here
def forward(self, x):
# Define the forward process here
return F.softmax(x, dim=1)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()
m = Categorical(probs)
action = m.sample()
return action.item(), m.log_prob(action)
```
#### Solution
```python
class Policy(nn.Module):
def __init__(self, s_size, a_size, h_size):
super(Policy, self).__init__()
self.fc1 = nn.Linear(s_size, h_size)
self.fc2 = nn.Linear(h_size, h_size * 2)
self.fc3 = nn.Linear(h_size * 2, a_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.softmax(x, dim=1)
def act(self, state):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
probs = self.forward(state).cpu()
m = Categorical(probs)
action = m.sample()
return action.item(), m.log_prob(action)
```
### Define the hyperparameters ⚙️
- Because this environment is more complex.
- Especially for the hidden size, we need more neurons.
```python
pixelcopter_hyperparameters = {
"h_size": 64,
"n_training_episodes": 50000,
"n_evaluation_episodes": 10,
"max_t": 10000,
"gamma": 0.99,
"lr": 1e-4,
"env_id": env_id,
"state_space": s_size,
"action_space": a_size,
}
```
### Train it
- We're now ready to train our agent 🔥.
```python
# Create policy and place it to the device
# torch.manual_seed(50)
pixelcopter_policy = Policy(
pixelcopter_hyperparameters["state_space"],
pixelcopter_hyperparameters["action_space"],
pixelcopter_hyperparameters["h_size"],
).to(device)
pixelcopter_optimizer = optim.Adam(pixelcopter_policy.parameters(), lr=pixelcopter_hyperparameters["lr"])
```
```python
scores = reinforce(
pixelcopter_policy,
pixelcopter_optimizer,
pixelcopter_hyperparameters["n_training_episodes"],
pixelcopter_hyperparameters["max_t"],
pixelcopter_hyperparameters["gamma"],
1000,
)
```
### Publish our trained model on the Hub 🔥
```python
repo_id = "" # TODO Define your repo id {username/Reinforce-{model-id}}
push_to_hub(
repo_id,
pixelcopter_policy, # The model we want to save
pixelcopter_hyperparameters, # Hyperparameters
eval_env, # Evaluation environment
video_fps=30
)
```
## Some additional challenges 🏆
The best way to learn **is to try things on your own**! As you saw, the current agent is not doing great. As a first suggestion, you can train for more steps. But also try to find better parameters.
In the [Leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) you will find your agents. Can you get to the top?
Here are some ideas to climb up the leaderboard:
* Train more steps
* Try different hyperparameters by looking at what your classmates have done 👉 https://huggingface.co/models?other=reinforce
* **Push your new trained model** on the Hub 🔥
* **Improving the implementation for more complex environments** (for instance, what about changing the network to a Convolutional Neural Network to handle
frames as observation)?
________________________________________________________________________
**Congrats on finishing this unit**! There was a lot of information.
And congrats on finishing the tutorial. You've just coded your first Deep Reinforcement Learning agent from scratch using PyTorch and shared it on the Hub 🥳.
Don't hesitate to iterate on this unit **by improving the implementation for more complex environments** (for instance, what about changing the network to a Convolutional Neural Network to handle
frames as observation)?
In the next unit, **we're going to learn more about Unity MLAgents**, by training agents in Unity environments. This way, you will be ready to participate in the **AI vs AI challenges where you'll train your agents
to compete against other agents in a snowball fight and a soccer game.**
Sound fun? See you next time!
Finally, we would love **to hear what you think of the course and how we can improve it**. If you have some feedback then please 👉 [fill this form](https://forms.gle/BzKXWzLAGZESGNaE9)
See you in Unit 5! 🔥
### Keep Learning, stay awesome 🤗
| deep-rl-class/units/en/unit4/hands-on.mdx/0 | {
"file_path": "deep-rl-class/units/en/unit4/hands-on.mdx",
"repo_id": "deep-rl-class",
"token_count": 13495
} | 75 |
# Advantage Actor-Critic (A2C) [[advantage-actor-critic]]
## Reducing variance with Actor-Critic methods
The solution to reducing the variance of the Reinforce algorithm and training our agent faster and better is to use a combination of Policy-Based and Value-Based methods: *the Actor-Critic method*.
To understand the Actor-Critic, imagine you're playing a video game. You can play with a friend that will provide you with some feedback. You're the Actor and your friend is the Critic.
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/ac.jpg" alt="Actor Critic"/>
You don't know how to play at the beginning, **so you try some actions randomly**. The Critic observes your action and **provides feedback**.
Learning from this feedback, **you'll update your policy and be better at playing that game.**
On the other hand, your friend (Critic) will also update their way to provide feedback so it can be better next time.
This is the idea behind Actor-Critic. We learn two function approximations:
- *A policy* that **controls how our agent acts**: \\( \pi_{\theta}(s) \\)
- *A value function* to assist the policy update by measuring how good the action taken is: \\( \hat{q}_{w}(s,a) \\)
## The Actor-Critic Process
Now that we have seen the Actor Critic's big picture, let's dive deeper to understand how the Actor and Critic improve together during the training.
As we saw, with Actor-Critic methods, there are two function approximations (two neural networks):
- *Actor*, a **policy function** parameterized by theta: \\( \pi_{\theta}(s) \\)
- *Critic*, a **value function** parameterized by w: \\( \hat{q}_{w}(s,a) \\)
Let's see the training process to understand how the Actor and Critic are optimized:
- At each timestep, t, we get the current state \\( S_t\\) from the environment and **pass it as input through our Actor and Critic**.
- Our Policy takes the state and **outputs an action** \\( A_t \\).
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/step1.jpg" alt="Step 1 Actor Critic"/>
- The Critic takes that action also as input and, using \\( S_t\\) and \\( A_t \\), **computes the value of taking that action at that state: the Q-value**.
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/step2.jpg" alt="Step 2 Actor Critic"/>
- The action \\( A_t\\) performed in the environment outputs a new state \\( S_{t+1}\\) and a reward \\( R_{t+1} \\) .
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/step3.jpg" alt="Step 3 Actor Critic"/>
- The Actor updates its policy parameters using the Q value.
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/step4.jpg" alt="Step 4 Actor Critic"/>
- Thanks to its updated parameters, the Actor produces the next action to take at \\( A_{t+1} \\) given the new state \\( S_{t+1} \\).
- The Critic then updates its value parameters.
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/step5.jpg" alt="Step 5 Actor Critic"/>
## Adding Advantage in Actor-Critic (A2C)
We can stabilize learning further by **using the Advantage function as Critic instead of the Action value function**.
The idea is that the Advantage function calculates the relative advantage of an action compared to the others possible at a state: **how taking that action at a state is better compared to the average value of the state**. It's subtracting the mean value of the state from the state action pair:
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/advantage1.jpg" alt="Advantage Function"/>
In other words, this function calculates **the extra reward we get if we take this action at that state compared to the mean reward we get at that state**.
The extra reward is what's beyond the expected value of that state.
- If A(s,a) > 0: our gradient is **pushed in that direction**.
- If A(s,a) < 0 (our action does worse than the average value of that state), **our gradient is pushed in the opposite direction**.
The problem with implementing this advantage function is that it requires two value functions — \\( Q(s,a)\\) and \\( V(s)\\). Fortunately, **we can use the TD error as a good estimator of the advantage function.**
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit8/advantage2.jpg" alt="Advantage Function"/>
| deep-rl-class/units/en/unit6/advantage-actor-critic.mdx/0 | {
"file_path": "deep-rl-class/units/en/unit6/advantage-actor-critic.mdx",
"repo_id": "deep-rl-class",
"token_count": 1384
} | 76 |
# Conclusion
That's all for today. Congrats on finishing this Unit and the tutorial! ⭐️
Now that you've successfully trained your Doom agent, why not try deathmatch? Remember, that's a much more complex level than the one you've just trained, **but it's a nice experiment and I advise you to try it.**
If you do it, don't hesitate to share your model in the `#rl-i-made-this` channel in our [discord server](https://www.hf.co/join/discord).
This concludes the last unit, but we are not finished yet! 🤗 The following **bonus unit includes some of the most interesting, advanced, and cutting edge work in Deep Reinforcement Learning**.
See you next time 🔥
## Keep Learning, Stay awesome 🤗
| deep-rl-class/units/en/unit8/conclusion-sf.mdx/0 | {
"file_path": "deep-rl-class/units/en/unit8/conclusion-sf.mdx",
"repo_id": "deep-rl-class",
"token_count": 188
} | 77 |
# (Automatic) Curriculum Learning for RL
While most of the RL methods seen in this course work well in practice, there are some cases where using them alone fails. This can happen, for instance, when:
- the task to learn is hard and requires an **incremental acquisition of skills** (for instance when one wants to make a bipedal agent learn to go through hard obstacles, it must first learn to stand, then walk, then maybe jump…)
- there are variations in the environment (that affect the difficulty) and one wants its agent to be **robust** to them
<figure>
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/bipedal.gif" alt="Bipedal"/>
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/movable_creepers.gif" alt="Movable creepers"/>
<figcaption> <a href="https://developmentalsystems.org/TeachMyAgent/">TeachMyAgent</a> </figcaption>
</figure>
In such cases, it seems needed to propose different tasks to our RL agent and organize them such that the agent progressively acquires skills. This approach is called **Curriculum Learning** and usually implies a hand-designed curriculum (or set of tasks organized in a specific order). In practice, one can, for instance, control the generation of the environment, the initial states, or use Self-Play and control the level of opponents proposed to the RL agent.
As designing such a curriculum is not always trivial, the field of **Automatic Curriculum Learning (ACL) proposes to design approaches that learn to create such an organization of tasks in order to maximize the RL agent’s performances**. Portelas et al. proposed to define ACL as:
> … a family of mechanisms that automatically adapt the distribution of training data by learning to adjust the selection of learning situations to the capabilities of RL agents.
>
As an example, OpenAI used **Domain Randomization** (they applied random variations on the environment) to make a robot hand solve Rubik’s Cubes.
<figure>
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/dr.jpg" alt="Dr"/>
<figcaption> <a href="https://openai.com/blog/solving-rubiks-cube/">OpenAI - Solving Rubik’s Cube with a Robot Hand</a></figcaption>
</figure>
Finally, you can play with the robustness of agents trained in the <a href="https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo">TeachMyAgent</a> benchmark by controlling environment variations or even drawing the terrain 👇
<figure>
<img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/demo.png" alt="Demo"/>
<figcaption> <a href="https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo">https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo</a></figcaption>
</figure>
## Further reading
For more information, we recommend that you check out the following resources:
### Overview of the field
- [Automatic Curriculum Learning For Deep RL: A Short Survey](https://arxiv.org/pdf/2003.04664.pdf)
- [Curriculum for Reinforcement Learning](https://lilianweng.github.io/posts/2020-01-29-curriculum-rl/)
### Recent methods
- [Evolving Curricula with Regret-Based Environment Design](https://arxiv.org/abs/2203.01302)
- [Curriculum Reinforcement Learning via Constrained Optimal Transport](https://proceedings.mlr.press/v162/klink22a.html)
- [Prioritized Level Replay](https://arxiv.org/abs/2010.03934)
## Author
This section was written by <a href="https://twitter.com/ClementRomac"> Clément Romac </a>
| deep-rl-class/units/en/unitbonus3/curriculum-learning.mdx/0 | {
"file_path": "deep-rl-class/units/en/unitbonus3/curriculum-learning.mdx",
"repo_id": "deep-rl-class",
"token_count": 1058
} | 78 |
import argparse
import sys
sys.path.append(".")
from base_classes import TextToImageBenchmark, TurboTextToImageBenchmark # noqa: E402
ALL_T2I_CKPTS = [
"runwayml/stable-diffusion-v1-5",
"segmind/SSD-1B",
"stabilityai/stable-diffusion-xl-base-1.0",
"kandinsky-community/kandinsky-2-2-decoder",
"warp-ai/wuerstchen",
"stabilityai/sdxl-turbo",
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt",
type=str,
default="runwayml/stable-diffusion-v1-5",
choices=ALL_T2I_CKPTS,
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--model_cpu_offload", action="store_true")
parser.add_argument("--run_compile", action="store_true")
args = parser.parse_args()
benchmark_cls = None
if "turbo" in args.ckpt:
benchmark_cls = TurboTextToImageBenchmark
else:
benchmark_cls = TextToImageBenchmark
benchmark_pipe = benchmark_cls(args)
benchmark_pipe.benchmark(args)
| diffusers/benchmarks/benchmark_text_to_image.py/0 | {
"file_path": "diffusers/benchmarks/benchmark_text_to_image.py",
"repo_id": "diffusers",
"token_count": 480
} | 79 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
## Loading from the original format
By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
controlnet = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
## ControlNetModel
[[autodoc]] ControlNetModel
## ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
## FlaxControlNetModel
[[autodoc]] FlaxControlNetModel
## FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput
| diffusers/docs/source/en/api/models/controlnet.md/0 | {
"file_path": "diffusers/docs/source/en/api/models/controlnet.md",
"repo_id": "diffusers",
"token_count": 771
} | 80 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 3
Kandinsky 3 is created by [Vladimir Arkhipkin](https://github.com/oriBetelgeuse),[Anastasia Maltseva](https://github.com/NastyaMittseva),[Igor Pavlov](https://github.com/boomb0om),[Andrei Filatov](https://github.com/anvilarth),[Arseniy Shakhmatov](https://github.com/cene555),[Andrey Kuznetsov](https://github.com/kuznetsoffandrey),[Denis Dimitrov](https://github.com/denndimitrov), [Zein Shaheen](https://github.com/zeinsh)
The description from it's Github page:
*Kandinsky 3.0 is an open-source text-to-image diffusion model built upon the Kandinsky2-x model family. In comparison to its predecessors, enhancements have been made to the text understanding and visual quality of the model, achieved by increasing the size of the text encoder and Diffusion U-Net models, respectively.*
Its architecture includes 3 main components:
1. [FLAN-UL2](https://huggingface.co/google/flan-ul2), which is an encoder decoder model based on the T5 architecture.
2. New U-Net architecture featuring BigGAN-deep blocks doubles depth while maintaining the same number of parameters.
3. Sber-MoVQGAN is a decoder proven to have superior results in image restoration.
The original codebase can be found at [ai-forever/Kandinsky-3](https://github.com/ai-forever/Kandinsky-3).
<Tip>
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
</Tip>
<Tip>
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## Kandinsky3Pipeline
[[autodoc]] Kandinsky3Pipeline
- all
- __call__
## Kandinsky3Img2ImgPipeline
[[autodoc]] Kandinsky3Img2ImgPipeline
- all
- __call__
| diffusers/docs/source/en/api/pipelines/kandinsky3.md/0 | {
"file_path": "diffusers/docs/source/en/api/pipelines/kandinsky3.md",
"repo_id": "diffusers",
"token_count": 767
} | 81 |
<!--Copyright 2023 The GLIGEN Authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# GLIGEN (Grounded Language-to-Image Generation)
The GLIGEN model was created by researchers and engineers from [University of Wisconsin-Madison, Columbia University, and Microsoft](https://github.com/gligen/GLIGEN). The [`StableDiffusionGLIGENPipeline`] and [`StableDiffusionGLIGENTextImagePipeline`] can generate photorealistic images conditioned on grounding inputs. Along with text and bounding boxes with [`StableDiffusionGLIGENPipeline`], if input images are given, [`StableDiffusionGLIGENTextImagePipeline`] can insert objects described by text at the region defined by bounding boxes. Otherwise, it'll generate an image described by the caption/prompt and insert objects described by text at the region defined by bounding boxes. It's trained on COCO2014D and COCO2014CD datasets, and the model uses a frozen CLIP ViT-L/14 text encoder to condition itself on grounding inputs.
