Upload folder using huggingface_hub
Browse files- vae-compilation/benchmark_pixart.py +187 -0
- vae-compilation/exp.slurm +27 -0
- vae-compilation/exp_autoquant.slurm +28 -0
- vae-compilation/exp_fp8.slurm +28 -0
- vae-compilation/exp_profile.slurm +28 -0
- vae-compilation/launch.sh +41 -0
- vae-compilation/launch_autoquant.sh +7 -0
- vae-compilation/launch_fp8.sh +5 -0
- vae-compilation/launch_profile.sh +8 -0
- vae-compilation/profile_pixart.py +137 -0
vae-compilation/benchmark_pixart.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
torch.set_float32_matmul_precision("high")
|
4 |
+
|
5 |
+
import torch.utils.benchmark as benchmark
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
import gc
|
8 |
+
|
9 |
+
from torchao.quantization import (
|
10 |
+
int4_weight_only,
|
11 |
+
int8_weight_only,
|
12 |
+
int8_dynamic_activation_int8_weight,
|
13 |
+
quantize_,
|
14 |
+
autoquant,
|
15 |
+
)
|
16 |
+
from torchao.float8.inference import ActivationCasting, QuantConfig, quantize_to_float8
|
17 |
+
from torchao.prototype.quant_llm import fp6_llm_weight_only
|
18 |
+
from torchao.sparsity import sparsify_, int8_dynamic_activation_int8_semi_sparse_weight
|
19 |
+
from tabulate import tabulate
|
20 |
+
import argparse
|
21 |
+
import json
|
22 |
+
|
23 |
+
|
24 |
+
PROMPT = "Eiffel Tower was Made up of more than 2 million translucent straws to look like a cloud, with the bell tower at the top of the building, Michel installed huge foam-making machines in the forest to blow huge amounts of unpredictable wet clouds in the building's classic architecture."
|
25 |
+
PREFIXES = {
|
26 |
+
"stabilityai/stable-diffusion-3-medium-diffusers": "sd3",
|
27 |
+
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS": "pixart",
|
28 |
+
"fal/AuraFlow": "auraflow",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def flush():
|
33 |
+
gc.collect()
|
34 |
+
torch.cuda.empty_cache()
|
35 |
+
torch.cuda.reset_max_memory_allocated()
|
36 |
+
torch.cuda.reset_peak_memory_stats()
|
37 |
+
|
38 |
+
|
39 |
+
def bytes_to_giga_bytes(bytes):
|
40 |
+
return f"{(bytes / 1024 / 1024 / 1024):.3f}"
|
41 |
+
|
42 |
+
|
43 |
+
def benchmark_fn(f, *args, **kwargs):
|
44 |
+
t0 = benchmark.Timer(
|
45 |
+
stmt="f(*args, **kwargs)",
|
46 |
+
globals={"args": args, "kwargs": kwargs, "f": f},
|
47 |
+
num_threads=torch.get_num_threads(),
|
48 |
+
)
|
49 |
+
return f"{(t0.blocked_autorange().mean):.3f}"
|
50 |
+
|
51 |
+
|
52 |
+
def load_pipeline(
|
53 |
+
ckpt_id: str,
|
54 |
+
fuse_attn_projections: bool,
|
55 |
+
compile: bool,
|
56 |
+
quantization: str,
|
57 |
+
sparsify: bool,
|
58 |
+
) -> DiffusionPipeline:
|
59 |
+
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, torch_dtype=torch.bfloat16).to("cuda")
|
60 |
+
|
61 |
+
if fuse_attn_projections:
|
62 |
+
pipeline.transformer.fuse_qkv_projections()
|
63 |
+
pipeline.vae.fuse_qkv_projections()
|
64 |
+
|
65 |
+
if quantization == "autoquant" and compile:
|
66 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
67 |
+
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
|
68 |
+
pipeline.vae.to(memory_format=torch.channels_last)
|
69 |
+
pipeline.vae.decode = torch.compile(pipeline.vae.decode, mode="max-autotune", fullgraph=True)
