File size: 15,098 Bytes
7a6289f 7a6e38f 7a6289f 7a6e38f 7a6289f fd39ae0 7a6289f cdf110e 3f0cbac 7fb380d 5f200a9 fd39ae0 cdf110e 75ff1b1 4c97b91 75ff1b1 4c97b91 75ff1b1 7a6289f 3f0cbac 7a6289f dee3cf8 7a6289f dee3cf8 cdf110e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
---
annotations_creators:
- other
language_creators:
- other
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: discovery
pretty_name: Discovery
train-eval-index:
- config: discovery
task: text-classification
task_id: multi-class-classification
splits:
train_split: train
eval_split: validation
col_mapping:
sentence1: text1
sentence2: text2
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
- config: discoverysmall
task: text-classification
task_id: multi-class-classification
splits:
train_split: train
eval_split: validation
col_mapping:
sentence1: text1
sentence2: text2
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
configs:
- discovery
- discoverysmall
tags:
- discourse-marker-prediction
dataset_info:
- config_name: discovery
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
0: '[no-conn]'
1: absolutely,
2: accordingly
3: actually,
4: additionally
5: admittedly,
6: afterward
7: again,
8: already,
9: also,
10: alternately,
11: alternatively
12: although,
13: altogether,
14: amazingly,
15: and
16: anyway,
17: apparently,
18: arguably,
19: as_a_result,
20: basically,
21: because_of_that
22: because_of_this
23: besides,
24: but
25: by_comparison,
26: by_contrast,
27: by_doing_this,
28: by_then
29: certainly,
30: clearly,
31: coincidentally,
32: collectively,
33: consequently
34: conversely
35: curiously,
36: currently,
37: elsewhere,
38: especially,
39: essentially,
40: eventually,
41: evidently,
42: finally,
43: first,
44: firstly,
45: for_example
46: for_instance
47: fortunately,
48: frankly,
49: frequently,
50: further,
51: furthermore
52: generally,
53: gradually,
54: happily,
55: hence,
56: here,
57: historically,
58: honestly,
59: hopefully,
60: however
61: ideally,
62: immediately,
63: importantly,
64: in_contrast,
65: in_fact,
66: in_other_words
67: in_particular,
68: in_short,
69: in_sum,
70: in_the_end,
71: in_the_meantime,
72: in_turn,
73: incidentally,
74: increasingly,
75: indeed,
76: inevitably,
77: initially,
78: instead,
79: interestingly,
80: ironically,
81: lastly,
82: lately,
83: later,
84: likewise,
85: locally,
86: luckily,
87: maybe,
88: meaning,
89: meantime,
90: meanwhile,
91: moreover
92: mostly,
93: namely,
94: nationally,
95: naturally,
96: nevertheless
97: next,
98: nonetheless
99: normally,
100: notably,
101: now,
102: obviously,
103: occasionally,
104: oddly,
105: often,
106: on_the_contrary,
107: on_the_other_hand
108: once,
109: only,
110: optionally,
111: or,
112: originally,
113: otherwise,
114: overall,
115: particularly,
116: perhaps,
117: personally,
118: plus,
119: preferably,
120: presently,
121: presumably,
122: previously,
123: probably,
124: rather,
125: realistically,
126: really,
127: recently,
128: regardless,
129: remarkably,
130: sadly,
131: second,
132: secondly,
133: separately,
134: seriously,
135: significantly,
136: similarly,
137: simultaneously
138: slowly,
139: so,
140: sometimes,
141: soon,
142: specifically,
143: still,
144: strangely,
145: subsequently,
146: suddenly,
147: supposedly,
148: surely,
149: surprisingly,
150: technically,
151: thankfully,
152: then,
153: theoretically,
154: thereafter,
155: thereby,
156: therefore
157: third,
158: thirdly,
159: this,
160: though,
161: thus,
162: together,
163: traditionally,
164: truly,
165: truthfully,
166: typically,
167: ultimately,
168: undoubtedly,
169: unfortunately,
170: unsurprisingly,
171: usually,
172: well,
173: yet,
- name: idx
dtype: int32
splits:
- name: train
num_bytes: 334809726
num_examples: 1566000
- name: validation
num_bytes: 18607661
num_examples: 87000
- name: test
num_bytes: 18615474
num_examples: 87000
download_size: 146233621
dataset_size: 372032861
- config_name: discoverysmall
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
0: '[no-conn]'
1: absolutely,
2: accordingly
3: actually,
4: additionally
5: admittedly,
6: afterward
7: again,
8: already,
9: also,
10: alternately,
11: alternatively
12: although,
13: altogether,
14: amazingly,
15: and
16: anyway,
17: apparently,
18: arguably,
19: as_a_result,
20: basically,
21: because_of_that
22: because_of_this
23: besides,
24: but
25: by_comparison,
26: by_contrast,
27: by_doing_this,
28: by_then
29: certainly,
30: clearly,
31: coincidentally,
32: collectively,
33: consequently
34: conversely
