|
from dora import DoraStatus |
|
import pyarrow as pa |
|
from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig |
|
import torch |
|
import time |
|
import awq_ext |
|
CAMERA_WIDTH = 960 |
|
CAMERA_HEIGHT = 540 |
|
PROCESSOR = AutoProcessor.from_pretrained("/home/peiji/idefics2-8b-AWQ") |
|
BAD_WORDS_IDS = PROCESSOR.tokenizer( |
|
["<image>", "<fake_token_around_image>"], add_special_tokens=False |
|
).input_ids |
|
EOS_WORDS_IDS = PROCESSOR.tokenizer( |
|
"<end_of_utterance>", add_special_tokens=False |
|
).input_ids + [PROCESSOR.tokenizer.eos_token_id] |
|
model = AutoModelForVision2Seq.from_pretrained( |
|
"/home/peiji/idefics2-8b-AWQ", |
|
quantization_config=AwqConfig( |
|
bits=4, |
|
fuse_max_seq_len=4096, |
|
modules_to_fuse={ |
|
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"], |
|
"mlp": ["gate_proj", "up_proj", "down_proj"], |
|
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], |
|
"use_alibi": False, |
|
"num_attention_heads": 32, |
|
"num_key_value_heads": 8, |
|
"hidden_size": 4096, |
|
}, |
|
), |
|
trust_remote_code=True, |
|
).to("cuda") |
|
|
|
|
|
def reset_awq_cache(model): |
|
""" |
|
Simple method to reset the AWQ fused modules cache |
|
""" |
|
from awq.modules.fused.attn import QuantAttentionFused |
|
|
|
for name, module in model.named_modules(): |
|
if isinstance(module, QuantAttentionFused): |
|
module.start_pos = 0 |
|
|
|
|
|
def ask_vlm(image, instruction): |
|
global model |
|
prompts = [ |
|
"User:", |
|
image, |
|
f"{instruction}.<end_of_utterance>\n", |
|
"Assistant:", |
|
] |
|
inputs = {k: torch.tensor(v).to("cuda") for k, v in PROCESSOR(prompts).items()} |
|
|
|
generated_ids = model.generate( |
|
**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=25, repetition_penalty=1.2 |
|
) |
|
generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True) |
|
reset_awq_cache(model) |
|
return generated_texts[0].split("\nAssistant: ")[1] |
|
|
|
|
|
class Operator: |
|
def __init__(self): |
|
self.state = "person" |
|
self.last_output = False |
|
|
|
def on_event( |
|
self, |
|
dora_event, |
|
send_output, |
|
) -> DoraStatus: |
|
if dora_event["type"] == "INPUT": |
|
image = ( |
|
dora_event["value"].to_numpy().reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3)) |
|
) |
|
|
|
if self.state == "person": |
|
output = ask_vlm(image, "Can you read the note?").lower() |
|
print(output, flush=True) |
|
if "coffee" in output or "tea" in output or "water" in output: |
|
send_output( |
|
"control", |
|
pa.array([-3.0, 0.0, 0.0, 0.8, 0.0, 10.0, 180.0]), |
|
) |
|
send_output( |
|
"speak", |
|
pa.array([output + ". Going to the kitchen."]), |
|
) |
|
time.sleep(10) |
|
self.state = "coffee" |
|
self.last_output = False |
|
elif not self.last_output: |
|
self.last_output = True |
|
send_output( |
|
"speak", |
|
pa.array([output]), |
|
) |
|
time.sleep(4) |
|
|
|
elif self.state == "coffee": |
|
output = ask_vlm(image, "Is there a person with a hands up?").lower() |
|
print(output, flush=True) |
|
if "yes" in output: |
|
send_output( |
|
"speak", |
|
pa.array([output + ". Going to the office."]), |
|
) |
|
send_output( |
|
"control", |
|
pa.array([2.0, 0.0, 0.0, 0.8, 0.0, 10.0, 0.0]), |
|
) |
|
time.sleep(10) |
|
self.state = "person" |
|
self.last_output = False |
|
elif not self.last_output: |
|
self.last_output = True |
|
send_output( |
|
"speak", |
|
pa.array([output]), |
|
) |
|
time.sleep(4) |
|
|
|
return DoraStatus.CONTINUE |
|
|