nflechas commited on
Commit
2a0c9c3
1 Parent(s): 089e84d

dataset uploaded by roboflow2huggingface package

Browse files
README.dataset.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # GARBAGE CLASSIFICATION 3 > GC1
2
+ https://universe.roboflow.com/object-detection/garbage-classification-3
3
+
4
+ Provided by Roboflow
5
+ License: CC BY 4.0
6
+
7
+ # Garbage Object-Detection to Identify Disposal Class
8
+ This dataset detects various kinds of waste, labeling with a class that indentifies how it should be disposed
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - object-detection
4
+ tags:
5
+ - roboflow
6
+ - roboflow2huggingface
7
+ - Manufacturing
8
+ ---
9
+
10
+ <div align="center">
11
+ <img width="640" alt="nflechas/recycling_app" src="https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/thumbnail.jpg">
12
+ </div>
13
+
14
+ ### Dataset Labels
15
+
16
+ ```
17
+ ['biodegradable', 'cardboard', 'glass', 'metal', 'paper', 'plastic']
18
+ ```
19
+
20
+
21
+ ### Number of Images
22
+
23
+ ```json
24
+ {'valid': 2098, 'test': 1042, 'train': 7324}
25
+ ```
26
+
27
+
28
+ ### How to Use
29
+
30
+ - Install [datasets](https://pypi.org/project/datasets/):
31
+
32
+ ```bash
33
+ pip install datasets
34
+ ```
35
+
36
+ - Load the dataset:
37
+
38
+ ```python
39
+ from datasets import load_dataset
40
+
41
+ ds = load_dataset("nflechas/recycling_app", name="full")
42
+ example = ds['train'][0]
43
+ ```
44
+
45
+ ### Roboflow Dataset Page
46
+ [https://universe.roboflow.com/material-identification/garbage-classification-3/dataset/2](https://universe.roboflow.com/material-identification/garbage-classification-3/dataset/2?ref=roboflow2huggingface)
47
+
48
+ ### Citation
49
+
50
+ ```
51
+ @misc{ garbage-classification-3_dataset,
52
+ title = { GARBAGE CLASSIFICATION 3 Dataset },
53
+ type = { Open Source Dataset },
54
+ author = { Material Identification },
55
+ howpublished = { \\url{ https://universe.roboflow.com/material-identification/garbage-classification-3 } },
56
+ url = { https://universe.roboflow.com/material-identification/garbage-classification-3 },
57
+ journal = { Roboflow Universe },
58
+ publisher = { Roboflow },
59
+ year = { 2022 },
60
+ month = { mar },
61
+ note = { visited on 2023-03-31 },
62
+ }
63
+ ```
64
+
65
+ ### License
66
+ CC BY 4.0
67
+
68
+ ### Dataset Summary
69
+ This dataset was exported via roboflow.com on July 27, 2022 at 5:44 AM GMT
70
+
71
+ Roboflow is an end-to-end computer vision platform that helps you
72
+ * collaborate with your team on computer vision projects
73
+ * collect & organize images
74
+ * understand unstructured image data
75
+ * annotate, and create datasets
76
+ * export, train, and deploy computer vision models
77
+ * use active learning to improve your dataset over time
78
+
79
+ It includes 10464 images.
80
+ GARBAGE-GARBAGE-CLASSIFICATION are annotated in COCO format.
81
+
82
+ The following pre-processing was applied to each image:
83
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
84
+ * Resize to 416x416 (Stretch)
85
+
86
+ The following augmentation was applied to create 1 versions of each source image:
87
+ * 50% probability of horizontal flip
88
+ * 50% probability of vertical flip
89
+ * Equal probability of one of the following 90-degree rotations: none, clockwise, counter-clockwise, upside-down
90
+
91
+
92
+
README.roboflow.txt ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ GARBAGE CLASSIFICATION 3 - v2 GC1
3
+ ==============================
4
+
5
+ This dataset was exported via roboflow.com on July 27, 2022 at 5:44 AM GMT
6
+
7
+ Roboflow is an end-to-end computer vision platform that helps you
8
+ * collaborate with your team on computer vision projects
9
+ * collect & organize images
10
+ * understand unstructured image data
11
+ * annotate, and create datasets
12
+ * export, train, and deploy computer vision models
13
+ * use active learning to improve your dataset over time
14
+
15
+ It includes 10464 images.
16
+ GARBAGE-GARBAGE-CLASSIFICATION are annotated in COCO format.
17
+
18
+ The following pre-processing was applied to each image:
19
+ * Auto-orientation of pixel data (with EXIF-orientation stripping)
20
+ * Resize to 416x416 (Stretch)
21
+
22
+ The following augmentation was applied to create 1 versions of each source image:
23
+ * 50% probability of horizontal flip
24
+ * 50% probability of vertical flip
25
+ * Equal probability of one of the following 90-degree rotations: none, clockwise, counter-clockwise, upside-down
26
+
27
+
data/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f0e70a37d9e4cd0b926a98c6a0deeb720465b5fecb5c0385bcd1bd803ec1fbd
3
+ size 19639153
data/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adfe6cd26e4b76801d15ff6f0c3d1bef12c53894a4507ec99f4d27e6d6be973a
3
+ size 137708705
data/valid-mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8df57e2ffd38271509aef1c3f28ce56601e57543fa65e7c3ce474c306e0c24a1
3
+ size 50875
data/valid.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8751fdac7d27f956b1d7e3182349c042bad4006f18c6df78869640581d30341
3
+ size 38312703
recycling_app.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import json
