import torch | |
from transformers import AutoProcessor, AutoModelForCausalLM, AwqConfig,AutoTokenizer | |
import numpy as np | |
import pyttsx3 | |
START_TO_COUCH = np.array([[0.5, 0], [0.5, 0.5]]).ravel() | |
COUCH_TO_KITCHEN = np.array([[0.5, -0.5], [1.0, -1.0]]).ravel() | |
KITCHEN_TO_START = np.array([[0.5, -0.5], [0, 0]]).ravel() | |
engine = pyttsx3.init("espeak") | |
voices = engine.getProperty("voices") | |
engine.setProperty("voice", voices[3].id) | |
def speak(text): | |
print(f"said {text}", flush=True) | |
engine.say(text) | |
engine.runAndWait() | |
speak("hello") | |
MODE = "fused_quantized" | |
DEVICE = "cuda" | |
# PROCESSOR = AutoProcessor.from_pretrained("/mnt/c/idefics2-8b-AWQ") | |
tokenizer = AutoTokenizer.from_pretrained( | |
'/home/peiji/Bunny-v1_0-2B-zh/', | |
trust_remote_code=True) | |
BAD_WORDS_IDS = tokenizer( | |
["<image>", "<fake_token_around_image>"], add_special_tokens=False | |
).input_ids | |
EOS_WORDS_IDS = tokenizer( | |
"<end_of_utterance>", add_special_tokens=False | |
).input_ids + [tokenizer.eos_token_id] | |
# set device | |
device = 'cuda' # or cpu | |
torch.set_default_device(device) | |
# create model | |
model = AutoModelForCausalLM.from_pretrained( | |
'/home/peiji/Bunny-v1_0-2B-zh/', | |
torch_dtype=torch.float16, # float32 for cpu | |
device_map='auto', | |
trust_remote_code=True | |
) | |
print("load bunny model finish") | |
# # Load model | |
# if MODE == "regular": | |
# model = AutoModelForVision2Seq.from_pretrained( | |
# "/mnt/c/idefics2-8b-AWQ", | |
# torch_dtype=torch.float16, | |
# trust_remote_code=True, | |
# _attn_implementation="flash_attention_2", | |
# revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d", | |
# ).to(DEVICE) | |
# elif MODE == "quantized": | |
# quant_path = "/mnt/c/idefics2-8b-AWQ" | |
# model = AutoModelForVision2Seq.from_pretrained( | |
# quant_path, trust_remote_code=True | |
# ).to(DEVICE) | |
# elif MODE == "fused_quantized": | |
# quant_path = "/mnt/c/idefics2-8b-AWQ" | |
# quantization_config = AwqConfig( | |
# bits=4, | |
# fuse_max_seq_len=4096, | |
# modules_to_fuse={ | |
# "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], | |
# "mlp": ["gate_proj", "up_proj", "down_proj"], | |
# "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], | |
# "use_alibi": False, | |
# "num_attention_heads": 32, | |
# "num_key_value_heads": 8, | |
# "hidden_size": 4096, | |
# }, | |
# ) | |
# model = AutoModelForVision2Seq.from_pretrained( | |
# quant_path, quantization_config=quantization_config, trust_remote_code=True | |
# ).to(DEVICE) | |
# else: | |
# raise ValueError("Unknown mode") | |
# def reset_awq_cache(model): | |
# """ | |
# Simple method to reset the AWQ fused modules cache | |
# """ | |
# from awq.modules.fused.attn import QuantAttentionFused | |
# for name, module in model.named_modules(): | |
# if isinstance(module, QuantAttentionFused): | |
# module.start_pos = 0 | |
def ask_vlm(image, instruction): | |
prompts = [ | |
"User:", | |
image, | |
f"{instruction}.<end_of_utterance>\n", | |
"Assistant:", | |
] | |
speak(instruction) | |
inputs = tokenizer(prompts) | |
inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()} | |
generated_ids = model.generate( | |
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=50 | |
) | |
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
text = generated_texts[0].split("\nAssistant: ")[1] | |
# reset_awq_cache(model) | |
speak(text) | |
return text | |
# import requests | |
# import torch | |
# from PIL import Image | |
# from io import BytesIO | |
# def download_image(url): | |
# try: | |
# # Send a GET request to the URL to download the image | |
# response = requests.get(url) | |
# # Check if the request was successful (status code 200) | |
# if response.status_code == 200: | |
# # Open the image using PIL | |
# image = Image.open(BytesIO(response.content)) | |
# # Return the PIL image object | |
# return image | |
# else: | |
# print(f"Failed to download image. Status code: {response.status_code}") | |
# return None | |
# except Exception as e: | |
# print(f"An error occurred: {e}") | |
# return None | |
# # Create inputs | |
# image1 = download_image( | |
# "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" | |
# ) | |
# print(ask_vlm(image1, "What is this?")) | |