|
70 |
+
|
71 |
+
if not sparsify:
|
72 |
+
if quantization == "int8dq":
|
73 |
+
quantize_(pipeline.transformer, int8_dynamic_activation_int8_weight())
|
74 |
+
quantize_(pipeline.vae, int8_dynamic_activation_int8_weight())
|
75 |
+
elif quantization == "int8wo":
|
76 |
+
quantize_(pipeline.transformer, int8_weight_only())
|
77 |
+
quantize_(pipeline.vae, int8_weight_only())
|
78 |
+
elif quantization == "int4wo":
|
79 |
+
quantize_(pipeline.transformer, int4_weight_only())
|
80 |
+
quantize_(pipeline.vae, int4_weight_only())
|
81 |
+
elif quantization == "fp6":
|
82 |
+
quantize_(pipeline.transformer, fp6_llm_weight_only())
|
83 |
+
quantize_(pipeline.vae, fp6_llm_weight_only())
|
84 |
+
elif quantization == "fp8":
|
85 |
+
pipeline.transformer = quantize_to_float8(pipeline.transformer, QuantConfig(ActivationCasting.DYNAMIC))
|
86 |
+
pipeline.vae = quantize_to_float8(pipeline.vae, QuantConfig(ActivationCasting.DYNAMIC))
|
87 |
+
elif quantization == "autoquant":
|
88 |
+
pipeline.transformer = autoquant(pipeline.transformer)
|
89 |
+
pipeline.vae = autoquant(pipeline.vae)
|
90 |
+
|
91 |
+
if sparsify:
|
92 |
+
sparsify_(pipeline.transformer, int8_dynamic_activation_int8_semi_sparse_weight())
|
93 |
+
sparsify_(pipeline.vae, int8_dynamic_activation_int8_semi_sparse_weight())
|
94 |
+
|
95 |
+
if quantization != "autoquant" and compile:
|
96 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
97 |
+
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
|
98 |
+
pipeline.vae.to(memory_format=torch.channels_last)
|
99 |
+
pipeline.vae.decode = torch.compile(pipeline.vae.decode, mode="max-autotune", fullgraph=True)
|
100 |
+
|
101 |
+
pipeline.set_progress_bar_config(disable=True)
|
102 |
+
return pipeline
|
103 |
+
|
104 |
+
|
105 |
+
def run_inference(pipe, batch_size):
|
106 |
+
_ = pipe(
|
107 |
+
prompt=PROMPT,
|
108 |
+
num_images_per_prompt=batch_size,
|
109 |
+
generator=torch.manual_seed(2024),
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def pretty_print_results(results, precision: int = 6):
|
114 |
+
def format_value(value):
|
115 |
+
if isinstance(value, float):
|
116 |
+
return f"{value:.{precision}f}"
|
117 |
+
return value
|
118 |
+
|
119 |
+
filtered_table = {k: format_value(v) for k, v in results.items()}
|
120 |
+
print(tabulate([filtered_table], headers="keys", tablefmt="pipe", stralign="center"))
|
121 |
+
|
122 |
+
|
123 |
+
def run_benchmark(pipeline, args):
|
124 |
+
for _ in range(5):
|
125 |
+
run_inference(pipeline, batch_size=args.batch_size)
|
126 |
+
|
127 |
+
time = benchmark_fn(run_inference, pipeline, args.batch_size)
|
128 |
+
torch.cuda.empty_cache()
|
129 |
+
memory = bytes_to_giga_bytes(torch.cuda.memory_allocated()) # in GBs.
|
130 |
+
|
131 |
+
info = dict(
|
132 |
+
ckpt_id=args.ckpt_id,
|
133 |
+
batch_size=args.batch_size,
|
134 |
+
fuse=args.fuse_attn_projections,
|
135 |
+
compile=args.compile,
|
136 |
+
quantization=args.quantization,
|
137 |
+
sparsify=args.sparsify,
|
138 |
+
memory=memory,
|
139 |
+
time=time,
|
140 |
+
)
|
141 |
+
|
142 |
+
pretty_print_results(info)
|
143 |
+
return info
|
144 |
+
|
145 |
+
|
146 |
+