The abstract from the [paper](https://huggingface.co/papers/2301.07093) is:
*Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configurations and concepts. GLIGEN’s zeroshot performance on COCO and LVIS outperforms existing supervised layout-to-image baselines by a large margin.*
<Tip>
Make sure to check out the Stable Diffusion [Tips](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality and how to reuse pipeline components efficiently!
If you want to use one of the official checkpoints for a task, explore the [gligen](https://huggingface.co/gligen) Hub organizations!
</Tip>
[`StableDiffusionGLIGENPipeline`] was contributed by [Nikhil Gajendrakumar](https://github.com/nikhil-masterful) and [`StableDiffusionGLIGENTextImagePipeline`] was contributed by [Nguyễn Công Tú Anh](https://github.com/tuanh123789).
## StableDiffusionGLIGENPipeline
[[autodoc]] StableDiffusionGLIGENPipeline
- all
- __call__
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
- enable_model_cpu_offload
- prepare_latents
- enable_fuser
## StableDiffusionGLIGENTextImagePipeline
[[autodoc]] StableDiffusionGLIGENTextImagePipeline
- all
- __call__
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
- enable_model_cpu_offload
- prepare_latents
- enable_fuser
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
| diffusers/docs/source/en/api/pipelines/stable_diffusion/gligen.md/0 | {
"file_path": "diffusers/docs/source/en/api/pipelines/stable_diffusion/gligen.md",
"repo_id": "diffusers",
"token_count": 1050
} | 82 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text2Video-Zero
[Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators](https://huggingface.co/papers/2303.13439) is by Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, [Zhangyang Wang](https://www.ece.utexas.edu/people/faculty/atlas-wang), Shant Navasardyan, [Humphrey Shi](https://www.humphreyshi.com).
Text2Video-Zero enables zero-shot video generation using either:
1. A textual prompt
2. A prompt combined with guidance from poses or edges
3. Video Instruct-Pix2Pix (instruction-guided video editing)
Results are temporally consistent and closely follow the guidance and textual prompts.
![teaser-img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/t2v_zero_teaser.png)
The abstract from the paper is:
*Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain.
Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object.
Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing.
As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data.*
You can find additional information about Text2Video-Zero on the [project page](https://text2video-zero.github.io/), [paper](https://arxiv.org/abs/2303.13439), and [original codebase](https://github.com/Picsart-AI-Research/Text2Video-Zero).
## Usage example
### Text-To-Video
To generate a video from prompt, run the following Python code:
```python
import torch
from diffusers import TextToVideoZeroPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.mp4", result, fps=4)
```
You can change these parameters in the pipeline call:
* Motion field strength (see the [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1):
* `motion_field_strength_x` and `motion_field_strength_y`. Default: `motion_field_strength_x=12`, `motion_field_strength_y=12`
* `T` and `T'` (see the [paper](https://arxiv.org/abs/2303.13439), Sect. 3.3.1)
* `t0` and `t1` in the range `{0, ..., num_inference_steps}`. Default: `t0=45`, `t1=48`
* Video length:
* `video_length`, the number of frames video_length to be generated. Default: `video_length=8`
We can also generate longer videos by doing the processing in a chunk-by-chunk manner:
```python
import torch
from diffusers import TextToVideoZeroPipeline
import numpy as np
model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
seed = 0
video_length = 24 #24 ÷ 4fps = 6 seconds
chunk_size = 8
prompt = "A panda is playing guitar on times square"
# Generate the video chunk-by-chunk
result = []
chunk_ids = np.arange(0, video_length, chunk_size - 1)
generator = torch.Generator(device="cuda")
for i in range(len(chunk_ids)):
print(f"Processing chunk {i + 1} / {len(chunk_ids)}")
ch_start = chunk_ids[i]
ch_end = video_length if i == len(chunk_ids) - 1 else chunk_ids[i + 1]
# Attach the first frame for Cross Frame Attention
frame_ids = [0] + list(range(ch_start, ch_end))
# Fix the seed for the temporal consistency
generator.manual_seed(seed)
output = pipe(prompt=prompt, video_length=len(frame_ids), generator=generator, frame_ids=frame_ids)
result.append(output.images[1:])
# Concatenate chunks and save
result = np.concatenate(result)
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.mp4", result, fps=4)
```
- #### SDXL Support
In order to use the SDXL model when generating a video from prompt, use the `TextToVideoZeroSDXLPipeline` pipeline:
```python
import torch
from diffusers import TextToVideoZeroSDXLPipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = TextToVideoZeroSDXLPipeline.from_pretrained(
model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")
```
### Text-To-Video with Pose Control
To generate a video from prompt with additional pose control
1. Download a demo video
```python
from huggingface_hub import hf_hub_download
filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
```
2. Read video containing extracted pose images
```python
from PIL import Image
import imageio
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
To extract pose from actual video, read [ControlNet documentation](controlnet).
3. Run `StableDiffusionControlNetPipeline` with our custom attention processor
```python
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
model_id = "runwayml/stable-diffusion-v1-5"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
# Set the attention processor
pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
# fix latents for all frames
latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
prompt = "Darth Vader dancing in a desert"
result = pipe(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
- #### SDXL Support
Since our attention processor also works with SDXL, it can be utilized to generate a video from prompt using ControlNet models powered by SDXL:
```python
import torch
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
controlnet_model_id = 'thibaud/controlnet-openpose-sdxl-1.0'
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
controlnet = ControlNetModel.from_pretrained(controlnet_model_id, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
).to('cuda')
# Set the attention processor
pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
# fix latents for all frames
latents = torch.randn((1, 4, 128, 128), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
prompt = "Darth Vader dancing in a desert"
result = pipe(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
### Text-To-Video with Edge Control
To generate a video from prompt with additional Canny edge control, follow the same steps described above for pose-guided generation using [Canny edge ControlNet model](https://huggingface.co/lllyasviel/sd-controlnet-canny).
### Video Instruct-Pix2Pix
To perform text-guided video editing (with [InstructPix2Pix](pix2pix)):
1. Download a demo video
```python
from huggingface_hub import hf_hub_download
filename = "__assets__/pix2pix video/camel.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
```
2. Read video from path
```python
from PIL import Image
import imageio
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
video = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
3. Run `StableDiffusionInstructPix2PixPipeline` with our custom attention processor
```python
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=3))
prompt = "make it Van Gogh Starry Night style"
result = pipe(prompt=[prompt] * len(video), image=video).images
imageio.mimsave("edited_video.mp4", result, fps=4)
```
### DreamBooth specialization
Methods **Text-To-Video**, **Text-To-Video with Pose Control** and **Text-To-Video with Edge Control**
can run with custom [DreamBooth](../../training/dreambooth) models, as shown below for
[Canny edge ControlNet model](https://huggingface.co/lllyasviel/sd-controlnet-canny) and
[Avatar style DreamBooth](https://huggingface.co/PAIR/text2video-zero-controlnet-canny-avatar) model:
1. Download a demo video
```python
from huggingface_hub import hf_hub_download
filename = "__assets__/canny_videos_mp4/girl_turning.mp4"
repo_id = "PAIR/Text2Video-Zero"
video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
```
2. Read video from path
```python
from PIL import Image
import imageio
reader = imageio.get_reader(video_path, "ffmpeg")
frame_count = 8
canny_edges = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
```
3. Run `StableDiffusionControlNetPipeline` with custom trained DreamBooth model
```python
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
# set model id to custom model
model_id = "PAIR/text2video-zero-controlnet-canny-avatar"
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id, controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
# Set the attention processor
pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
# fix latents for all frames
latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(canny_edges), 1, 1, 1)
prompt = "oil painting of a beautiful girl avatar style"
result = pipe(prompt=[prompt] * len(canny_edges), image=canny_edges, latents=latents).images
imageio.mimsave("video.mp4", result, fps=4)
```
You can filter out some available DreamBooth-trained models with [this link](https://huggingface.co/models?search=dreambooth).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## TextToVideoZeroPipeline
[[autodoc]] TextToVideoZeroPipeline
- all
- __call__
## TextToVideoZeroSDXLPipeline
[[autodoc]] TextToVideoZeroSDXLPipeline
- all
- __call__
## TextToVideoPipelineOutput
[[autodoc]] pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoPipelineOutput
| diffusers/docs/source/en/api/pipelines/text_to_video_zero.md/0 | {
"file_path": "diffusers/docs/source/en/api/pipelines/text_to_video_zero.md",
"repo_id": "diffusers",
"token_count": 4487
} | 83 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# How to contribute to Diffusers 🧨
We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation –not just code– are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://Discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>
Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
We enormously value feedback from the community, so please do not be afraid to speak up if you believe you have valuable feedback that can help improve the library - every message, comment, issue, and pull request (PR) is read and considered.
## Overview
You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
the core library.
In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
* 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
* 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
* 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
* 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
* 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
* 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
As said before, **all contributions are valuable to the community**.
In the following, we will explain each contribution a bit more in detail.
For all contributions 4 - 9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
Any question or comment related to the Diffusers library can be asked on the [discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/) or on [Discord](https://discord.gg/G7tWnz98XR). Such questions and comments include (but are not limited to):
- Reports of training or inference experiments in an attempt to share knowledge
- Presentation of personal projects
- Questions to non-official training examples
- Project proposals
- General feedback
- Paper summaries
- Asking for help on personal projects that build on top of the Diffusers library
- General questions
- Ethical questions regarding diffusion models
- ...
Every question that is asked on the forum or on Discord actively encourages the community to publicly
share knowledge and might very well help a beginner in the future who has the same question you're
having. Please do pose any questions you might have.
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
In addition, questions and answers posted in the forum can easily be linked to.
In contrast, *Discord* has a chat-like format that invites fast back-and-forth communication.
While it will most likely take less time for you to get an answer to your question on Discord, your
question won't be visible anymore over time. Also, it's much harder to find information that was posted a while back on Discord. We therefore strongly recommend using the forum for high-quality questions and answers in an attempt to create long-lasting knowledge for the community. If discussions on Discord lead to very interesting answers and conclusions, we recommend posting the results on the forum to make the information more available for future readers.
### 2. Opening new issues on the GitHub issues tab
The 🧨 Diffusers library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
Remember, GitHub issues are reserved for technical questions directly related to the Diffusers library, bug reports, feature requests, or feedback on the library design.
In a nutshell, this means that everything that is **not** related to the **code of the Diffusers library** (including the documentation) should **not** be asked on GitHub, but rather on either the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
**Please consider the following guidelines when opening a new issue**:
- Make sure you have searched whether your issue has already been asked before (use the search bar on GitHub under Issues).
- Please never report a new issue on another (related) issue. If another issue is highly related, please
open a new issue nevertheless and link to the related issue.
- Make sure your issue is written in English. Please use one of the great, free online translation services, such as [DeepL](https://www.deepl.com/translator) to translate from your native language to English if you are not comfortable in English.
- Check whether your issue might be solved by updating to the newest Diffusers version. Before posting your issue, please make sure that `python -c "import diffusers; print(diffusers.__version__)"` is higher or matches the latest Diffusers version.
- Remember that the more effort you put into opening a new issue, the higher the quality of your answer will be and the better the overall quality of the Diffusers issues.
New issues usually include the following.
#### 2.1. Reproducible, minimal bug reports
A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
This means in more detail:
- Narrow the bug down as much as you can, **do not just dump your whole code file**.
- Format your code.
- Do not include any external libraries except for Diffusers depending on them.
- **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
- **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
- If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
#### 2.2. Feature requests
A world-class feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
#### 2.3 Feedback
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
#### 2.4 Technical questions
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide details on
why this part of the code is difficult to understand.
You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
#### 2.5 Proposal to add a new model, scheduler, or pipeline
If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
* Short description of the diffusion pipeline, model, or scheduler and link to the paper or public release.
* Link to any of its open-source implementation(s).
* Link to the model weights if they are available.
If you are willing to contribute to the model yourself, let us know so we can best guide you. Also, don't forget
to tag the original author of the component (model, scheduler, pipeline, etc.) by GitHub handle if you can find it.
You can open a request for a model/pipeline/scheduler [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml).
### 3. Answering issues on the GitHub issues tab
Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
Some tips to give a high-quality answer to an issue:
- Be as concise and minimal as possible.
- Stay on topic. An answer to the issue should concern the issue and only the issue.
- Provide links to code, papers, or other sources that prove or encourage your point.
- Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
help to the maintainers if you can answer such issues, encouraging the author of the issue to be
more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
If you have verified that the issued bug report is correct and requires a correction in the source code,
please have a look at the next sections.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
### 4. Fixing a "Good first issue"
*Good first issues* are marked by the [Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) label. Usually, the issue already
explains how a potential solution should look so that it is easier to fix.
If the issue hasn't been closed and you would like to try to fix this issue, you can just leave a message "I would like to try this issue.". There are usually three scenarios:
- a.) The issue description already proposes a fix. In this case and if the solution makes sense to you, you can open a PR or draft PR to fix it.
- b.) The issue description does not propose a fix. In this case, you can ask what a proposed fix could look like and someone from the Diffusers team should answer shortly. If you have a good idea of how to fix it, feel free to directly open a PR.
- c.) There is already an open PR to fix the issue, but the issue hasn't been closed yet. If the PR has gone stale, you can simply open a new PR and link to the stale PR. PRs often go stale if the original contributor who wanted to fix the issue suddenly cannot find the time anymore to proceed. This often happens in open-source and is very normal. In this case, the community will be very happy if you give it a new try and leverage the knowledge of the existing PR. If there is already a PR and it is active, you can help the author by giving suggestions, reviewing the PR or even asking whether you can contribute to the PR.
### 5. Contribute to the documentation
A good library **always** has good documentation! The official documentation is often one of the first points of contact for new users of the library, and therefore contributing to the documentation is a **highly
valuable contribution**.
Contributing to the library can have many forms:
- Correcting spelling or grammatical errors.
- Correct incorrect formatting of the docstring. If you see that the official documentation is weirdly displayed or a link is broken, we would be very happy if you take some time to correct it.
- Correct the shape or dimensions of a docstring input or output tensor.
- Clarify documentation that is hard to understand or incorrect.
- Update outdated code examples.
- Translating the documentation to another language.
Anything displayed on [the official Diffusers doc page](https://huggingface.co/docs/diffusers/index) is part of the official documentation and can be corrected, adjusted in the respective [documentation source](https://github.com/huggingface/diffusers/tree/main/docs/source).
Please have a look at [this page](https://github.com/huggingface/diffusers/tree/main/docs) on how to verify changes made to the documentation locally.
### 6. Contribute a community pipeline
[Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
We support two types of pipelines:
- Official Pipelines
- Community Pipelines
Both official and community pipelines follow the same design and consist of the same type of components.
Official pipelines are tested and maintained by the core maintainers of Diffusers. Their code
resides in [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
In contrast, community pipelines are contributed and maintained purely by the **community** and are **not** tested.
They reside in [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and while they can be accessed via the [PyPI diffusers package](https://pypi.org/project/diffusers/), their code is not part of the PyPI distribution.
The reason for the distinction is that the core maintainers of the Diffusers library cannot maintain and test all
possible ways diffusion models can be used for inference, but some of them may be of interest to the community.
Officially released diffusion pipelines,
such as Stable Diffusion are added to the core src/diffusers/pipelines package which ensures
high quality of maintenance, no backward-breaking code changes, and testing.
