import sys print("Python Version:", sys.version) from dora import DoraStatus import pyarrow as pa from transformers import AutoProcessor, AutoModelForCausalLM,AutoTokenizer from PIL import Image import torch import gc CAMERA_WIDTH = 1280 CAMERA_HEIGHT = 720 #修改 # elements = 1555200 # # 一个可能的尺寸计算 # CAMERA_HEIGHT = 720 # CAMERA_WIDTH = elements // (3 * CAMERA_HEIGHT) # print(CAMERA_WIDTH) # PROCESSOR = AutoProcessor.from_pretrained("/home/peiji/Bunny-v1_0-2B-zh") tokenizer = AutoTokenizer.from_pretrained( '/mnt/c/Bunny-v1_0-2B-zh/', trust_remote_code=True) BAD_WORDS_IDS =tokenizer( ["", ""], add_special_tokens=False ).input_ids EOS_WORDS_IDS = tokenizer( "", add_special_tokens=False ).input_ids + [tokenizer.eos_token_id] # set device device = 'cuda' # or cpu torch.set_default_device(device) # create model model = AutoModelForCausalLM.from_pretrained( '/mnt/c/Bunny-v1_0-2B-zh/', torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True ) print("load bunny model finish") def ask_vlm(image, instruction): global model prompts = [ "User:", image, f"{instruction}.\n", "Assistant:", ] inputs = {k: torch.tensor(v).to("cuda") for k, v in PROCESSOR(prompts).items()} generated_ids = model.generate( **inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=25, repetition_penalty=1.2, ) generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True) gc.collect() torch.cuda.empty_cache() return generated_texts[0].split("\nAssistant: ")[1] import time class Operator: def __init__(self): self.image = None self.text = None def on_event( self, dora_event, send_output, ) -> DoraStatus: if dora_event["type"] == "INPUT": if dora_event["id"] == "image": self.image = ( dora_event["value"] .to_numpy() .reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) ) elif dora_event["id"] == "text": self.text = dora_event["value"][0].as_py() output = ask_vlm(self.image, self.text).lower() send_output( "speak", pa.array([output]), ) if "yes" in output: send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 50.0, 0.0]), ) time.sleep(2) send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0]), ) elif "no" in output: send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0]), ) time.sleep(2) send_output( "control", pa.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]), ) return DoraStatus.CONTINUE