def serialize_artifacts(info: dict, pipeline, args):
|
147 |
+
ckpt_id = PREFIXES[args.ckpt_id]
|
148 |
+
prefix = f"ckpt@{ckpt_id}-bs@{args.batch_size}-fuse@{args.fuse_attn_projections}-compile@{args.compile}-quant@{args.quantization}-sparsify@{args.sparsify}"
|
149 |
+
info_file = f"{prefix}_info.json"
|
150 |
+
with open(info_file, "w") as f:
|
151 |
+
json.dump(info, f)
|
152 |
+
|
153 |
+
image = pipeline(
|
154 |
+
prompt=PROMPT,
|
155 |
+
num_images_per_prompt=args.batch_size,
|
156 |
+
generator=torch.manual_seed(0),
|
157 |
+
).images[0]
|
158 |
+
image.save(f"{prefix}.png")
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
parser = argparse.ArgumentParser()
|
163 |
+
parser.add_argument("--ckpt_id", default="PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", type=str)
|
164 |
+
parser.add_argument("--fuse_attn_projections", action="store_true")
|
165 |
+
parser.add_argument("--compile", action="store_true")
|
166 |
+
parser.add_argument(
|
167 |
+
"--quantization",
|
168 |
+
default="None",
|
169 |
+
choices=["int8dq", "int8wo", "int4wo", "autoquant", "fp6", "fp8", "None"],
|
170 |
+
help="Which quantization technique to apply",
|
171 |
+
)
|
172 |
+
parser.add_argument("--sparsify", action="store_true")
|
173 |
+
parser.add_argument("--batch_size", default=1, type=int, choices=[1, 4, 8])
|
174 |
+
args = parser.parse_args()
|
175 |
+
|
176 |
+
flush()
|
177 |
+
|
178 |
+
pipeline = load_pipeline(
|
179 |
+
ckpt_id=args.ckpt_id,
|
180 |
+
fuse_attn_projections=args.fuse_attn_projections,
|
181 |
+
compile=args.compile,
|
182 |
+
quantization=args.quantization,
|
183 |
+
sparsify=args.sparsify,
|
184 |
+
)
|
185 |
+
|
186 |
+
info = run_benchmark(pipeline, args)
|
187 |
+
serialize_artifacts(info, pipeline, args)
|
vae-compilation/exp.slurm
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=torchao
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
# Set the QoS
|
5 |
+
#SBATCH --qos=high
|
6 |
+
# set 5h for job wall time limit
|
7 |
+
#SBATCH --time=05:00:00
|
8 |
+
# activate the requeue option
|
9 |
+
#SBATCH --requeue
|
10 |
+
#SBATCH --ntasks-per-node=1
|
11 |
+
#SBATCH --cpus-per-task=96
|
12 |
+
#SBATCH --gres=gpu:8
|
13 |
+
#SBATCH --mem=1999G
|
14 |
+
#SBATCH --exclusive
|
15 |
+
#SBATCH --partition=hopper-prod
|
16 |
+
#SBATCH -o /fsx/sayak/logs/%x-%j.out
|
17 |
+
|
18 |
+
set -xe
|
19 |
+
|
20 |
+
module load cuda/12.1
|
21 |
+
|
22 |
+
export NCCL_ASYNC_ERROR_HANDLING=1
|
23 |
+
export LARGE_SCALE_TRAINING=1
|
24 |
+
|
25 |
+
srun --wait=60 --kill-on-bad-exit=1 bash launch.sh
|
26 |
+
|
27 |
+
echo "END TIME: $(date)"
|
vae-compilation/exp_autoquant.slurm
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=torchao
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
# Set the QoS
|
5 |
+
#SBATCH --qos=prod
|
6 |
+
# set 5h for job wall time limit
|
7 |
+
#SBATCH --time=05:00:00
|
8 |
+
# activate the requeue option
|
9 |
+
#SBATCH --requeue
|
10 |
+
#SBATCH --ntasks-per-node=1
|
11 |
+
#SBATCH --cpus-per-task=96
|
12 |
+
#SBATCH --gres=gpu:8
|
13 |
+
#SBATCH --mem=1999G
|
14 |
+
#SBATCH --exclusive
|
15 |
+
#SBATCH --partition=hopper-prod
|
16 |
+
#SBATCH -o /fsx/sayak/logs/benchmark-%x-%j.out