More bleeding edge pipelines should be added as community pipelines. If usage for a community pipeline is high, the pipeline can be moved to the official pipelines upon request from the community. This is one of the ways we strive to be a community-driven library.
To add a community pipeline, one should add a <name-of-the-community>.py file to [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and adapt the [examples/community/README.md](https://github.com/huggingface/diffusers/tree/main/examples/community/README.md) to include an example of the new pipeline.
An example can be seen [here](https://github.com/huggingface/diffusers/pull/2400).
Community pipeline PRs are only checked at a superficial level and ideally they should be maintained by their original authors.
Contributing a community pipeline is a great way to understand how Diffusers models and schedulers work. Having contributed a community pipeline is usually the first stepping stone to contributing an official pipeline to the
core package.
### 7. Contribute to training examples
Diffusers examples are a collection of training scripts that reside in [examples](https://github.com/huggingface/diffusers/tree/main/examples).
We support two types of training examples:
- Official training examples
- Research training examples
Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
Both official training and research examples consist of a directory that contains one or more training scripts, a requirements.txt file, and a README.md file. In order for the user to make use of the
training examples, it is required to clone the repository:
```bash
git clone https://github.com/huggingface/diffusers
```
as well as to install all additional dependencies required for training:
```bash
pip install -r /examples/<your-example-folder>/requirements.txt
```
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
Training examples of the Diffusers library should adhere to the following philosophy:
- All the code necessary to run the examples should be found in a single Python file.
- One should be able to run the example from the command line with `python <your-example>.py --args`.
- Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
We strongly advise contributors to make use of the [Accelerate library](https://github.com/huggingface/accelerate) as it's tightly integrated
with Diffusers.
Once an example script works, please make sure to add a comprehensive `README.md` that states how to use the example exactly. This README should include:
- An example command on how to run the example script as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch).
- A link to some training results (logs, models, etc.) that show what the user can expect as shown [here](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
- If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
### 8. Fixing a "Good second issue"
*Good second issues* are marked by the [Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) label. Good second issues are
usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
The issue description usually gives less guidance on how to fix the issue and requires
a decent understanding of the library by the interested contributor.
If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
### 9. Adding pipelines, models, schedulers
Pipelines, models, and schedulers are the most important pieces of the Diffusers library.
They provide easy access to state-of-the-art diffusion technologies and thus allow the community to
build powerful generative AI applications.
By adding a new model, pipeline, or scheduler you might enable a new powerful use case for any of the user interfaces relying on Diffusers which can be of immense value for the whole generative AI ecosystem.
Diffusers has a couple of open feature requests for all three components - feel free to gloss over them
if you don't know yet what specific component you would like to add:
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
- [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](philosophy) a read to better understand the design of any of the three components. Please be aware that we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
Please make sure to add links to the original codebase/paper to the PR and ideally also ping the original author directly on the PR so that they can follow the progress and potentially help with questions.
If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
#### Copied from mechanism
A unique and important feature to understand when adding any pipeline, model or scheduler code is the `# Copied from` mechanism. You'll see this all over the Diffusers codebase, and the reason we use it is to keep the codebase easy to understand and maintain. Marking code with the `# Copied from` mechanism forces the marked code to be identical to the code it was copied from. This makes it easy to update and propagate changes across many files whenever you run `make fix-copies`.
For example, in the code example below, [`~diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is the original code and `AltDiffusionPipelineOutput` uses the `# Copied from` mechanism to copy it. The only difference is changing the class prefix from `Stable` to `Alt`.
```py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_output.StableDiffusionPipelineOutput with Stable->Alt
class AltDiffusionPipelineOutput(BaseOutput):
"""
Output class for Alt Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
`None` if safety checking could not be performed.
"""
```
To learn more, read this section of the [~Don't~ Repeat Yourself*](https://huggingface.co/blog/transformers-design-philosophy#4-machine-learning-models-are-static) blog post.
## How to write a good issue
**The better your issue is written, the higher the chances that it will be quickly resolved.**
1. Make sure that you've used the correct template for your issue. You can pick between *Bug Report*, *Feature Request*, *Feedback about API Design*, *New model/pipeline/scheduler addition*, *Forum*, or a blank issue. Make sure to pick the correct one when opening [a new issue](https://github.com/huggingface/diffusers/issues/new/choose).
2. **Be precise**: Give your issue a fitting title. Try to formulate your issue description as simple as possible. The more precise you are when submitting an issue, the less time it takes to understand the issue and potentially solve it. Make sure to open an issue for one issue only and not for multiple issues. If you found multiple issues, simply open multiple issues. If your issue is a bug, try to be as precise as possible about what bug it is - you should not just write "Error in diffusers".
3. **Reproducibility**: No reproducible code snippet == no solution. If you encounter a bug, maintainers **have to be able to reproduce** it. Make sure that you include a code snippet that can be copy-pasted into a Python interpreter to reproduce the issue. Make sure that your code snippet works, *i.e.* that there are no missing imports or missing links to images, ... Your issue should contain an error message **and** a code snippet that can be copy-pasted without any changes to reproduce the exact same error message. If your issue is using local model weights or local data that cannot be accessed by the reader, the issue cannot be solved. If you cannot share your data or model, try to make a dummy model or dummy data.
4. **Minimalistic**: Try to help the reader as much as you can to understand the issue as quickly as possible by staying as concise as possible. Remove all code / all information that is irrelevant to the issue. If you have found a bug, try to create the easiest code example you can to demonstrate your issue, do not just dump your whole workflow into the issue as soon as you have found a bug. E.g., if you train a model and get an error at some point during the training, you should first try to understand what part of the training code is responsible for the error and try to reproduce it with a couple of lines. Try to use dummy data instead of full datasets.
5. Add links. If you are referring to a certain naming, method, or model make sure to provide a link so that the reader can better understand what you mean. If you are referring to a specific PR or issue, make sure to link it to your issue. Do not assume that the reader knows what you are talking about. The more links you add to your issue the better.
6. Formatting. Make sure to nicely format your issue by formatting code into Python code syntax, and error messages into normal code syntax. See the [official GitHub formatting docs](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for more information.
7. Think of your issue not as a ticket to be solved, but rather as a beautiful entry to a well-written encyclopedia. Every added issue is a contribution to publicly available knowledge. By adding a nicely written issue you not only make it easier for maintainers to solve your issue, but you are helping the whole community to better understand a certain aspect of the library.
## How to write a good PR
1. Be a chameleon. Understand existing design patterns and syntax and make sure your code additions flow seamlessly into the existing code base. Pull requests that significantly diverge from existing design patterns or user interfaces will not be merged.
2. Be laser focused. A pull request should solve one problem and one problem only. Make sure to not fall into the trap of "also fixing another problem while we're adding it". It is much more difficult to review pull requests that solve multiple, unrelated problems at once.
3. If helpful, try to add a code snippet that displays an example of how your addition can be used.
4. The title of your pull request should be a summary of its contribution.
5. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
6. To indicate a work in progress please prefix the title with `[WIP]`. These
are useful to avoid duplicated work, and to differentiate it from PRs ready
to be merged;
7. Try to formulate and format your text as explained in [How to write a good issue](#how-to-write-a-good-issue).
8. Make sure existing tests pass;
9. Add high-coverage tests. No quality testing = no merge.
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
CircleCI does not run the slow tests, but GitHub Actions does every night!
10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
[`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
## How to open a PR
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🧨 Diffusers. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/main/setup.py#L244)):
1. Fork the [repository](https://github.com/huggingface/diffusers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone [email protected]:<your GitHub handle>/diffusers.git
$ cd diffusers
$ git remote add upstream https://github.com/huggingface/diffusers.git
```
3. Create a new branch to hold your development changes:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a virtual environment:
```bash
$ pip install -e ".[dev]"
```
If you have already cloned the repo, you might need to `git pull` to get the most recent changes in the
library.
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
with this command:
```bash
$ pip install -e ".[test]"
```
You can also run the full test suite with the following command, but it takes
a beefy machine to produce a result in a decent amount of time now that
Diffusers has grown a lot. Here is the command for it:
```bash
$ make test
```
🧨 Diffusers relies on `black` and `isort` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
```bash
$ make style
```
🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however, you can also run the same checks with:
```bash
$ make quality
```
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit -m "A descriptive message about your changes."
```
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
$ git pull upstream main
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied, go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's OK if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/diffusers/tree/main/tests).
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
In fact, that's how `make test` is implemented!
You can specify a smaller set of tests in order to test only the feature
you're working on.
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models — make sure you
have enough disk space and a good Internet connection, or a lot of patience!
```bash
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
`unittest` is fully supported, here's how to run tests with it:
```bash
$ python -m unittest discover -s tests -t . -v
$ python -m unittest discover -s examples -t examples -v
```
### Syncing forked main with upstream (HuggingFace) main
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```bash
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
$ git push --set-upstream origin your-branch-for-syncing
```
### Style guide
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).
| diffusers/docs/source/en/conceptual/contribution.md/0 | {
"file_path": "diffusers/docs/source/en/conceptual/contribution.md",
"repo_id": "diffusers",
"token_count": 10386
} | 84 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
Generating high-quality outputs is computationally intensive, especially during each iterative step where you go from a noisy output to a less noisy output. One of 🤗 Diffuser's goals is to make this technology widely accessible to everyone, which includes enabling fast inference on consumer and specialized hardware.
This section will cover tips and tricks - like half-precision weights and sliced attention - for optimizing inference speed and reducing memory-consumption. You'll also learn how to speed up your PyTorch code with [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) or [ONNX Runtime](https://onnxruntime.ai/docs/), and enable memory-efficient attention with [xFormers](https://facebookresearch.github.io/xformers/). There are also guides for running inference on specific hardware like Apple Silicon, and Intel or Habana processors.
| diffusers/docs/source/en/optimization/opt_overview.md/0 | {
"file_path": "diffusers/docs/source/en/optimization/opt_overview.md",
"repo_id": "diffusers",
"token_count": 354
} | 85 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# LoRA
<Tip warning={true}>
This is experimental and the API may change in the future.
</Tip>
[LoRA (Low-Rank Adaptation of Large Language Models)](https://hf.co/papers/2106.09685) is a popular and lightweight training technique that significantly reduces the number of trainable parameters. It works by inserting a smaller number of new weights into the model and only these are trained. This makes training with LoRA much faster, memory-efficient, and produces smaller model weights (a few hundred MBs), which are easier to store and share. LoRA can also be combined with other training techniques like DreamBooth to speedup training.
<Tip>
LoRA is very versatile and supported for [DreamBooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py), [Kandinsky 2.2](https://github.com/huggingface/diffusers/blob/main/examples/kandinsky2_2/text_to_image/train_text_to_image_lora_decoder.py), [Stable Diffusion XL](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora_sdxl.py), [text-to-image](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py), and [Wuerstchen](https://github.com/huggingface/diffusers/blob/main/examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py).
</Tip>
This guide will explore the [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) script to help you become more familiar with it, and how you can adapt it for your own use-case.
Before running the script, make sure you install the library from source:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```
Navigate to the example folder with the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/text_to_image
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/text_to_image
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
</Tip>
Initialize an 🤗 Accelerate environment:
```bash
accelerate config
```
To setup a default 🤗 Accelerate environment without choosing any configurations:
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell, like a notebook, you can use:
```bash
from accelerate.utils import write_basic_config
write_basic_config()
```
Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script.
<Tip>
The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/text_to_image_lora.py) and let us know if you have any questions or concerns.
</Tip>
## Script parameters
The training script has many parameters to help you customize your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/dd9a5caf61f04d11c0fa9f3947b69ab0010c9a0f/examples/text_to_image/train_text_to_image_lora.py#L85) function. Default values are provided for most parameters that work pretty well, but you can also set your own values in the training command if you'd like.
For example, to increase the number of epochs to train:
```bash
accelerate launch train_text_to_image_lora.py \
--num_train_epochs=150 \
```
Many of the basic and important parameters are described in the [Text-to-image](text2image#script-parameters) training guide, so this guide just focuses on the LoRA relevant parameters:
- `--rank`: the inner dimension of the low-rank matrices to train; a higher rank means more trainable parameters
- `--learning_rate`: the default learning rate is 1e-4, but with LoRA, you can use a higher learning rate
## Training script
The dataset preprocessing code and training loop are found in the [`main()`](https://github.com/huggingface/diffusers/blob/dd9a5caf61f04d11c0fa9f3947b69ab0010c9a0f/examples/text_to_image/train_text_to_image_lora.py#L371) function, and if you need to adapt the training script, this is where you'll make your changes.
As with the script parameters, a walkthrough of the training script is provided in the [Text-to-image](text2image#training-script) training guide. Instead, this guide takes a look at the LoRA relevant parts of the script.
The script begins by adding the [new LoRA weights](https://github.com/huggingface/diffusers/blob/dd9a5caf61f04d11c0fa9f3947b69ab0010c9a0f/examples/text_to_image/train_text_to_image_lora.py#L447) to the attention layers. This involves correctly configuring the weight size for each block in the UNet. You'll see the `rank` parameter is used to create the [`~models.attention_processor.LoRAAttnProcessor`]:
```py
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
rank=args.rank,
)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
```
The [optimizer](https://github.com/huggingface/diffusers/blob/dd9a5caf61f04d11c0fa9f3947b69ab0010c9a0f/examples/text_to_image/train_text_to_image_lora.py#L519) is initialized with the `lora_layers` because these are the only weights that'll be optimized:
```py
optimizer = optimizer_cls(
lora_layers.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
```
Aside from setting up the LoRA layers, the training script is more or less the same as train_text_to_image.py!
## Launch the script
Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! 🚀
Let's train on the [Pokémon BLIP captions](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) dataset to generate our yown Pokémon. Set the environment variables `MODEL_NAME` and `DATASET_NAME` to the model and dataset respectively. You should also specify where to save the model in `OUTPUT_DIR`, and the name of the model to save to on the Hub with `HUB_MODEL_ID`. The script creates and saves the following files to your repository:
- saved model checkpoints
- `pytorch_lora_weights.safetensors` (the trained LoRA weights)
If you're training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command.
<Tip warning={true}>
A full training run takes ~5 hours on a 2080 Ti GPU with 11GB of VRAM.
</Tip>
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export OUTPUT_DIR="/sddata/finetune/lora/pokemon"
export HUB_MODEL_ID="pokemon-lora"
export DATASET_NAME="lambdalabs/pokemon-blip-captions"
accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--dataloader_num_workers=8 \
--resolution=512 \
--center_crop \
--random_flip \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=15000 \
--learning_rate=1e-04 \
--max_grad_norm=1 \
--lr_scheduler="cosine" \
--lr_warmup_steps=0 \
--output_dir=${OUTPUT_DIR} \
--push_to_hub \
--hub_model_id=${HUB_MODEL_ID} \
--report_to=wandb \
--checkpointing_steps=500 \
--validation_prompt="A pokemon with blue eyes." \
--seed=1337
```
Once training has been completed, you can use your model for inference:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights("path/to/lora/model", weight_name="pytorch_lora_weights.safetensors")
image = pipeline("A pokemon with blue eyes").images[0]
```
## Next steps
Congratulations on training a new model with LoRA! To learn more about how to use your new model, the following guides may be helpful:
- Learn how to [load different LoRA formats](../using-diffusers/loading_adapters#LoRA) trained using community trainers like Kohya and TheLastBen.
- Learn how to use and [combine multiple LoRA's](../tutorials/using_peft_for_inference) with PEFT for inference.
| diffusers/docs/source/en/training/lora.md/0 | {
"file_path": "diffusers/docs/source/en/training/lora.md",
"repo_id": "diffusers",
"token_count": 3289
} | 86 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Control image brightness
The Stable Diffusion pipeline is mediocre at generating images that are either very bright or dark as explained in the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) paper. The solutions proposed in the paper are currently implemented in the [`DDIMScheduler`] which you can use to improve the lighting in your images.
