File size: 1,810 Bytes
0b935fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
#!/usr/bin/python3
""" Work in progress
Plan:
Read in fullword.json for list of works and token
Generate "proper" embedding for each token, and store in tensor file
Generate a tensor array of distance to every other token/embedding
Save it out
"""
import sys
import json
import torch
from safetensors.torch import save_file
from transformers import CLIPProcessor,CLIPModel
clipsrc="openai/clip-vit-large-patch14"
processor=None
model=None
device=torch.device("cuda")
def init():
global processor
global model
# Load the processor and model
print("loading processor from "+clipsrc,file=sys.stderr)
processor = CLIPProcessor.from_pretrained(clipsrc)
print("done",file=sys.stderr)
print("loading model from "+clipsrc,file=sys.stderr)
model = CLIPModel.from_pretrained(clipsrc)
print("done",file=sys.stderr)
model = model.to(device)
# Expect SINGLE WORD ONLY
def standard_embed_calc(text):
inputs = processor(text=text, return_tensors="pt")
inputs.to(device)
with torch.no_grad():
text_features = model.get_text_features(**inputs)
embedding = text_features[0]
return embedding
init()
print("read in words from json now",file=sys.stderr)
with open("fullword.json","r") as f:
tokendict = json.load(f)
print("generate embeddings for each now",file=sys.stderr)
count=1
all_embeddings = []
for word in tokendict.keys():
emb = standard_embed_calc(word)
emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
all_embeddings.append(emb)
count+=1
if (count %100) ==0:
print(count)
embs = torch.cat(all_embeddings,dim=0)
print("Shape of result = ",embs.shape)
print("Saving all the things...")
save_file({"embeddings": embs}, "embeddings.safetensors")
print("calculate distances now")
|