|
17 |
+
|
18 |
+
set -xe
|
19 |
+
|
20 |
+
module load cuda/12.1
|
21 |
+
|
22 |
+
export NCCL_ASYNC_ERROR_HANDLING=1
|
23 |
+
export LARGE_SCALE_TRAINING=1
|
24 |
+
export CUDA_VISIBLE_DEVICES=0
|
25 |
+
|
26 |
+
srun --wait=60 --kill-on-bad-exit=1 bash launch_autoquant.sh
|
27 |
+
|
28 |
+
echo "END TIME: $(date)"
|
vae-compilation/exp_fp8.slurm
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=torchao
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
# Set the QoS
|
5 |
+
#SBATCH --qos=prod
|
6 |
+
# set 5h for job wall time limit
|
7 |
+
#SBATCH --time=05:00:00
|
8 |
+
# activate the requeue option
|
9 |
+
#SBATCH --requeue
|
10 |
+
#SBATCH --ntasks-per-node=1
|
11 |
+
#SBATCH --cpus-per-task=96
|
12 |
+
#SBATCH --gres=gpu:8
|
13 |
+
#SBATCH --mem=1999G
|
14 |
+
#SBATCH --exclusive
|
15 |
+
#SBATCH --partition=hopper-prod
|
16 |
+
#SBATCH -o /fsx/sayak/logs/benchmark-%x-%j.out
|
17 |
+
|
18 |
+
set -xe
|
19 |
+
|
20 |
+
module load cuda/12.1
|
21 |
+
|
22 |
+
export NCCL_ASYNC_ERROR_HANDLING=1
|
23 |
+
export LARGE_SCALE_TRAINING=1
|
24 |
+
export CUDA_VISIBLE_DEVICES=0
|
25 |
+
|
26 |
+
srun --wait=60 --kill-on-bad-exit=1 bash launch_fp8.sh
|
27 |
+
|
28 |
+
echo "END TIME: $(date)"
|
vae-compilation/exp_profile.slurm
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --job-name=torchao
|
3 |
+
#SBATCH --nodes=1
|
4 |
+
# Set the QoS
|
5 |
+
#SBATCH --qos=prod
|
6 |
+
# set 5h for job wall time limit
|
7 |
+
#SBATCH --time=05:00:00
|
8 |
+
# activate the requeue option
|
9 |
+
#SBATCH --requeue
|
10 |
+
#SBATCH --ntasks-per-node=1
|
11 |
+
#SBATCH --cpus-per-task=96
|
12 |
+
#SBATCH --gres=gpu:8
|
13 |
+
#SBATCH --mem=1999G
|
14 |
+
#SBATCH --exclusive
|
15 |
+
#SBATCH --partition=hopper-prod
|
16 |
+
#SBATCH -o /fsx/sayak/logs/profile-%x-%j.out
|
17 |
+
|
18 |
+
set -xe
|
19 |
+
|
20 |
+
module load cuda/12.1
|
21 |
+
|
22 |
+
export NCCL_ASYNC_ERROR_HANDLING=1
|
23 |
+
export LARGE_SCALE_TRAINING=1
|
24 |
+
export CUDA_VISIBLE_DEVICES=0
|
25 |
+
|
26 |
+
srun --wait=60 --kill-on-bad-exit=1 bash launch_profile.sh
|
27 |
+
|
28 |
+
echo "END TIME: $(date)"
|
vae-compilation/launch.sh
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Possible values for each argument
|
4 |
+
ckpt_ids=("PixArt-alpha/PixArt-Sigma-XL-2-1024-MS")
|
5 |
+
fuse_attn_projections_flags=("" "--fuse_attn_projections")
|
6 |
+
compile_flags=("" "--compile")
|
7 |
+
# quantizations=("int8dq" "int8wo" "int4wo" "autoquant" "None" "fp6" "fp8")
|
8 |
+
quantizations=("int8dq" "int8wo" "int4wo" "None" "fp6")
|
9 |
+
sparsify_flags=("" "--sparsify")
|
10 |
+
batch_sizes=(1 4 8)
|
11 |
+
|
12 |
+
# Loop over all combinations
|
13 |
+
for ckpt_id in "${ckpt_ids[@]}"; do
|
14 |
+
for quantization in "${quantizations[@]}"; do
|
15 |
+
# Determine the valid flags based on quantization value
|
16 |
+
if [ "$quantization" == "None" ]; then
|
17 |
+
sparsify_flags=("" "--sparsify") # Enable sparsify
|
18 |
+
fuse_attn_projections_flags=("") # Disable fuse_attn_projections
|
19 |
+
else
|
20 |
+
sparsify_flags=("") # Disable sparsify
|
21 |
+
fuse_attn_projections_flags=("" "--fuse_attn_projections") # Enable fuse_attn_projections
|
22 |