<Tip>
💡 Take a look at the paper linked above for more details about the proposed solutions!
</Tip>
One of the solutions is to train a model with *v prediction* and *v loss*. Add the following flag to the [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts to enable `v_prediction`:
```bash
--prediction_type="v_prediction"
```
For example, let's use the [`ptx0/pseudo-journey-v2`](https://huggingface.co/ptx0/pseudo-journey-v2) checkpoint which has been finetuned with `v_prediction`.
Next, configure the following parameters in the [`DDIMScheduler`]:
1. `rescale_betas_zero_snr=True`, rescales the noise schedule to zero terminal signal-to-noise ratio (SNR)
2. `timestep_spacing="trailing"`, starts sampling from the last timestep
```py
from diffusers import DiffusionPipeline, DDIMScheduler
pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
# switch the scheduler in the pipeline to use the DDIMScheduler
pipeline.scheduler = DDIMScheduler.from_config(
pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing"
)
pipeline.to("cuda")
```
Finally, in your call to the pipeline, set `guidance_rescale` to prevent overexposure:
```py
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
image = pipeline(prompt, guidance_rescale=0.7).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/zero_snr.png"/>
</div>
| diffusers/docs/source/en/using-diffusers/control_brightness.md/0 | {
"file_path": "diffusers/docs/source/en/using-diffusers/control_brightness.md",
"repo_id": "diffusers",
"token_count": 875
} | 87 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Overview
🧨 Diffusers offers many pipelines, models, and schedulers for generative tasks. To make loading these components as simple as possible, we provide a single and unified method - `from_pretrained()` - that loads any of these components from either the Hugging Face [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) or your local machine. Whenever you load a pipeline or model, the latest files are automatically downloaded and cached so you can quickly reuse them next time without redownloading the files.
This section will show you everything you need to know about loading pipelines, how to load different components in a pipeline, how to load checkpoint variants, and how to load community pipelines. You'll also learn how to load schedulers and compare the speed and quality trade-offs of using different schedulers. Finally, you'll see how to convert and load KerasCV checkpoints so you can use them in PyTorch with 🧨 Diffusers.
| diffusers/docs/source/en/using-diffusers/loading_overview.md/0 | {
"file_path": "diffusers/docs/source/en/using-diffusers/loading_overview.md",
"repo_id": "diffusers",
"token_count": 360
} | 88 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Prompt weighting
[[open-in-colab]]
Prompt weighting provides a way to emphasize or de-emphasize certain parts of a prompt, allowing for more control over the generated image. A prompt can include several concepts, which gets turned into contextualized text embeddings. The embeddings are used by the model to condition its cross-attention layers to generate an image (read the Stable Diffusion [blog post](https://huggingface.co/blog/stable_diffusion) to learn more about how it works).
Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt-weighted embeddings is to use [Compel](https://github.com/damian0815/compel), a text prompt-weighting and blending library. Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [`prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [`negative_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
<Tip>
If your favorite pipeline doesn't have a `prompt_embeds` parameter, please open an [issue](https://github.com/huggingface/diffusers/issues/new/choose) so we can add it!
</Tip>
This guide will show you how to weight and blend your prompts with Compel in 🤗 Diffusers.
Before you begin, make sure you have the latest version of Compel installed:
```py
# uncomment to install in Colab
#!pip install compel --upgrade
```
For this guide, let's generate an image with the prompt `"a red cat playing with a ball"` using the [`StableDiffusionPipeline`]:
```py
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
import torch
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_safetensors=True)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
prompt = "a red cat playing with a ball"
generator = torch.Generator(device="cpu").manual_seed(33)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_0.png"/>
</div>
## Weighting
You'll notice there is no "ball" in the image! Let's use compel to upweight the concept of "ball" in the prompt. Create a [`Compel`](https://github.com/damian0815/compel/blob/main/doc/compel.md#compel-objects) object, and pass it a tokenizer and text encoder:
```py
from compel import Compel
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
```
compel uses `+` or `-` to increase or decrease the weight of a word in the prompt. To increase the weight of "ball":
<Tip>
`+` corresponds to the value `1.1`, `++` corresponds to `1.1^2`, and so on. Similarly, `-` corresponds to `0.9` and `--` corresponds to `0.9^2`. Feel free to experiment with adding more `+` or `-` in your prompt!
</Tip>
```py
prompt = "a red cat playing with a ball++"
```
Pass the prompt to `compel_proc` to create the new prompt embeddings which are passed to the pipeline:
```py
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_1.png"/>
</div>
To downweight parts of the prompt, use the `-` suffix:
```py
prompt = "a red------- cat playing with a ball"
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"/>
</div>
You can even up or downweight multiple concepts in the same prompt:
```py
prompt = "a red cat++ playing with a ball----"
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-pos-neg.png"/>
</div>
## Blending
You can also create a weighted *blend* of prompts by adding `.blend()` to a list of prompts and passing it some weights. Your blend may not always produce the result you expect because it breaks some assumptions about how the text encoder functions, so just have fun and experiment with it!
```py
prompt_embeds = compel_proc('("a red cat playing with a ball", "jungle").blend(0.7, 0.8)')
generator = torch.Generator(device="cuda").manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-blend.png"/>
</div>
## Conjunction
A conjunction diffuses each prompt independently and concatenates their results by their weighted sum. Add `.and()` to the end of a list of prompts to create a conjunction:
```py
prompt_embeds = compel_proc('["a red cat", "playing with a", "ball"].and()')
generator = torch.Generator(device="cuda").manual_seed(55)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-conj.png"/>
</div>
## Textual inversion
[Textual inversion](../training/text_inversion) is a technique for learning a specific concept from some images which you can use to generate new images conditioned on that concept.
Create a pipeline and use the [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] function to load the textual inversion embeddings (feel free to browse the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer) for 100+ trained concepts):
```py
import torch
from diffusers import StableDiffusionPipeline
from compel import Compel, DiffusersTextualInversionManager
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16,
use_safetensors=True, variant="fp16").to("cuda")
pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
```
Compel provides a `DiffusersTextualInversionManager` class to simplify prompt weighting with textual inversion. Instantiate `DiffusersTextualInversionManager` and pass it to the `Compel` class:
```py
textual_inversion_manager = DiffusersTextualInversionManager(pipe)
compel_proc = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
textual_inversion_manager=textual_inversion_manager)
```
Incorporate the concept to condition a prompt with using the `<concept>` syntax:
```py
prompt_embeds = compel_proc('("A red cat++ playing with a ball <midjourney-style>")')
image = pipe(prompt_embeds=prompt_embeds).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-text-inversion.png"/>
</div>
## DreamBooth
[DreamBooth](../training/dreambooth) is a technique for generating contextualized images of a subject given just a few images of the subject to train on. It is similar to textual inversion, but DreamBooth trains the full model whereas textual inversion only fine-tunes the text embeddings. This means you should use [`~DiffusionPipeline.from_pretrained`] to load the DreamBooth model (feel free to browse the [Stable Diffusion Dreambooth Concepts Library](https://huggingface.co/sd-dreambooth-library) for 100+ trained models):
```py
import torch
from diffusers import DiffusionPipeline, UniPCMultistepScheduler
from compel import Compel
pipe = DiffusionPipeline.from_pretrained("sd-dreambooth-library/dndcoverart-v1", torch_dtype=torch.float16).to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
```
Create a `Compel` class with a tokenizer and text encoder, and pass your prompt to it. Depending on the model you use, you'll need to incorporate the model's unique identifier into your prompt. For example, the `dndcoverart-v1` model uses the identifier `dndcoverart`:
```py
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
prompt_embeds = compel_proc('("magazine cover of a dndcoverart dragon, high quality, intricate details, larry elmore art style").and()')
image = pipe(prompt_embeds=prompt_embeds).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-dreambooth.png"/>
</div>
## Stable Diffusion XL
Stable Diffusion XL (SDXL) has two tokenizers and text encoders so it's usage is a bit different. To address this, you should pass both tokenizers and encoders to the `Compel` class:
```py
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16
).to("cuda")
compel = Compel(
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
```
This time, let's upweight "ball" by a factor of 1.5 for the first prompt, and downweight "ball" by 0.6 for the second prompt. The [`StableDiffusionXLPipeline`] also requires [`pooled_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline.__call__.pooled_prompt_embeds) (and optionally [`negative_pooled_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline.__call__.negative_pooled_prompt_embeds)) so you should pass those to the pipeline along with the conditioning tensors:
```py
# apply weights
prompt = ["a red cat playing with a (ball)1.5", "a red cat playing with a (ball)0.6"]
conditioning, pooled = compel(prompt)
# generate image
generator = [torch.Generator().manual_seed(33) for _ in range(len(prompt))]
images = pipeline(prompt_embeds=conditioning, pooled_prompt_embeds=pooled, generator=generator, num_inference_steps=30).images
make_image_grid(images, rows=1, cols=2)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/sdxl_ball1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a red cat playing with a (ball)1.5"</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/sdxl_ball2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a red cat playing with a (ball)0.6"</figcaption>
</div>
</div>
| diffusers/docs/source/en/using-diffusers/weighted_prompts.md/0 | {
"file_path": "diffusers/docs/source/en/using-diffusers/weighted_prompts.md",
"repo_id": "diffusers",
"token_count": 4106
} | 89 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Habana Gaudi에서 Stable Diffusion을 사용하는 방법
🤗 Diffusers는 🤗 [Optimum Habana](https://huggingface.co/docs/optimum/habana/usage_guides/stable_diffusion)를 통해서 Habana Gaudi와 호환됩니다.
## 요구 사항
- Optimum Habana 1.4 또는 이후, [여기](https://huggingface.co/docs/optimum/habana/installation)에 설치하는 방법이 있습니다.
- SynapseAI 1.8.
## 추론 파이프라인
Gaudi에서 Stable Diffusion 1 및 2로 이미지를 생성하려면 두 인스턴스를 인스턴스화해야 합니다:
- [`GaudiStableDiffusionPipeline`](https://huggingface.co/docs/optimum/habana/package_reference/stable_diffusion_pipeline)이 포함된 파이프라인. 이 파이프라인은 *텍스트-이미지 생성*을 지원합니다.
- [`GaudiDDIMScheduler`](https://huggingface.co/docs/optimum/habana/package_reference/stable_diffusion_pipeline#optimum.habana.diffusers.GaudiDDIMScheduler)이 포함된 스케줄러. 이 스케줄러는 Habana Gaudi에 최적화되어 있습니다.
파이프라인을 초기화할 때, HPU에 배포하기 위해 `use_habana=True`를 지정해야 합니다.
또한 가능한 가장 빠른 생성을 위해 `use_hpu_graphs=True`로 **HPU 그래프**를 활성화해야 합니다.
마지막으로, [Hugging Face Hub](https://huggingface.co/Habana)에서 다운로드할 수 있는 [Gaudi configuration](https://huggingface.co/docs/optimum/habana/package_reference/gaudi_config)을 지정해야 합니다.
```python
from optimum.habana import GaudiConfig
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionPipeline
model_name = "stabilityai/stable-diffusion-2-base"
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler")
pipeline = GaudiStableDiffusionPipeline.from_pretrained(
model_name,
scheduler=scheduler,
use_habana=True,
use_hpu_graphs=True,
gaudi_config="Habana/stable-diffusion",
)
```
파이프라인을 호출하여 하나 이상의 프롬프트에서 배치별로 이미지를 생성할 수 있습니다.
```python
outputs = pipeline(
prompt=[
"High quality photo of an astronaut riding a horse in space",
"Face of a yellow cat, high resolution, sitting on a park bench",
],
num_images_per_prompt=10,
batch_size=4,
)
```
더 많은 정보를 얻기 위해, Optimum Habana의 [문서](https://huggingface.co/docs/optimum/habana/usage_guides/stable_diffusion)와 공식 Github 저장소에 제공된 [예시](https://github.com/huggingface/optimum-habana/tree/main/examples/stable-diffusion)를 확인하세요.
## 벤치마크
다음은 [Habana/stable-diffusion](https://huggingface.co/Habana/stable-diffusion) Gaudi 구성(혼합 정밀도 bf16/fp32)을 사용하는 Habana first-generation Gaudi 및 Gaudi2의 지연 시간입니다:
| | Latency (배치 크기 = 1) | Throughput (배치 크기 = 8) |
| ---------------------- |:------------------------:|:---------------------------:|
| first-generation Gaudi | 4.29s | 0.283 images/s |
| Gaudi2 | 1.54s | 0.904 images/s |
| diffusers/docs/source/ko/optimization/habana.md/0 | {
"file_path": "diffusers/docs/source/ko/optimization/habana.md",
"repo_id": "diffusers",
"token_count": 1912
} | 90 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# InstructPix2Pix
[InstructPix2Pix](https://arxiv.org/abs/2211.09800)는 text-conditioned diffusion 모델이 한 이미지에 편집을 따를 수 있도록 파인튜닝하는 방법입니다. 이 방법을 사용하여 파인튜닝된 모델은 다음을 입력으로 사용합니다:
<p align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-instruction.png" alt="instructpix2pix-inputs" width=600/>
</p>
출력은 입력 이미지에 편집 지시가 반영된 "수정된" 이미지입니다:
<p align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/output-gs%407-igs%401-steps%4050.png" alt="instructpix2pix-output" width=600/>
</p>
`train_instruct_pix2pix.py` 스크립트([여기](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py)에서 찾을 수 있습니다.)는 학습 절차를 설명하고 Stable Diffusion에 적용할 수 있는 방법을 보여줍니다.
*** `train_instruct_pix2pix.py`는 [원래 구현](https://github.com/timothybrooks/instruct-pix2pix)에 충실하면서 InstructPix2Pix 학습 절차를 구현하고 있지만, [소규모 데이터셋](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples)에서만 테스트를 했습니다. 이는 최종 결과에 영향을 끼칠 수 있습니다. 더 나은 결과를 위해, 더 큰 데이터셋에서 더 길게 학습하는 것을 권장합니다. [여기](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered)에서 InstructPix2Pix 학습을 위해 큰 데이터셋을 찾을 수 있습니다.
***
## PyTorch로 로컬에서 실행하기
### 종속성(dependencies) 설치하기
이 스크립트를 실행하기 전에, 라이브러리의 학습 종속성을 설치하세요:
**중요**
최신 버전의 예제 스크립트를 성공적으로 실행하기 위해, **원본으로부터 설치**하는 것과 예제 스크립트를 자주 업데이트하고 예제별 요구사항을 설치하기 때문에 최신 상태로 유지하는 것을 권장합니다. 이를 위해, 새로운 가상 환경에서 다음 스텝을 실행하세요:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
cd 명령어로 예제 폴더로 이동하세요.
```bash
cd examples/instruct_pix2pix
```
이제 실행하세요.
```bash
pip install -r requirements.txt
```
그리고 [🤗Accelerate](https://github.com/huggingface/accelerate/) 환경에서 초기화하세요:
```bash
accelerate config
```
혹은 환경에 대한 질문 없이 기본적인 accelerate 구성을 사용하려면 다음을 실행하세요.
```bash
accelerate config default
```
혹은 사용 중인 환경이 notebook과 같은 대화형 쉘은 지원하지 않는 경우는 다음 절차를 따라주세요.