35: curiously,
36: currently,
37: elsewhere,
38: especially,
39: essentially,
40: eventually,
41: evidently,
42: finally,
43: first,
44: firstly,
45: for_example
46: for_instance
47: fortunately,
48: frankly,
49: frequently,
50: further,
51: furthermore
52: generally,
53: gradually,
54: happily,
55: hence,
56: here,
57: historically,
58: honestly,
59: hopefully,
60: however
61: ideally,
62: immediately,
63: importantly,
64: in_contrast,
65: in_fact,
66: in_other_words
67: in_particular,
68: in_short,
69: in_sum,
70: in_the_end,
71: in_the_meantime,
72: in_turn,
73: incidentally,
74: increasingly,
75: indeed,
76: inevitably,
77: initially,
78: instead,
79: interestingly,
80: ironically,
81: lastly,
82: lately,
83: later,
84: likewise,
85: locally,
86: luckily,
87: maybe,
88: meaning,
89: meantime,
90: meanwhile,
91: moreover
92: mostly,
93: namely,
94: nationally,
95: naturally,
96: nevertheless
97: next,
98: nonetheless
99: normally,
100: notably,
101: now,
102: obviously,
103: occasionally,
104: oddly,
105: often,
106: on_the_contrary,
107: on_the_other_hand
108: once,
109: only,
110: optionally,
111: or,
112: originally,
113: otherwise,
114: overall,
115: particularly,
116: perhaps,
117: personally,
118: plus,
119: preferably,
120: presently,
121: presumably,
122: previously,
123: probably,
124: rather,
125: realistically,
126: really,
127: recently,
128: regardless,
129: remarkably,
130: sadly,
131: second,
132: secondly,
133: separately,
134: seriously,
135: significantly,
136: similarly,
137: simultaneously
138: slowly,
139: so,
140: sometimes,
141: soon,
142: specifically,
143: still,
144: strangely,
145: subsequently,
146: suddenly,
147: supposedly,
148: surely,
149: surprisingly,
150: technically,
151: thankfully,
152: then,
153: theoretically,
154: thereafter,
155: thereby,
156: therefore
157: third,
158: thirdly,
159: this,
160: though,
161: thus,
162: together,
163: traditionally,
164: truly,
165: truthfully,
166: typically,
167: ultimately,
168: undoubtedly,
169: unfortunately,
170: unsurprisingly,
171: usually,
172: well,
173: yet,
- name: idx
dtype: int32
splits:
- name: train
num_bytes: 3355192
num_examples: 15662
- name: validation
num_bytes: 185296
num_examples: 871
- name: test
num_bytes: 187471
num_examples: 869
download_size: 146233621
dataset_size: 3727959
---
# Dataset Card for Discovery
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/synapse-developpement/Discovery
- **Repository:** https://github.com/synapse-developpement/Discovery
- **Paper:** https://www.aclweb.org/anthology/N19-1351/
- **Leaderboard:**
- **Point of Contact:** damien.sileo at kuleuven.be
### Dataset Summary
Discourse marker prediction with 174 markers
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
input : sentence1, sentence2,
label: marker originally between sentence1 and sentence2
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
Train/Val/Test
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
Aranea english web corpus
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
Self supervised (see paper)
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inproceedings{sileo-etal-2019-mining,
title = "Mining Discourse Markers for Unsupervised Sentence Representation Learning",
author = "Sileo, Damien and
Van De Cruys, Tim and
Pradel, Camille and
Muller, Philippe",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/N19-1351",
pages = "3477--3486",
abstract = "Current state of the art systems in NLP heavily rely on manually annotated datasets, which are expensive to construct. Very little work adequately exploits unannotated data {--} such as discourse markers between sentences {--} mainly because of data sparseness and ineffective extraction methods. In the present work, we propose a method to automatically discover sentence pairs with relevant discourse markers, and apply it to massive amounts of data. Our resulting dataset contains 174 discourse markers with at least 10k examples each, even for rare markers such as {``}coincidentally{''} or {``}amazingly{''}. We use the resulting data as supervision for learning transferable sentence embeddings. In addition, we show that even though sentence representation learning through prediction of discourse marker yields state of the art results across different transfer tasks, it{'}s not clear that our models made use of the semantic relation between sentences, thus leaving room for further improvements.",
}
```
### Contributions
Thanks to [@sileod](https://github.com/sileod) for adding this dataset. |