+
fi
|
23 |
+
|
24 |
+
for fuse_attn_projections in "${fuse_attn_projections_flags[@]}"; do
|
25 |
+
for compile in "${compile_flags[@]}"; do
|
26 |
+
for sparsify in "${sparsify_flags[@]}"; do
|
27 |
+
for batch_size in "${batch_sizes[@]}"; do
|
28 |
+
# Construct the command
|
29 |
+
cmd="python3 benchmark_pixart.py --ckpt_id \"$ckpt_id\" $fuse_attn_projections $compile --quantization \"$quantization\" $sparsify --batch_size \"$batch_size\""
|
30 |
+
|
31 |
+
# Echo the command
|
32 |
+
echo "Running command: $cmd"
|
33 |
+
|
34 |
+
# Run the command
|
35 |
+
eval $cmd
|
36 |
+
done
|
37 |
+
done
|
38 |
+
done
|
39 |
+
done
|
40 |
+
done
|
41 |
+
done
|
vae-compilation/launch_autoquant.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
export TORCHAO_AUTOTUNER_ENABLE=1
|
4 |
+
|
5 |
+
python benchmark_pixart.py --compile --quantization=autoquant
|
6 |
+
python benchmark_pixart.py --compile --quantization=autoquant --batch_size=4
|
7 |
+
python benchmark_pixart.py --compile --quantization=autoquant --batch_size=8
|
vae-compilation/launch_fp8.sh
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
python benchmark_pixart.py --compile --quantization=fp8
|
4 |
+
python benchmark_pixart.py --compile --quantization=fp8 --batch_size=4
|
5 |
+
python benchmark_pixart.py --compile --quantization=fp8 --batch_size=8
|
vae-compilation/launch_profile.sh
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
export TORCH_LOGS='output_code,graph_breaks,recompiles'
|
4 |
+
|
5 |
+
TORCH_LOGS_OUT=regular.txt python3 profile_pixart.py --compile 2>&1 | grep "Output code written to: " | awk -F" " '{print $NF}'
|
6 |
+
TORCH_LOGS_OUT=int8wo.txt python3 profile_pixart.py --compile --quantization=int8wo 2>&1 | grep "Output code written to: " | awk -F" " '{print $NF}'
|
7 |
+
TORCH_LOGS_OUT=int8dyn.txt python3 profile_pixart.py --compile --quantization=int8dyn 2>&1 | grep "Output code written to: " | awk -F" " '{print $NF}'
|
8 |
+
TORCH_LOGS_OUT=int4wo.txt python3 profile_pixart.py --compile --quantization=int4wo 2>&1 | grep "Output code written to: " | awk -F" " '{print $NF}'
|
vae-compilation/profile_pixart.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
torch.set_float32_matmul_precision("high")
|
4 |
+
|
5 |
+
from torch._inductor import config as inductorconfig
|
6 |
+
|
7 |
+
inductorconfig.triton.unique_kernel_names = True
|
8 |
+
|
9 |
+
import functools
|
10 |
+
from diffusers import DiffusionPipeline
|
11 |
+
import gc
|
12 |
+
|
13 |
+
from torchao.quantization import (
|
14 |
+
int4_weight_only,
|
15 |
+
int8_weight_only,
|
16 |
+
int8_dynamic_activation_int8_weight,
|
17 |
+
quantize_,
|
18 |
+
autoquant,
|
19 |
+
)
|
20 |
+
from torchao.prototype.quant_llm import fp6_llm_weight_only
|
21 |
+
from torchao.sparsity import sparsify_, int8_dynamic_activation_int8_semi_sparse_weight
|
22 |
+
import argparse
|
23 |
+
|
24 |
+
|
25 |
+
PROMPT = "Eiffel Tower was Made up of more than 2 million translucent straws to look like a cloud, with the bell tower at the top of the building, Michel installed huge foam-making machines in the forest to blow huge amounts of unpredictable wet clouds in the building's classic architecture."