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
### 예시
이전에 언급했듯이, 학습을 위해 [작은 데이터셋](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples)을 사용할 것입니다. 그 데이터셋은 InstructPix2Pix 논문에서 사용된 [원래의 데이터셋](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered)보다 작은 버전입니다. 자신의 데이터셋을 사용하기 위해, [학습을 위한 데이터셋 만들기](create_dataset) 가이드를 참고하세요.
`MODEL_NAME` 환경 변수(허브 모델 레포지토리 또는 모델 가중치가 포함된 폴더 경로)를 지정하고 [`pretrained_model_name_or_path`](https://huggingface.co/docs/diffusers/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained.pretrained_model_name_or_path) 인수에 전달합니다. `DATASET_ID`에 데이터셋 이름을 지정해야 합니다:
```bash
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
export DATASET_ID="fusing/instructpix2pix-1000-samples"
```
지금, 학습을 실행할 수 있습니다. 스크립트는 레포지토리의 하위 폴더의 모든 구성요소(`feature_extractor`, `scheduler`, `text_encoder`, `unet` 등)를 저장합니다.
```bash
accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_ID \
--enable_xformers_memory_efficient_attention \
--resolution=256 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--mixed_precision=fp16 \
--seed=42 \
--push_to_hub
```
추가적으로, 가중치와 바이어스를 학습 과정에 모니터링하여 검증 추론을 수행하는 것을 지원합니다. `report_to="wandb"`와 이 기능을 사용할 수 있습니다:
```bash
accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_ID \
--enable_xformers_memory_efficient_attention \
--resolution=256 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--mixed_precision=fp16 \
--val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \
--validation_prompt="make the mountains snowy" \
--seed=42 \
--report_to=wandb \
--push_to_hub
```
모델 디버깅에 유용한 이 평가 방법 권장합니다. 이를 사용하기 위해 `wandb`를 설치하는 것을 주목해주세요. `pip install wandb`로 실행해 `wandb`를 설치할 수 있습니다.
[여기](https://wandb.ai/sayakpaul/instruct-pix2pix/runs/ctr3kovq), 몇 가지 평가 방법과 학습 파라미터를 포함하는 예시를 볼 수 있습니다.
***참고: 원본 논문에서, 저자들은 256x256 이미지 해상도로 학습한 모델로 512x512와 같은 더 큰 해상도로 잘 일반화되는 것을 볼 수 있었습니다. 이는 학습에 사용한 큰 데이터셋을 사용했기 때문입니다.***
## 다수의 GPU로 학습하기
`accelerate`는 원활한 다수의 GPU로 학습을 가능하게 합니다. `accelerate`로 분산 학습을 실행하는 [여기](https://huggingface.co/docs/accelerate/basic_tutorials/launch) 설명을 따라 해 주시기 바랍니다. 예시의 명령어 입니다:
```bash
accelerate launch --mixed_precision="fp16" --multi_gpu train_instruct_pix2pix.py \
--pretrained_model_name_or_path=runwayml/stable-diffusion-v1-5 \
--dataset_name=sayakpaul/instructpix2pix-1000-samples \
--use_ema \
--enable_xformers_memory_efficient_attention \
--resolution=512 --random_flip \
--train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \
--max_train_steps=15000 \
--checkpointing_steps=5000 --checkpoints_total_limit=1 \
--learning_rate=5e-05 --lr_warmup_steps=0 \
--conditioning_dropout_prob=0.05 \
--mixed_precision=fp16 \
--seed=42 \
--push_to_hub
```
## 추론하기
일단 학습이 완료되면, 추론 할 수 있습니다:
```python
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
model_id = "your_model_id" # <- 이를 수정하세요.
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/test_pix2pix_4.png"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "wipe out the lake"
num_inference_steps = 20
image_guidance_scale = 1.5
guidance_scale = 10
edited_image = pipe(
prompt,
image=image,
num_inference_steps=num_inference_steps,
image_guidance_scale=image_guidance_scale,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
edited_image.save("edited_image.png")
```
학습 스크립트를 사용해 얻은 예시의 모델 레포지토리는 여기 [sayakpaul/instruct-pix2pix](https://huggingface.co/sayakpaul/instruct-pix2pix)에서 확인할 수 있습니다.
성능을 위한 속도와 품질을 제어하기 위해 세 가지 파라미터를 사용하는 것이 좋습니다:
* `num_inference_steps`
* `image_guidance_scale`
* `guidance_scale`
특히, `image_guidance_scale`와 `guidance_scale`는 생성된("수정된") 이미지에서 큰 영향을 미칠 수 있습니다.([여기](https://twitter.com/RisingSayak/status/1628392199196151808?s=20)예시를 참고해주세요.)
만약 InstructPix2Pix 학습 방법을 사용해 몇 가지 흥미로운 방법을 찾고 있다면, 이 블로그 게시물[Instruction-tuning Stable Diffusion with InstructPix2Pix](https://huggingface.co/blog/instruction-tuning-sd)을 확인해주세요. | diffusers/docs/source/ko/training/instructpix2pix.md/0 | {
"file_path": "diffusers/docs/source/ko/training/instructpix2pix.md",
"repo_id": "diffusers",
"token_count": 5653
} | 91 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-guided 이미지 인페인팅(inpainting)
[[open-in-colab]]
[`StableDiffusionInpaintPipeline`]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)과 같은 Stable Diffusion 버전을 사용합니다.
먼저 [`StableDiffusionInpaintPipeline`] 인스턴스를 불러옵니다:
```python
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
)
pipeline = pipeline.to("cuda")
```
나중에 교체할 강아지 이미지와 마스크를 다운로드하세요:
```python
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
```
이제 마스크를 다른 것으로 교체하라는 프롬프트를 만들 수 있습니다:
```python
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
`image` | `mask_image` | `prompt` | output |
:-------------------------:|:-------------------------:|:-------------------------:|-------------------------:|
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="250"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="250"/> | ***Face of a yellow cat, high resolution, sitting on a park bench*** | <img src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint/yellow_cat_sitting_on_a_park_bench.png" alt="drawing" width="250"/> |
<Tip warning={true}>
이전의 실험적인 인페인팅 구현에서는 품질이 낮은 다른 프로세스를 사용했습니다. 이전 버전과의 호환성을 보장하기 위해 새 모델이 포함되지 않은 사전학습된 파이프라인을 불러오면 이전 인페인팅 방법이 계속 적용됩니다.
</Tip>
아래 Space에서 이미지 인페인팅을 직접 해보세요!
<iframe
src="https://runwayml-stable-diffusion-inpainting.hf.space"
frameborder="0"
width="850"
height="500"
></iframe>
| diffusers/docs/source/ko/using-diffusers/inpaint.md/0 | {
"file_path": "diffusers/docs/source/ko/using-diffusers/inpaint.md",
"repo_id": "diffusers",
"token_count": 1657
} | 92 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Instalação
🤗 Diffusers é testado no Python 3.8+, PyTorch 1.7.0+, e Flax. Siga as instruções de instalação abaixo para a biblioteca de deep learning que você está utilizando:
- [PyTorch](https://pytorch.org/get-started/locally/) instruções de instalação
- [Flax](https://flax.readthedocs.io/en/latest/) instruções de instalação
## Instalação com pip
Recomenda-se instalar 🤗 Diffusers em um [ambiente virtual](https://docs.python.org/3/library/venv.html).
Se você não está familiarizado com ambiente virtuals, veja o [guia](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Um ambiente virtual deixa mais fácil gerenciar diferentes projetos e evitar problemas de compatibilidade entre dependências.
Comece criando um ambiente virtual no diretório do projeto:
```bash
python -m venv .env
```
Ative o ambiente virtual:
```bash
source .env/bin/activate
```
Recomenda-se a instalação do 🤗 Transformers porque 🤗 Diffusers depende de seus modelos:
<frameworkcontent>
<pt>
```bash
pip install diffusers["torch"] transformers
```
</pt>
<jax>
```bash
pip install diffusers["flax"] transformers
```
</jax>
</frameworkcontent>
## Instalação a partir do código fonte
Antes da instalação do 🤗 Diffusers a partir do código fonte, certifique-se de ter o PyTorch e o 🤗 Accelerate instalados.
Para instalar o 🤗 Accelerate:
```bash
pip install accelerate
```
então instale o 🤗 Diffusers do código fonte:
```bash
pip install git+https://github.com/huggingface/diffusers
```
Esse comando instala a última versão em desenvolvimento `main` em vez da última versão estável `stable`.
A versão `main` é útil para se manter atualizado com os últimos desenvolvimentos.
Por exemplo, se um bug foi corrigido desde o último lançamento estável, mas um novo lançamento ainda não foi lançado.
No entanto, isso significa que a versão `main` pode não ser sempre estável.
Nós nos esforçamos para manter a versão `main` operacional, e a maioria dos problemas geralmente são resolvidos em algumas horas ou um dia.
Se você encontrar um problema, por favor abra uma [Issue](https://github.com/huggingface/diffusers/issues/new/choose), assim conseguimos arrumar o quanto antes!
## Instalação editável
Você precisará de uma instalação editável se você:
- Usar a versão `main` do código fonte.
- Contribuir para o 🤗 Diffusers e precisa testar mudanças no código.
Clone o repositório e instale o 🤗 Diffusers com os seguintes comandos:
```bash
git clone https://github.com/huggingface/diffusers.git
cd diffusers
```
<frameworkcontent>
<pt>
```bash
pip install -e ".[torch]"
```
</pt>
<jax>
```bash
pip install -e ".[flax]"
```
</jax>
</frameworkcontent>
Esses comandos irá linkar a pasta que você clonou o repositório e os caminhos das suas bibliotecas Python.
Python então irá procurar dentro da pasta que você clonou além dos caminhos normais das bibliotecas.
Por exemplo, se o pacote python for tipicamente instalado no `~/anaconda3/envs/main/lib/python3.8/site-packages/`, o Python também irá procurar na pasta `~/diffusers/` que você clonou.
<Tip warning={true}>
Você deve deixar a pasta `diffusers` se você quiser continuar usando a biblioteca.
</Tip>
Agora você pode facilmente atualizar seu clone para a última versão do 🤗 Diffusers com o seguinte comando:
```bash
cd ~/diffusers/
git pull
```
Seu ambiente Python vai encontrar a versão `main` do 🤗 Diffusers na próxima execução.
## Cache
Os pesos e os arquivos dos modelos são baixados do Hub para o cache que geralmente é o seu diretório home. Você pode mudar a localização do cache especificando as variáveis de ambiente `HF_HOME` ou `HUGGINFACE_HUB_CACHE` ou configurando o parâmetro `cache_dir` em métodos como [`~DiffusionPipeline.from_pretrained`].
Aquivos em cache permitem que você rode 🤗 Diffusers offline. Para prevenir que o 🤗 Diffusers se conecte à internet, defina a variável de ambiente `HF_HUB_OFFLINE` para `True` e o 🤗 Diffusers irá apenas carregar arquivos previamente baixados em cache.
```shell
export HF_HUB_OFFLINE=True
```
Para mais detalhes de como gerenciar e limpar o cache, olhe o guia de [caching](https://huggingface.co/docs/huggingface_hub/guides/manage-cache).
## Telemetria
Nossa biblioteca coleta informações de telemetria durante as requisições [`~DiffusionPipeline.from_pretrained`].
O dado coletado inclui a versão do 🤗 Diffusers e PyTorch/Flax, o modelo ou classe de pipeline requisitado,
e o caminho para um checkpoint pré-treinado se ele estiver hospedado no Hugging Face Hub.
Esse dado de uso nos ajuda a debugar problemas e priorizar novas funcionalidades.
Telemetria é enviada apenas quando é carregado modelos e pipelines do Hub,
e não é coletado se você estiver carregando arquivos locais.
Nos entendemos que nem todo mundo quer compartilhar informações adicionais, e nós respeitamos sua privacidade.
Você pode desabilitar a coleta de telemetria definindo a variável de ambiente `DISABLE_TELEMETRY` do seu terminal:
No Linux/MacOS:
```bash
export DISABLE_TELEMETRY=YES
```
No Windows:
```bash
set DISABLE_TELEMETRY=YES
```
| diffusers/docs/source/pt/installation.md/0 | {
"file_path": "diffusers/docs/source/pt/installation.md",
"repo_id": "diffusers",
"token_count": 2102
} | 93 |
import inspect
from typing import List, Optional, Union
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cut_power=1.0):
super().__init__()
self.cut_size = cut_size
self.cut_power = cut_power
def forward(self, pixel_values, num_cutouts):
sideY, sideX = pixel_values.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(num_cutouts):
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
class CLIPGuidedStableDiffusion(DiffusionPipeline):
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
- https://github.com/Jack000/glid-3-xl
- https://github.dev/crowsonkb/k-diffusion
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
clip_model: CLIPModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
clip_model=clip_model,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
self.cut_out_size = (
feature_extractor.size
if isinstance(feature_extractor.size, int)
else feature_extractor.size["shortest_edge"]
)
self.make_cutouts = MakeCutouts(self.cut_out_size)
set_requires_grad(self.text_encoder, False)
set_requires_grad(self.clip_model, False)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
self.enable_attention_slicing(None)
def freeze_vae(self):
set_requires_grad(self.vae, False)
def unfreeze_vae(self):
set_requires_grad(self.vae, True)
def freeze_unet(self):
set_requires_grad(self.unet, False)
def unfreeze_unet(self):
set_requires_grad(self.unet, True)
@torch.enable_grad()
def cond_fn(
self,
latents,
timestep,
index,
text_embeddings,
noise_pred_original,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts=True,
):
latents = latents.detach().requires_grad_()
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
# predict the noise residual
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
fac = torch.sqrt(beta_prod_t)
sample = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[index]
sample = latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
sample = 1 / self.vae.config.scaling_factor * sample
image = self.vae.decode(sample).sample
image = (image / 2 + 0.5).clamp(0, 1)
if use_cutouts:
image = self.make_cutouts(image, num_cutouts)
else:
image = transforms.Resize(self.cut_out_size)(image)
image = self.normalize(image).to(latents.dtype)
image_embeddings_clip = self.clip_model.get_image_features(image)
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
if use_cutouts:
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
dists = dists.view([num_cutouts, sample.shape[0], -1])
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
else:
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
grads = -torch.autograd.grad(loss, latents)[0]
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents.detach() + grads * (sigma**2)
noise_pred = noise_pred_original
else:
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
clip_guidance_scale: Optional[float] = 100,
clip_prompt: Optional[Union[str, List[str]]] = None,
num_cutouts: Optional[int] = 4,
use_cutouts: Optional[bool] = True,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# get prompt text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# duplicate text embeddings for each generation per prompt
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
if clip_guidance_scale > 0:
if clip_prompt is not None:
clip_text_input = self.tokenizer(
clip_prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids.to(self.device)
else:
clip_text_input = text_input.input_ids.to(self.device)
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
# duplicate text embeddings clip for each generation per prompt
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
self.device
)
else:
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
text_embeddings_for_guidance = (
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
noise_pred, latents = self.cond_fn(
latents,
t,
i,
text_embeddings_for_guidance,
noise_pred,
text_embeddings_clip,
clip_guidance_scale,
num_cutouts,
use_cutouts,
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
| diffusers/examples/community/clip_guided_stable_diffusion.py/0 | {
"file_path": "diffusers/examples/community/clip_guided_stable_diffusion.py",
"repo_id": "diffusers",
"token_count": 6643
} | 94 |
# Copyright 2023 Long Lian, the GLIGEN Authors, and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This is a single file implementation of LMD+. See README.md for examples.
import ast
import gc
import inspect
import math
import warnings
from collections.abc import Iterable
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.nn.functional as F
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention import Attention, GatedSelfAttentionDense
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> pipe = DiffusionPipeline.from_pretrained(
... "longlian/lmd_plus",
... custom_pipeline="llm_grounded_diffusion",
... custom_revision="main",
... variant="fp16", torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()
>>> # Generate an image described by the prompt and
>>> # insert objects described by text at the region defined by bounding boxes
>>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
>>> boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
>>> phrases = ["a waterfall", "a modern high speed train"]
>>> images = pipe(
... prompt=prompt,
... phrases=phrases,
... boxes=boxes,
... gligen_scheduled_sampling_beta=0.4,
... output_type="pil",
... num_inference_steps=50,
... lmd_guidance_kwargs={}
... ).images
>>> images[0].save("./lmd_plus_generation.jpg")
>>> # Generate directly from a text prompt and an LLM response
>>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
>>> phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response(\"""
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
Background prompt: A beautiful forest with fall foliage
Negative prompt:
\""")
>> images = pipe(
... prompt=prompt,
... negative_prompt=neg_prompt,
... phrases=phrases,
... boxes=boxes,
... gligen_scheduled_sampling_beta=0.4,
... output_type="pil",
... num_inference_steps=50,
... lmd_guidance_kwargs={}
... ).images
>>> images[0].save("./lmd_plus_generation.jpg")
images[0]
```
"""
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# All keys in Stable Diffusion models: [('down', 0, 0, 0), ('down', 0, 1, 0), ('down', 1, 0, 0), ('down', 1, 1, 0), ('down', 2, 0, 0), ('down', 2, 1, 0), ('mid', 0, 0, 0), ('up', 1, 0, 0), ('up', 1, 1, 0), ('up', 1, 2, 0), ('up', 2, 0, 0), ('up', 2, 1, 0), ('up', 2, 2, 0), ('up', 3, 0, 0), ('up', 3, 1, 0), ('up', 3, 2, 0)]
# Note that the first up block is `UpBlock2D` rather than `CrossAttnUpBlock2D` and does not have attention. The last index is always 0 in our case since we have one `BasicTransformerBlock` in each `Transformer2DModel`.