3
+ import os
4
+
5
+ import datasets
6
+
7
+
8
+ _HOMEPAGE = "https://universe.roboflow.com/material-identification/garbage-classification-3/dataset/2"
9
+ _LICENSE = "CC BY 4.0"
10
+ _CITATION = """\
11
+ @misc{ garbage-classification-3_dataset,
12
+ title = { GARBAGE CLASSIFICATION 3 Dataset },
13
+ type = { Open Source Dataset },
14
+ author = { Material Identification },
15
+ howpublished = { \\url{ https://universe.roboflow.com/material-identification/garbage-classification-3 } },
16
+ url = { https://universe.roboflow.com/material-identification/garbage-classification-3 },
17
+ journal = { Roboflow Universe },
18
+ publisher = { Roboflow },
19
+ year = { 2022 },
20
+ month = { mar },
21
+ note = { visited on 2023-03-31 },
22
+ }
23
+ """
24
+ _CATEGORIES = ['biodegradable', 'cardboard', 'glass', 'metal', 'paper', 'plastic']
25
+ _ANNOTATION_FILENAME = "_annotations.coco.json"
26
+
27
+
28
+ class RECYCLING_APPConfig(datasets.BuilderConfig):
29
+ """Builder Config for recycling_app"""
30
+
31
+ def __init__(self, data_urls, **kwargs):
32
+ """
33
+ BuilderConfig for recycling_app.
34
+
35
+ Args:
36
+ data_urls: `dict`, name to url to download the zip file from.
37
+ **kwargs: keyword arguments forwarded to super.
38
+ """
39
+ super(RECYCLING_APPConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
40
+ self.data_urls = data_urls
41
+
42
+
43
+ class RECYCLING_APP(datasets.GeneratorBasedBuilder):
44
+ """recycling_app object detection dataset"""
45
+
46
+ VERSION = datasets.Version("1.0.0")
47
+ BUILDER_CONFIGS = [
48
+ RECYCLING_APPConfig(
49
+ name="full",
50
+ description="Full version of recycling_app dataset.",
51
+ data_urls={
52
+ "train": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/train.zip",
53
+ "validation": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid.zip",
54
+ "test": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/test.zip",
55
+ },
56
+ ),
57
+ RECYCLING_APPConfig(
58
+ name="mini",
59
+ description="Mini version of recycling_app dataset.",
60
+ data_urls={
61
+ "train": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid-mini.zip",
62
+ "validation": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid-mini.zip",
63
+ "test": "https://huggingface.co/datasets/nflechas/recycling_app/resolve/main/data/valid-mini.zip",
64
+ },
65
+ )
66
+ ]
67
+
68
+ def _info(self):
69
+ features = datasets.Features(
70
+ {
71
+ "image_id": datasets.Value("int64"),
72
+ "image": datasets.Image(),
73
+ "width": datasets.Value("int32"),
74
+ "height": datasets.Value("int32"),
75
+ "objects": datasets.Sequence(
76
+ {
77
+ "id": datasets.Value("int64"),
78
+ "area": datasets.Value("int64"),
79
+ "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
80
+ "category": datasets.ClassLabel(names=_CATEGORIES),
81
+ }
82
+ ),
83
+ }
84
+ )
85
+ return datasets.DatasetInfo(
86
+ features=features,
87
+ homepage=_HOMEPAGE,
88
+ citation=_CITATION,
89
+ license=_LICENSE,
90
+ )
91
+
92
+ def _split_generators(self, dl_manager):
93
+ data_files = dl_manager.download_and_extract(self.config.data_urls)
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "folder_dir": data_files["train"],
99
+ },
100
+ ),
101
+ datasets.SplitGenerator(
102
+ name=datasets.Split.VALIDATION,
103
+ gen_kwargs={
104
+ "folder_dir": data_files["validation"],
105
+ },
106
+ ),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "folder_dir": data_files["test"],
111
+ },
112
+ ),
113
+ ]
114
+
115
+ def _generate_examples(self, folder_dir):
116
+ def process_annot(annot, category_id_to_category):
117
+ return {
118
+ "id": annot["id"],
119
+ "area": annot["area"],
120
+ "bbox": annot["bbox"],
121
+ "category": category_id_to_category[annot["category_id"]],
122
+ }
123
+
124
+ image_id_to_image = {}
125
+ idx = 0
126
+
127
+ annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
128
+ with open(annotation_filepath, "r") as f:
129
+ annotations = json.load(f)
130
+ category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
131
+ image_id_to_annotations = collections.defaultdict(list)
132
+ for annot in annotations["annotations"]:
133
+ image_id_to_annotations[annot["image_id"]].append(annot)
134
+ filename_to_image = {image["file_name"]: image for image in annotations["images"]}
135
+
136
+ for filename in os.listdir(folder_dir):
137
+ filepath = os.path.join(folder_dir, filename)
138
+ if filename in filename_to_image:
139
+ image = filename_to_image[filename]
140
+ objects = [
141
+ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
142
+ ]
143
+ with open(filepath, "rb") as f:
144
+ image_bytes = f.read()
145
+ yield idx, {
146
+ "image_id": image["id"],
147
+ "image": {"path": filepath, "bytes": image_bytes},
148
+ "width": image["width"],
149
+ "height": image["height"],
150
+ "objects": objects,
151
+ }
152
+ idx += 1
split_name_to_num_samples.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"valid": 2098, "test": 1042, "train": 7324}
thumbnail.jpg ADDED

Git LFS Details

  • SHA256: 6ed7178c3b18fd996257be5bec5dce3970eddee26bae464744bfb5f69f22cec3
  • Pointer size: 130 Bytes
  • Size of remote file: 87.8 kB