|
26 |
+
PREFIXES = {
|
27 |
+
"stabilityai/stable-diffusion-3-medium-diffusers": "sd3",
|
28 |
+
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS": "pixart",
|
29 |
+
"fal/AuraFlow": "auraflow",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
def flush():
|
34 |
+
gc.collect()
|
35 |
+
torch.cuda.empty_cache()
|
36 |
+
torch.cuda.reset_max_memory_allocated()
|
37 |
+
torch.cuda.reset_peak_memory_stats()
|
38 |
+
|
39 |
+
|
40 |
+
def profiler_runner(path, fn, *args, **kwargs):
|
41 |
+
with torch.profiler.profile(
|
42 |
+
activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA], record_shapes=True
|
43 |
+
) as prof:
|
44 |
+
result = fn(*args, **kwargs)
|
45 |
+
prof.export_chrome_trace(path)
|
46 |
+
return result
|
47 |
+
|
48 |
+
|
49 |
+
def load_pipeline(
|
50 |
+
ckpt_id: str,
|
51 |
+
fuse_attn_projections: bool,
|
52 |
+
compile: bool,
|
53 |
+
quantization: str,
|
54 |
+
sparsify: bool,
|
55 |
+
) -> DiffusionPipeline:
|
56 |
+
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, torch_dtype=torch.bfloat16).to("cuda")
|
57 |
+
|
58 |
+
if fuse_attn_projections:
|
59 |
+
pipeline.transformer.fuse_qkv_projections()
|
60 |
+
|
61 |
+
if quantization == "autoquant" and compile:
|
62 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
63 |
+
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
|
64 |
+
|
65 |
+
if not sparsify:
|
66 |
+
if quantization == "int8dq":
|
67 |
+
quantize_(pipeline.transformer, int8_dynamic_activation_int8_weight())
|
68 |
+
elif quantization == "int8wo":
|
69 |
+
quantize_(pipeline.transformer, int8_weight_only())
|
70 |
+
elif quantization == "int4wo":
|
71 |
+
quantize_(pipeline.transformer, int4_weight_only())
|
72 |
+
elif quantization == "fp6":
|
73 |
+
quantize_(pipeline.transformer, fp6_llm_weight_only())
|
74 |
+
elif quantization == "autoquant":
|
75 |
+
pipeline.transformer = autoquant(pipeline.transformer)
|
76 |
+
|
77 |
+
if sparsify:
|
78 |
+
sparsify_(pipeline.transformer, int8_dynamic_activation_int8_semi_sparse_weight())
|
79 |
+
|
80 |
+
if quantization != "autoquant" and compile:
|
81 |
+
pipeline.transformer.to(memory_format=torch.channels_last)
|
82 |
+
pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True)
|
83 |
+
|
84 |
+
pipeline.set_progress_bar_config(disable=True)
|
85 |
+
return pipeline
|
86 |
+
|
87 |
+
|
88 |
+
def run_inference(pipe, batch_size):
|
89 |
+
_ = pipe(
|
90 |
+
prompt=PROMPT,
|
91 |
+
num_images_per_prompt=batch_size,
|
92 |
+
generator=torch.manual_seed(2024),
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
def run_profile(pipeline, args):
|
97 |
+
for _ in range(5):
|
98 |
+
run_inference(pipeline, batch_size=args.batch_size)
|
99 |
+
|
100 |
+
ckpt_id = PREFIXES[args.ckpt_id]
|
101 |
+
prefix = f"ckpt@{ckpt_id}-bs@{args.batch_size}-fuse@{args.fuse_attn_projections}-compile@{args.compile}-quant@{args.quantization}-sparsify@{args.sparsify}"
|
102 |
+
trace_path = f"{prefix}_trace.json"
|
103 |
+
|
104 |
+
runner = functools.partial(profiler_runner, trace_path)
|
105 |
+
with torch.autograd.profiler.record_function("diffusers-torchao"):
|
106 |
+
runner(run_inference, pipeline, args.batch_size)
|
107 |
+
|
108 |
+
return trace_path
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
parser = argparse.ArgumentParser()
|
113 |
+
parser.add_argument("--ckpt_id", default="PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", type=str)
|
114 |
+
parser.add_argument("--fuse_attn_projections", action="store_true")
|
115 |
+
parser.add_argument("--compile", action="store_true")
|
116 |
+
parser.add_argument(
|
117 |
+
"--quantization",
|
118 |
+
default="None",
|
119 |
+
choices=["int8dq", "int8wo", "int4wo", "autoquant", "fp6", "None"],
|
120 |
+
help="Which quantization technique to apply",
|
121 |
+
)
|
122 |
+
parser.add_argument("--sparsify", action="store_true")
|
123 |
+
parser.add_argument("--batch_size", default=1, type=int, choices=[1, 4, 8])
|
124 |
+
args = parser.parse_args()
|
125 |
+
|
126 |
+
flush()
|
127 |
+
|
128 |
+
pipeline = load_pipeline(
|
129 |
+
ckpt_id=args.ckpt_id,
|
130 |
+
fuse_attn_projections=args.fuse_attn_projections,
|
131 |
+
compile=args.compile,
|
132 |
+
quantization=args.quantization,
|
133 |
+
sparsify=args.sparsify,
|
134 |
+
)
|
135 |
+
|
136 |
+
trace_path = run_profile(pipeline, args)
|
137 |
+
print(f"Trace path generated at: {trace_path}")
|