DEFAULT_GUIDANCE_ATTN_KEYS = [
("mid", 0, 0, 0),
("up", 1, 0, 0),
("up", 1, 1, 0),
("up", 1, 2, 0),
]
def convert_attn_keys(key):
"""Convert the attention key from tuple format to the torch state format"""
if key[0] == "mid":
assert key[1] == 0, f"mid block only has one block but the index is {key[1]}"
return f"{key[0]}_block.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor"
return f"{key[0]}_blocks.{key[1]}.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor"
DEFAULT_GUIDANCE_ATTN_KEYS = [convert_attn_keys(key) for key in DEFAULT_GUIDANCE_ATTN_KEYS]
def scale_proportion(obj_box, H, W):
# Separately rounding box_w and box_h to allow shift invariant box sizes. Otherwise box sizes may change when both coordinates being rounded end with ".5".
x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H)
box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H)
x_max, y_max = x_min + box_w, y_min + box_h
x_min, y_min = max(x_min, 0), max(y_min, 0)
x_max, y_max = min(x_max, W), min(y_max, H)
return x_min, y_min, x_max, y_max
# Adapted from the parent class `AttnProcessor2_0`
class AttnProcessorWithHook(AttnProcessor2_0):
def __init__(
self,
attn_processor_key,
hidden_size,
cross_attention_dim,
hook=None,
fast_attn=True,
enabled=True,
):
super().__init__()
self.attn_processor_key = attn_processor_key
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.hook = hook
self.fast_attn = fast_attn
self.enabled = enabled
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale: float = 1.0,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
if (self.hook is not None and self.enabled) or not self.fast_attn:
query_batch_dim = attn.head_to_batch_dim(query)
key_batch_dim = attn.head_to_batch_dim(key)
value_batch_dim = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query_batch_dim, key_batch_dim, attention_mask)
if self.hook is not None and self.enabled:
# Call the hook with query, key, value, and attention maps
self.hook(
self.attn_processor_key,
query_batch_dim,
key_batch_dim,
value_batch_dim,
attention_probs,
)
if self.fast_attn:
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attention_mask is not None:
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
else:
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class LLMGroundedDiffusionPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
r"""
Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://arxiv.org/pdf/2305.13655.pdf.
This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
This is a simplified implementation that does not perform latent or attention transfer from single object generation to overall generation. The final image is generated directly with attention and adapters control.
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
requires_safety_checker (bool):
Whether a safety checker is needed for this pipeline.
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
objects_text = "Objects: "
bg_prompt_text = "Background prompt: "
bg_prompt_text_no_trailing_space = bg_prompt_text.rstrip()
neg_prompt_text = "Negative prompt: "
neg_prompt_text_no_trailing_space = neg_prompt_text.rstrip()
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModelWithProjection = None,
requires_safety_checker: bool = True,
):
# This is copied from StableDiffusionPipeline, with hook initizations for LMD+.
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Initialize the attention hooks for LLM-grounded Diffusion
self.register_attn_hooks(unet)
self._saved_attn = None
def attn_hook(self, name, query, key, value, attention_probs):
if name in DEFAULT_GUIDANCE_ATTN_KEYS:
self._saved_attn[name] = attention_probs
@classmethod
def convert_box(cls, box, height, width):
# box: x, y, w, h (in 512 format) -> x_min, y_min, x_max, y_max
x_min, y_min = box[0] / width, box[1] / height
w_box, h_box = box[2] / width, box[3] / height
x_max, y_max = x_min + w_box, y_min + h_box
return x_min, y_min, x_max, y_max
@classmethod
def _parse_response_with_negative(cls, text):
if not text:
raise ValueError("LLM response is empty")
if cls.objects_text in text:
text = text.split(cls.objects_text)[1]
text_split = text.split(cls.bg_prompt_text_no_trailing_space)
if len(text_split) == 2:
gen_boxes, text_rem = text_split
else:
raise ValueError(f"LLM response is incomplete: {text}")
text_split = text_rem.split(cls.neg_prompt_text_no_trailing_space)
if len(text_split) == 2:
bg_prompt, neg_prompt = text_split
else:
raise ValueError(f"LLM response is incomplete: {text}")
try:
gen_boxes = ast.literal_eval(gen_boxes)
except SyntaxError as e:
# Sometimes the response is in plain text
if "No objects" in gen_boxes or gen_boxes.strip() == "":
gen_boxes = []
else:
raise e
bg_prompt = bg_prompt.strip()
neg_prompt = neg_prompt.strip()
# LLM may return "None" to mean no negative prompt provided.
if neg_prompt == "None":
neg_prompt = ""
return gen_boxes, bg_prompt, neg_prompt
@classmethod
def parse_llm_response(cls, response, canvas_height=512, canvas_width=512):
# Infer from spec
gen_boxes, bg_prompt, neg_prompt = cls._parse_response_with_negative(text=response)
gen_boxes = sorted(gen_boxes, key=lambda gen_box: gen_box[0])
phrases = [name for name, _ in gen_boxes]
boxes = [cls.convert_box(box, height=canvas_height, width=canvas_width) for _, box in gen_boxes]
return phrases, boxes, bg_prompt, neg_prompt
def check_inputs(
self,
prompt,
height,
width,
callback_steps,
phrases,
boxes,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
phrase_indices=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt is None and phrase_indices is None:
raise ValueError("If the prompt is None, the phrase_indices cannot be None")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if len(phrases) != len(boxes):
ValueError(
"length of `phrases` and `boxes` has to be same, but"
f" got: `phrases` {len(phrases)} != `boxes` {len(boxes)}"
)
def register_attn_hooks(self, unet):
"""Registering hooks to obtain the attention maps for guidance"""
attn_procs = {}
for name in unet.attn_processors.keys():
# Only obtain the queries and keys from cross-attention
if name.endswith("attn1.processor") or name.endswith("fuser.attn.processor"):
# Keep the same attn_processors for self-attention (no hooks for self-attention)
attn_procs[name] = unet.attn_processors[name]
continue
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
attn_procs[name] = AttnProcessorWithHook(
attn_processor_key=name,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
hook=self.attn_hook,
fast_attn=True,
# Not enabled by default
enabled=False,
)
unet.set_attn_processor(attn_procs)
def enable_fuser(self, enabled=True):
for module in self.unet.modules():
if isinstance(module, GatedSelfAttentionDense):
module.enabled = enabled
def enable_attn_hook(self, enabled=True):
for module in self.unet.attn_processors.values():
if isinstance(module, AttnProcessorWithHook):
module.enabled = enabled
def get_token_map(self, prompt, padding="do_not_pad", verbose=False):
"""Get a list of mapping: prompt index to str (prompt in a list of token str)"""
fg_prompt_tokens = self.tokenizer([prompt], padding=padding, max_length=77, return_tensors="np")
input_ids = fg_prompt_tokens["input_ids"][0]
token_map = []
for ind, item in enumerate(input_ids.tolist()):
token = self.tokenizer._convert_id_to_token(item)
if verbose:
logger.info(f"{ind}, {token} ({item})")
token_map.append(token)
return token_map
def get_phrase_indices(
self,
prompt,
phrases,
token_map=None,
add_suffix_if_not_found=False,
verbose=False,
):
for obj in phrases:
# Suffix the prompt with object name for attention guidance if object is not in the prompt, using "|" to separate the prompt and the suffix
if obj not in prompt:
prompt += "| " + obj
if token_map is None:
# We allow using a pre-computed token map.
token_map = self.get_token_map(prompt=prompt, padding="do_not_pad", verbose=verbose)
token_map_str = " ".join(token_map)
phrase_indices = []
for obj in phrases:
phrase_token_map = self.get_token_map(prompt=obj, padding="do_not_pad", verbose=verbose)
# Remove <bos> and <eos> in substr
phrase_token_map = phrase_token_map[1:-1]
phrase_token_map_len = len(phrase_token_map)
phrase_token_map_str = " ".join(phrase_token_map)
if verbose:
logger.info(
"Full str:",
token_map_str,
"Substr:",
phrase_token_map_str,
"Phrase:",
phrases,
)
# Count the number of token before substr
# The substring comes with a trailing space that needs to be removed by minus one in the index.
obj_first_index = len(token_map_str[: token_map_str.index(phrase_token_map_str) - 1].split(" "))
obj_position = list(range(obj_first_index, obj_first_index + phrase_token_map_len))
phrase_indices.append(obj_position)
if add_suffix_if_not_found:
return phrase_indices, prompt
return phrase_indices
def add_ca_loss_per_attn_map_to_loss(
self,
loss,
attn_map,
object_number,
bboxes,
phrase_indices,
fg_top_p=0.2,
bg_top_p=0.2,
fg_weight=1.0,
bg_weight=1.0,
):
# b is the number of heads, not batch
b, i, j = attn_map.shape
H = W = int(math.sqrt(i))
for obj_idx in range(object_number):
obj_loss = 0
mask = torch.zeros(size=(H, W), device="cuda")
obj_boxes = bboxes[obj_idx]
# We support two level (one box per phrase) and three level (multiple boxes per phrase)
if not isinstance(obj_boxes[0], Iterable):
obj_boxes = [obj_boxes]
for obj_box in obj_boxes:
# x_min, y_min, x_max, y_max = int(obj_box[0] * W), int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
x_min, y_min, x_max, y_max = scale_proportion(obj_box, H=H, W=W)
mask[y_min:y_max, x_min:x_max] = 1
for obj_position in phrase_indices[obj_idx]:
# Could potentially optimize to compute this for loop in batch.
# Could crop the ref cross attention before saving to save memory.
ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)
# shape: (b, H * W)
ca_map_obj = attn_map[:, :, obj_position] # .reshape(b, H, W)
k_fg = (mask.sum() * fg_top_p).long().clamp_(min=1)
k_bg = ((1 - mask).sum() * bg_top_p).long().clamp_(min=1)
mask_1d = mask.view(1, -1)
# Max-based loss function
# Take the topk over spatial dimension, and then take the sum over heads dim
# The mean is over k_fg and k_bg dimension, so we don't need to sum and divide on our own.
obj_loss += (1 - (ca_map_obj * mask_1d).topk(k=k_fg).values.mean(dim=1)).sum(dim=0) * fg_weight
obj_loss += ((ca_map_obj * (1 - mask_1d)).topk(k=k_bg).values.mean(dim=1)).sum(dim=0) * bg_weight
loss += obj_loss / len(phrase_indices[obj_idx])
return loss
def compute_ca_loss(
self,
saved_attn,
bboxes,
phrase_indices,
guidance_attn_keys,
verbose=False,
**kwargs,
):
"""
The `saved_attn` is supposed to be passed to `save_attn_to_dict` in `cross_attention_kwargs` prior to computing ths loss.
`AttnProcessor` will put attention maps into the `save_attn_to_dict`.
`index` is the timestep.
`ref_ca_word_token_only`: This has precedence over `ref_ca_last_token_only` (i.e., if both are enabled, we take the token from word rather than the last token).
`ref_ca_last_token_only`: `ref_ca_saved_attn` comes from the attention map of the last token of the phrase in single object generation, so we apply it only to the last token of the phrase in overall generation if this is set to True. If set to False, `ref_ca_saved_attn` will be applied to all the text tokens.
"""
loss = torch.tensor(0).float().cuda()
object_number = len(bboxes)
if object_number == 0:
return loss
for attn_key in guidance_attn_keys:
# We only have 1 cross attention for mid.
attn_map_integrated = saved_attn[attn_key]
if not attn_map_integrated.is_cuda:
attn_map_integrated = attn_map_integrated.cuda()
# Example dimension: [20, 64, 77]
attn_map = attn_map_integrated.squeeze(dim=0)
loss = self.add_ca_loss_per_attn_map_to_loss(
loss, attn_map, object_number, bboxes, phrase_indices, **kwargs
)
num_attn = len(guidance_attn_keys)
if num_attn > 0:
loss = loss / (object_number * num_attn)
return loss
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
gligen_scheduled_sampling_beta: float = 0.3,
phrases: List[str] = None,
boxes: List[List[float]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
lmd_guidance_kwargs: Optional[Dict[str, Any]] = {},
phrase_indices: Optional[List[int]] = None,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
phrases (`List[str]`):
The phrases to guide what to include in each of the regions defined by the corresponding
`boxes`. There should only be one phrase per bounding box.
boxes (`List[List[float]]`):
The bounding boxes that identify rectangular regions of the image that are going to be filled with the
content described by the corresponding `phrases`. Each rectangular box is defined as a
`List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1].
gligen_scheduled_sampling_beta (`float`, defaults to 0.3):
Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image
Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for
scheduled sampling during inference for improved quality and controllability.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
lmd_guidance_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to `latent_lmd_guidance` function. Useful keys include `loss_scale` (the guidance strength), `loss_threshold` (when loss is lower than this value, the guidance is not applied anymore), `max_iter` (the number of iterations of guidance for each step), and `guidance_timesteps` (the number of diffusion timesteps to apply guidance on). See `latent_lmd_guidance` for implementation details.
phrase_indices (`list` of `list`, *optional*): The indices of the tokens of each phrase in the overall prompt. If omitted, the pipeline will match the first token subsequence. The pipeline will append the missing phrases to the end of the prompt by default.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
callback_steps,
phrases,
boxes,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
phrase_indices,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
if phrase_indices is None:
phrase_indices, prompt = self.get_phrase_indices(prompt, phrases, add_suffix_if_not_found=True)
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
if phrase_indices is None:
phrase_indices = []
prompt_parsed = []
for prompt_item in prompt:
(
phrase_indices_parsed_item,
prompt_parsed_item,
) = self.get_phrase_indices(prompt_item, add_suffix_if_not_found=True)
phrase_indices.append(phrase_indices_parsed_item)
prompt_parsed.append(prompt_parsed_item)
prompt = prompt_parsed
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
clip_skip=clip_skip,
)
cond_prompt_embeds = prompt_embeds
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if ip_adapter_image is not None:
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5.1 Prepare GLIGEN variables
max_objs = 30
if len(boxes) > max_objs:
warnings.warn(
f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.",
FutureWarning,
)
phrases = phrases[:max_objs]
boxes = boxes[:max_objs]
n_objs = len(boxes)
if n_objs:
# prepare batched input to the PositionNet (boxes, phrases, mask)
# Get tokens for phrases from pre-trained CLIPTokenizer
tokenizer_inputs = self.tokenizer(phrases, padding=True, return_tensors="pt").to(device)
# For the token, we use the same pre-trained text encoder
# to obtain its text feature
_text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output
# For each entity, described in phrases, is denoted with a bounding box,
# we represent the location information as (xmin,ymin,xmax,ymax)
cond_boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype)
if n_objs:
cond_boxes[:n_objs] = torch.tensor(boxes)
text_embeddings = torch.zeros(
max_objs,
self.unet.config.cross_attention_dim,
device=device,
dtype=self.text_encoder.dtype,
)
if n_objs:
text_embeddings[:n_objs] = _text_embeddings
# Generate a mask for each object that is entity described by phrases
masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype)
masks[:n_objs] = 1
repeat_batch = batch_size * num_images_per_prompt
cond_boxes = cond_boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone()
if do_classifier_free_guidance:
repeat_batch = repeat_batch * 2
cond_boxes = torch.cat([cond_boxes] * 2)
text_embeddings = torch.cat([text_embeddings] * 2)
masks = torch.cat([masks] * 2)
masks[: repeat_batch // 2] = 0
if cross_attention_kwargs is None:
cross_attention_kwargs = {}
cross_attention_kwargs["gligen"] = {
"boxes": cond_boxes,
"positive_embeddings": text_embeddings,
"masks": masks,
}
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps))
self.enable_fuser(True)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 6.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
loss_attn = torch.tensor(10000.0)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Scheduled sampling
if i == num_grounding_steps:
self.enable_fuser(False)
if latents.shape[1] != 4:
latents = torch.randn_like(latents[:, :4])
# 7.1 Perform LMD guidance
if boxes:
latents, loss_attn = self.latent_lmd_guidance(
cond_prompt_embeds,
index=i,
boxes=boxes,
phrase_indices=phrase_indices,
t=t,
latents=latents,
loss=loss_attn,
**lmd_guidance_kwargs,
)
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
@torch.set_grad_enabled(True)
def latent_lmd_guidance(
self,
cond_embeddings,
index,
boxes,
phrase_indices,
t,
latents,
loss,
*,
loss_scale=20,
loss_threshold=5.0,
max_iter=[3] * 5 + [2] * 5 + [1] * 5,
guidance_timesteps=15,
cross_attention_kwargs=None,
guidance_attn_keys=DEFAULT_GUIDANCE_ATTN_KEYS,
verbose=False,
clear_cache=False,
unet_additional_kwargs={},
guidance_callback=None,
**kwargs,
):
scheduler, unet = self.scheduler, self.unet
iteration = 0
if index < guidance_timesteps:
if isinstance(max_iter, list):
max_iter = max_iter[index]
if verbose:
logger.info(
f"time index {index}, loss: {loss.item()/loss_scale:.3f} (de-scaled with scale {loss_scale:.1f}), loss threshold: {loss_threshold:.3f}"
)
try:
self.enable_attn_hook(enabled=True)
while (
loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < guidance_timesteps
):
self._saved_attn = {}
latents.requires_grad_(True)
latent_model_input = latents
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
unet(
latent_model_input,
t,
encoder_hidden_states=cond_embeddings,
cross_attention_kwargs=cross_attention_kwargs,
**unet_additional_kwargs,
)
# update latents with guidance
loss = (
self.compute_ca_loss(
saved_attn=self._saved_attn,
bboxes=boxes,
phrase_indices=phrase_indices,
guidance_attn_keys=guidance_attn_keys,
verbose=verbose,
**kwargs,
)
* loss_scale
)
if torch.isnan(loss):
raise RuntimeError("**Loss is NaN**")
# This callback allows visualizations.
if guidance_callback is not None:
guidance_callback(self, latents, loss, iteration, index)
self._saved_attn = None
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
latents.requires_grad_(False)
# Scaling with classifier guidance
alpha_prod_t = scheduler.alphas_cumprod[t]
# Classifier guidance: https://arxiv.org/pdf/2105.05233.pdf
# DDIM: https://arxiv.org/pdf/2010.02502.pdf
scale = (1 - alpha_prod_t) ** (0.5)
latents = latents - scale * grad_cond
iteration += 1
if clear_cache:
gc.collect()
torch.cuda.empty_cache()
if verbose:
logger.info(
f"time index {index}, loss: {loss.item()/loss_scale:.3f}, loss threshold: {loss_threshold:.3f}, iteration: {iteration}"
)
finally:
self.enable_attn_hook(enabled=False)
return latents, loss
# Below are methods copied from StableDiffusionPipeline
# The design choice of not inheriting from StableDiffusionPipeline is discussed here: https://github.com/huggingface/diffusers/pull/5993#issuecomment-1834258517
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
**kwargs,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
**kwargs,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
output_hidden_states=True,
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
def encode_image(self, image, device, num_images_per_prompt):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
image_embeds = self.image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, uncond_image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if not hasattr(self, "unet"):
raise ValueError("The pipeline must have `unet` for using FreeU.")
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_freeu(self):
"""Disables the FreeU mechanism if enabled."""
self.unet.disable_freeu()
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_scale
@property
def guidance_scale(self):
return self._guidance_scale
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_rescale
@property
def guidance_rescale(self):
return self._guidance_rescale
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.clip_skip
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.do_classifier_free_guidance
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.cross_attention_kwargs
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.num_timesteps
@property
def num_timesteps(self):
return self._num_timesteps
| diffusers/examples/community/llm_grounded_diffusion.py/0 | {
"file_path": "diffusers/examples/community/llm_grounded_diffusion.py",
"repo_id": "diffusers",
"token_count": 33959
} | 95 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import abc
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from ...src.diffusers.models.attention import Attention
from ...src.diffusers.pipelines.stable_diffusion import StableDiffusionPipeline, StableDiffusionPipelineOutput
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class Prompt2PromptPipeline(StableDiffusionPipeline):
r"""
Args:
Prompt-to-Prompt-Pipeline for text-to-image generation using Stable Diffusion. This model inherits from
[`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for
all the pipelines (such as downloading or saving, running on a particular device, etc.)
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler
([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
The keyword arguments to configure the edit are:
- edit_type (`str`). The edit type to apply. Can be either of `replace`, `refine`, `reweight`.
- n_cross_replace (`int`): Number of diffusion steps in which cross attention should be replaced
- n_self_replace (`int`): Number of diffusion steps in which self attention should be replaced
- local_blend_words(`List[str]`, *optional*, default to `None`): Determines which area should be
changed. If None, then the whole image can be changed.
- equalizer_words(`List[str]`, *optional*, default to `None`): Required for edit type `reweight`.
Determines which words should be enhanced.
- equalizer_strengths (`List[float]`, *optional*, default to `None`) Required for edit type `reweight`.
Determines which how much the words in `equalizer_words` should be enhanced.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
using zero terminal SNR.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
self.controller = create_controller(
prompt, cross_attention_kwargs, num_inference_steps, tokenizer=self.tokenizer, device=self.device
)
self.register_attention_control(self.controller) # add attention controller
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# step callback
latents = self.controller.step_callback(latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 8. Post-processing
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
# 9. Run safety checker
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
if name.startswith("mid_block"):
self.unet.config.block_out_channels[-1]
place_in_unet = "mid"
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
list(reversed(self.unet.config.block_out_channels))[block_id]
place_in_unet = "up"
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
self.unet.config.block_out_channels[block_id]
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# one line change
self.controller(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
def create_controller(
prompts: List[str], cross_attention_kwargs: Dict, num_inference_steps: int, tokenizer, device
) -> AttentionControl:
edit_type = cross_attention_kwargs.get("edit_type", None)
local_blend_words = cross_attention_kwargs.get("local_blend_words", None)
equalizer_words = cross_attention_kwargs.get("equalizer_words", None)
equalizer_strengths = cross_attention_kwargs.get("equalizer_strengths", None)
n_cross_replace = cross_attention_kwargs.get("n_cross_replace", 0.4)
n_self_replace = cross_attention_kwargs.get("n_self_replace", 0.4)
# only replace
if edit_type == "replace" and local_blend_words is None:
return AttentionReplace(
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device
)
# replace + localblend
if edit_type == "replace" and local_blend_words is not None:
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
return AttentionReplace(
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device
)
# only refine
if edit_type == "refine" and local_blend_words is None:
return AttentionRefine(
prompts, num_inference_steps, n_cross_replace, n_self_replace, tokenizer=tokenizer, device=device
)
# refine + localblend
if edit_type == "refine" and local_blend_words is not None:
lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
return AttentionRefine(
prompts, num_inference_steps, n_cross_replace, n_self_replace, lb, tokenizer=tokenizer, device=device
)
# reweight
if edit_type == "reweight":
assert (
equalizer_words is not None and equalizer_strengths is not None
), "To use reweight edit, please specify equalizer_words and equalizer_strengths."
assert len(equalizer_words) == len(
equalizer_strengths
), "equalizer_words and equalizer_strengths must be of same length."
equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer)
return AttentionReweight(
prompts,
num_inference_steps,
n_cross_replace,
n_self_replace,
tokenizer=tokenizer,
device=device,
equalizer=equalizer,
)
raise ValueError(f"Edit type {edit_type} not recognized. Use one of: replace, refine, reweight.")
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32**2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class LocalBlend:
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(
self, prompts: List[str], words: [List[List[str]]], tokenizer, device, threshold=0.3, max_num_words=77
):
self.max_num_words = 77
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if isinstance(words_, str):
words_ = [words_]
for word in words_:
ind = get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device)
self.threshold = threshold
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16**2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
# FIXME not replace correctly
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = (
self.replace_cross_attention(attn_base, attn_repalce) * alpha_words
+ (1 - alpha_words) * attn_repalce
)
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend],
tokenizer,
device,
):
super(AttentionControlEdit, self).__init__()
# add tokenizer and device here
self.tokenizer = tokenizer
self.device = device
self.batch_size = len(prompts)
self.cross_replace_alpha = get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps, self.tokenizer
).to(self.device)
if isinstance(self_replace_steps, float):
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend # 在外面定义后传进来
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper)
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
):
super(AttentionReplace, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
)
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None,
):
super(AttentionRefine, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
)
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
class AttentionReweight(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def __init__(
self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
equalizer,
local_blend: Optional[LocalBlend] = None,
controller: Optional[AttentionControlEdit] = None,
tokenizer=None,
device=None,
):
super(AttentionReweight, self).__init__(
prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device
)
self.equalizer = equalizer.to(self.device)
self.prev_controller = controller
### util functions for all Edits
def update_alpha_time_word(
alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor] = None
):
if isinstance(bounds, float):
bounds = 0, bounds
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
if word_inds is None:
word_inds = torch.arange(alpha.shape[2])
alpha[:start, prompt_ind, word_inds] = 0
alpha[start:end, prompt_ind, word_inds] = 1
alpha[end:, prompt_ind, word_inds] = 0
return alpha
def get_time_words_attention_alpha(
prompts, num_steps, cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], tokenizer, max_num_words=77
):
if not isinstance(cross_replace_steps, dict):
cross_replace_steps = {"default_": cross_replace_steps}
if "default_" not in cross_replace_steps:
cross_replace_steps["default_"] = (0.0, 1.0)
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
for i in range(len(prompts) - 1):
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
for key, item in cross_replace_steps.items():
if key != "default_":
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
for i, ind in enumerate(inds):
if len(ind) > 0:
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
return alpha_time_words
### util functions for LocalBlend and ReplacementEdit
def get_word_inds(text: str, word_place: int, tokenizer):
split_text = text.split(" ")
if isinstance(word_place, str):
word_place = [i for i, word in enumerate(split_text) if word_place == word]
elif isinstance(word_place, int):
word_place = [word_place]
out = []
if len(word_place) > 0:
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
cur_len, ptr = 0, 0
for i in range(len(words_encode)):
cur_len += len(words_encode[i])
if ptr in word_place:
out.append(i + 1)
if cur_len >= len(split_text[ptr]):
ptr += 1
cur_len = 0
return np.array(out)
### util functions for ReplacementEdit
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
words_x = x.split(" ")
words_y = y.split(" ")
if len(words_x) != len(words_y):
raise ValueError(
f"attention replacement edit can only be applied on prompts with the same length"
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words."
)
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
mapper = np.zeros((max_len, max_len))
i = j = 0
cur_inds = 0
while i < max_len and j < max_len:
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
if len(inds_source_) == len(inds_target_):
mapper[inds_source_, inds_target_] = 1
else:
ratio = 1 / len(inds_target_)
for i_t in inds_target_:
mapper[inds_source_, i_t] = ratio
cur_inds += 1
i += len(inds_source_)
j += len(inds_target_)
elif cur_inds < len(inds_source):
mapper[i, j] = 1
i += 1
j += 1
else:
mapper[j, j] = 1
i += 1
j += 1
return torch.from_numpy(mapper).float()
def get_replacement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers = []
for i in range(1, len(prompts)):
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
return torch.stack(mappers)
### util functions for ReweightEdit
def get_equalizer(
text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer
):
if isinstance(word_select, (int, str)):
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for word in word_select:
inds = get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
### util functions for RefinementEdit
class ScoreParams:
def __init__(self, gap, match, mismatch):
self.gap = gap
self.match = match
self.mismatch = mismatch
def mis_match_char(self, x, y):
if x != y:
return self.mismatch
else:
return self.match
def get_matrix(size_x, size_y, gap):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
return matrix
def get_traceback_matrix(size_x, size_y):
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
matrix[0, 1:] = 1
matrix[1:, 0] = 2
matrix[0, 0] = 4
return matrix
def global_align(x, y, score):
matrix = get_matrix(len(x), len(y), score.gap)
trace_back = get_traceback_matrix(len(x), len(y))
for i in range(1, len(x) + 1):
for j in range(1, len(y) + 1):
left = matrix[i, j - 1] + score.gap
up = matrix[i - 1, j] + score.gap
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
matrix[i, j] = max(left, up, diag)
if matrix[i, j] == left:
trace_back[i, j] = 1
elif matrix[i, j] == up:
trace_back[i, j] = 2
else:
trace_back[i, j] = 3
return matrix, trace_back
def get_aligned_sequences(x, y, trace_back):
x_seq = []
y_seq = []
i = len(x)
j = len(y)
mapper_y_to_x = []
while i > 0 or j > 0:
if trace_back[i, j] == 3:
x_seq.append(x[i - 1])
y_seq.append(y[j - 1])
i = i - 1
j = j - 1
mapper_y_to_x.append((j, i))
elif trace_back[i][j] == 1:
x_seq.append("-")
y_seq.append(y[j - 1])
j = j - 1
mapper_y_to_x.append((j, -1))
elif trace_back[i][j] == 2:
x_seq.append(x[i - 1])
y_seq.append("-")
i = i - 1
elif trace_back[i][j] == 4:
break
mapper_y_to_x.reverse()
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
def get_mapper(x: str, y: str, tokenizer, max_len=77):
x_seq = tokenizer.encode(x)
y_seq = tokenizer.encode(y)
score = ScoreParams(0, 1, -1)
matrix, trace_back = global_align(x_seq, y_seq, score)
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
alphas = torch.ones(max_len)
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
mapper = torch.zeros(max_len, dtype=torch.int64)
mapper[: mapper_base.shape[0]] = mapper_base[:, 1]
mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq))
return mapper, alphas
def get_refinement_mapper(prompts, tokenizer, max_len=77):
x_seq = prompts[0]
mappers, alphas = [], []
for i in range(1, len(prompts)):
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
mappers.append(mapper)
alphas.append(alpha)
return torch.stack(mappers), torch.stack(alphas)
| diffusers/examples/community/pipeline_prompt2prompt.py/0 | {
"file_path": "diffusers/examples/community/pipeline_prompt2prompt.py",
"repo_id": "diffusers",
"token_count": 16664
} | 96 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
pipe1_model_id = "CompVis/stable-diffusion-v1-1"
pipe2_model_id = "CompVis/stable-diffusion-v1-2"
pipe3_model_id = "CompVis/stable-diffusion-v1-3"
pipe4_model_id = "CompVis/stable-diffusion-v1-4"
class StableDiffusionComparisonPipeline(DiffusionPipeline):
r"""
Pipeline for parallel comparison of Stable Diffusion v1-v4
This pipeline inherits from DiffusionPipeline and depends on the use of an Auth Token for
downloading pre-trained checkpoints from Hugging Face Hub.
If using Hugging Face Hub, pass the Model ID for Stable Diffusion v1.4 as the previous 3 checkpoints will be loaded
automatically.
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super()._init_()
self.pipe1 = StableDiffusionPipeline.from_pretrained(pipe1_model_id)
self.pipe2 = StableDiffusionPipeline.from_pretrained(pipe2_model_id)
self.pipe3 = StableDiffusionPipeline.from_pretrained(pipe3_model_id)
self.pipe4 = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
requires_safety_checker=requires_safety_checker,
)
self.register_modules(pipeline1=self.pipe1, pipeline2=self.pipe2, pipeline3=self.pipe3, pipeline4=self.pipe4)
@property
def layers(self) -> Dict[str, Any]:
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def text2img_sd1_1(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
return self.pipe1(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
@torch.no_grad()
def text2img_sd1_2(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
return self.pipe2(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
@torch.no_grad()
def text2img_sd1_3(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
return self.pipe3(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
@torch.no_grad()
def text2img_sd1_4(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
return self.pipe4(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
@torch.no_grad()
def _call_(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation. This function will generate 4 results as part
of running all the 4 pipelines for SD1.1-1.4 together in a serial-processing, parallel-invocation fashion.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, optional, defaults to 512):
The height in pixels of the generated image.
width (`int`, optional, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, optional, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, optional, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
eta (`float`, optional, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, optional):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, optional):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, optional, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, optional, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}.")
# Get first result from Stable Diffusion Checkpoint v1.1
res1 = self.text2img_sd1_1(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
# Get first result from Stable Diffusion Checkpoint v1.2
res2 = self.text2img_sd1_2(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
# Get first result from Stable Diffusion Checkpoint v1.3
res3 = self.text2img_sd1_3(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
# Get first result from Stable Diffusion Checkpoint v1.4
res4 = self.text2img_sd1_4(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([res1[0], res2[0], res3[0], res4[0]])
| diffusers/examples/community/stable_diffusion_comparison.py/0 | {
"file_path": "diffusers/examples/community/stable_diffusion_comparison.py",
"repo_id": "diffusers",
"token_count": 7876
} | 97 |
import inspect
from typing import List, Optional, Union
import PIL.Image
import torch
from torch.nn import functional as F
from transformers import (
CLIPImageProcessor,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
ImagePipelineOutput,
UnCLIPScheduler,
UNet2DConditionModel,
UNet2DModel,
)
from diffusers.pipelines.unclip import UnCLIPTextProjModel
from diffusers.utils import is_accelerate_available, logging
from diffusers.utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def slerp(val, low, high):
"""
Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic.
"""
low_norm = low / torch.norm(low)
high_norm = high / torch.norm(high)
omega = torch.acos((low_norm * high_norm))
so = torch.sin(omega)
res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high
return res
class UnCLIPImageInterpolationPipeline(DiffusionPipeline):
"""
Pipeline to generate variations from an input image using unCLIP
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `image_encoder`.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder. unCLIP Image Variation uses the vision portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
text_proj ([`UnCLIPTextProjModel`]):
Utility class to prepare and combine the embeddings before they are passed to the decoder.
decoder ([`UNet2DConditionModel`]):
The decoder to invert the image embedding into an image.
super_res_first ([`UNet2DModel`]):
Super resolution unet. Used in all but the last step of the super resolution diffusion process.
super_res_last ([`UNet2DModel`]):
Super resolution unet. Used in the last step of the super resolution diffusion process.
decoder_scheduler ([`UnCLIPScheduler`]):
Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
super_res_scheduler ([`UnCLIPScheduler`]):
Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.
"""
decoder: UNet2DConditionModel
text_proj: UnCLIPTextProjModel
text_encoder: CLIPTextModelWithProjection
tokenizer: CLIPTokenizer
feature_extractor: CLIPImageProcessor
image_encoder: CLIPVisionModelWithProjection
super_res_first: UNet2DModel
super_res_last: UNet2DModel
decoder_scheduler: UnCLIPScheduler
super_res_scheduler: UnCLIPScheduler
# Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline.__init__
def __init__(
self,
decoder: UNet2DConditionModel,
text_encoder: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
text_proj: UnCLIPTextProjModel,
feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModelWithProjection,
super_res_first: UNet2DModel,
super_res_last: UNet2DModel,
decoder_scheduler: UnCLIPScheduler,
super_res_scheduler: UnCLIPScheduler,
):
super().__init__()
self.register_modules(
decoder=decoder,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_proj=text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=super_res_first,
super_res_last=super_res_last,
decoder_scheduler=decoder_scheduler,
super_res_scheduler=super_res_scheduler,
)
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline._encode_prompt
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance):
batch_size = len(prompt) if isinstance(prompt, list) else 1
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_mask = text_inputs.attention_mask.bool().to(device)
text_encoder_output = self.text_encoder(text_input_ids.to(device))
prompt_embeds = text_encoder_output.text_embeds
text_encoder_hidden_states = text_encoder_output.last_hidden_state
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
uncond_tokens = [""] * batch_size
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
seq_len = uncond_text_encoder_hidden_states.shape[1]
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt, seq_len, -1
)
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
text_mask = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
# Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline._encode_image
def _encode_image(self, image, device, num_images_per_prompt, image_embeddings: Optional[torch.Tensor] = None):
dtype = next(self.image_encoder.parameters()).dtype
if image_embeddings is None:
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
return image_embeddings
# Copied from diffusers.pipelines.unclip.pipeline_unclip_image_variation.UnCLIPImageVariationPipeline.enable_sequential_cpu_offload
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
models = [
self.decoder,
self.text_proj,
self.text_encoder,
self.super_res_first,
self.super_res_last,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._execution_device
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"):
return self.device
for module in self.decoder.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__(
self,
image: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None,
steps: int = 5,
decoder_num_inference_steps: int = 25,
super_res_num_inference_steps: int = 7,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
image_embeddings: Optional[torch.Tensor] = None,
decoder_latents: Optional[torch.FloatTensor] = None,
super_res_latents: Optional[torch.FloatTensor] = None,
decoder_guidance_scale: float = 8.0,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
"""
Function invoked when calling the pipeline for generation.
Args:
image (`List[PIL.Image.Image]` or `torch.FloatTensor`):
The images to use for the image interpolation. Only accepts a list of two PIL Images or If you provide a tensor, it needs to comply with the
configuration of
[this](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
`CLIPImageProcessor` while still having a shape of two in the 0th dimension. Can be left to `None` only when `image_embeddings` are passed.
steps (`int`, *optional*, defaults to 5):
The number of interpolation images to generate.
decoder_num_inference_steps (`int`, *optional*, defaults to 25):
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
image at the expense of slower inference.
super_res_num_inference_steps (`int`, *optional*, defaults to 7):
The number of denoising steps for super resolution. More denoising steps usually lead to a higher
quality image at the expense of slower inference.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
image_embeddings (`torch.Tensor`, *optional*):
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings
can be passed for tasks like image interpolations. `image` can the be left to `None`.
decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
Pre-generated noisy latents to be used as inputs for the decoder.
super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
Pre-generated noisy latents to be used as inputs for the decoder.
decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
"""
batch_size = steps
device = self._execution_device
if isinstance(image, List):
if len(image) != 2:
raise AssertionError(
f"Expected 'image' List to be of size 2, but passed 'image' length is {len(image)}"
)
elif not (isinstance(image[0], PIL.Image.Image) and isinstance(image[0], PIL.Image.Image)):
raise AssertionError(
f"Expected 'image' List to contain PIL.Image.Image, but passed 'image' contents are {type(image[0])} and {type(image[1])}"
)
elif isinstance(image, torch.FloatTensor):
if image.shape[0] != 2:
raise AssertionError(
f"Expected 'image' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image' size is {image.shape[0]}"
)
elif isinstance(image_embeddings, torch.Tensor):
if image_embeddings.shape[0] != 2:
raise AssertionError(
f"Expected 'image_embeddings' to be torch.FloatTensor of shape 2 in 0th dimension, but passed 'image_embeddings' shape is {image_embeddings.shape[0]}"
)
else:
raise AssertionError(
f"Expected 'image' or 'image_embeddings' to be not None with types List[PIL.Image] or Torch.FloatTensor respectively. Received {type(image)} and {type(image_embeddings)} repsectively"
)
original_image_embeddings = self._encode_image(
image=image, device=device, num_images_per_prompt=1, image_embeddings=image_embeddings
)
image_embeddings = []
for interp_step in torch.linspace(0, 1, steps):
temp_image_embeddings = slerp(
interp_step, original_image_embeddings[0], original_image_embeddings[1]
).unsqueeze(0)
image_embeddings.append(temp_image_embeddings)
image_embeddings = torch.cat(image_embeddings).to(device)
do_classifier_free_guidance = decoder_guidance_scale > 1.0
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
prompt=["" for i in range(steps)],
device=device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
)
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
image_embeddings=image_embeddings,
prompt_embeds=prompt_embeds,
text_encoder_hidden_states=text_encoder_hidden_states,
do_classifier_free_guidance=do_classifier_free_guidance,
)
if device.type == "mps":
# HACK: MPS: There is a panic when padding bool tensors,
# so cast to int tensor for the pad and back to bool afterwards
text_mask = text_mask.type(torch.int)
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
decoder_text_mask = decoder_text_mask.type(torch.bool)
else:
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
decoder_timesteps_tensor = self.decoder_scheduler.timesteps
num_channels_latents = self.decoder.config.in_channels
height = self.decoder.config.sample_size
width = self.decoder.config.sample_size
# Get the decoder latents for 1 step and then repeat the same tensor for the entire batch to keep same noise across all interpolation steps.
decoder_latents = self.prepare_latents(
(1, num_channels_latents, height, width),
text_encoder_hidden_states.dtype,
device,
generator,
decoder_latents,
self.decoder_scheduler,
)
decoder_latents = decoder_latents.repeat((batch_size, 1, 1, 1))
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents
noise_pred = self.decoder(
sample=latent_model_input,
timestep=t,
encoder_hidden_states=text_encoder_hidden_states,
class_labels=additive_clip_time_embeddings,
attention_mask=decoder_text_mask,
).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
if i + 1 == decoder_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = decoder_timesteps_tensor[i + 1]
# compute the previous noisy sample x_t -> x_t-1
decoder_latents = self.decoder_scheduler.step(
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
).prev_sample
decoder_latents = decoder_latents.clamp(-1, 1)
image_small = decoder_latents
# done decoder
# super res
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
super_res_timesteps_tensor = self.super_res_scheduler.timesteps
channels = self.super_res_first.config.in_channels // 2
height = self.super_res_first.config.sample_size
width = self.super_res_first.config.sample_size
super_res_latents = self.prepare_latents(
(batch_size, channels, height, width),
image_small.dtype,
device,
generator,
super_res_latents,
self.super_res_scheduler,
)
if device.type == "mps":
# MPS does not support many interpolations
image_upscaled = F.interpolate(image_small, size=[height, width])
else:
interpolate_antialias = {}
if "antialias" in inspect.signature(F.interpolate).parameters:
interpolate_antialias["antialias"] = True
image_upscaled = F.interpolate(
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
)
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
# no classifier free guidance
if i == super_res_timesteps_tensor.shape[0] - 1:
unet = self.super_res_last
else:
unet = self.super_res_first
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)
noise_pred = unet(
sample=latent_model_input,
timestep=t,
).sample
if i + 1 == super_res_timesteps_tensor.shape[0]:
prev_timestep = None
else:
prev_timestep = super_res_timesteps_tensor[i + 1]
# compute the previous noisy sample x_t -> x_t-1
super_res_latents = self.super_res_scheduler.step(
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
).prev_sample
image = super_res_latents
# done super res
# post processing
image = image * 0.5 + 0.5
image = image.clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
| diffusers/examples/community/unclip_image_interpolation.py/0 | {
"file_path": "diffusers/examples/community/unclip_image_interpolation.py",
"repo_id": "diffusers",
"token_count": 10177
} | 98 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import shutil
import sys
import tempfile
from diffusers import DiffusionPipeline, UNet2DConditionModel
sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class DreamBooth(ExamplesTestsAccelerate):
def test_dreambooth(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
--instance_data_dir docs/source/en/imgs
--instance_prompt photo
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
def test_dreambooth_if(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path hf-internal-testing/tiny-if-pipe
--instance_data_dir docs/source/en/imgs
--instance_prompt photo
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--pre_compute_text_embeddings
--tokenizer_max_length=77
--text_encoder_use_attention_mask
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
def test_dreambooth_checkpointing(self):
instance_prompt = "photo"
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path {pretrained_model_name_or_path}
--instance_data_dir docs/source/en/imgs
--instance_prompt {instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 4
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--seed=0
""".split()
run_command(self._launch_args + initial_run_args)
# check can run the original fully trained output pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=1)
# check checkpoint directories exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
# check can run an intermediate checkpoint
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
pipe(instance_prompt, num_inference_steps=1)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
# Run training script for 7 total steps resuming from checkpoint 4
resume_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path {pretrained_model_name_or_path}
--instance_data_dir docs/source/en/imgs
--instance_prompt {instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--seed=0
""".split()
run_command(self._launch_args + resume_run_args)
# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=1)
# check old checkpoints do not exist
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
# check new checkpoints exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4")))
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6")))
def test_dreambooth_checkpointing_checkpoints_total_limit(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
--instance_data_dir=docs/source/en/imgs
--output_dir={tmpdir}
--instance_prompt=prompt
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=6
--checkpoints_total_limit=2
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-6"},
)
def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
--instance_data_dir=docs/source/en/imgs
--output_dir={tmpdir}
--instance_prompt=prompt
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=4
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
)
resume_run_args = f"""
examples/dreambooth/train_dreambooth.py
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe
--instance_data_dir=docs/source/en/imgs
--output_dir={tmpdir}
--instance_prompt=prompt
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=8
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
| diffusers/examples/dreambooth/test_dreambooth.py/0 | {
"file_path": "diffusers/examples/dreambooth/test_dreambooth.py",
"repo_id": "diffusers",
"token_count": 4467
} | 99 |