File size: 5,746 Bytes
cf92b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa7538
cf92b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa7538
cf92b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa7538
cf92b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa7538
cf92b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda962e
 
cf92b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""WineOrigin Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {}

DESCRIPTION = "WineOrigin dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/108/wine_origin+database+generator+version+2"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/108/wine_origin+database+generator+version+2")
_CITATION = """
@misc{misc_wine_origin_database_generator_(version_2)_108,
  author       = {Breiman,L. & Stone,C.J.},
  title        = {{Waveform Database Generator (Version 2)}},
  year         = {1988},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C56014}}
}
"""

# Dataset info
urls_per_split = {
	"train": "https://huggingface.co/datasets/mstz/wine_origin/raw/main/wine.data"
}
features_types_per_config = {
	"wine_origin": {
		"malic_acid": datasets.Value("float64"),
		"ash": datasets.Value("float64"),
		"alcalinity_of_ash": datasets.Value("float64"),
		"magnesium": datasets.Value("float64"),
		"phenols": datasets.Value("float64"),
		"flavanoids": datasets.Value("float64"),
		"nonflavanoid_phenols": datasets.Value("float64"),
		"proanthocyanins": datasets.Value("float64"),
		"color_intensity": datasets.Value("float64"),
		"hue": datasets.Value("float64"),
		"diluted_wines": datasets.Value("float64"),
		"proline": datasets.Value("float64"),
		"unknown": datasets.Value("int64"),
		"class": datasets.ClassLabel(num_classes=3)
	},
	"wine_origin_0": {
		"malic_acid": datasets.Value("float64"),
		"ash": datasets.Value("float64"),
		"alcalinity_of_ash": datasets.Value("float64"),
		"magnesium": datasets.Value("float64"),
		"phenols": datasets.Value("float64"),
		"flavanoids": datasets.Value("float64"),
		"nonflavanoid_phenols": datasets.Value("float64"),
		"proanthocyanins": datasets.Value("float64"),
		"color_intensity": datasets.Value("float64"),
		"hue": datasets.Value("float64"),
		"diluted_wines": datasets.Value("float64"),
		"proline": datasets.Value("float64"),
		"unknown": datasets.Value("int64"),
		"class": datasets.ClassLabel(num_classes=2)
	},
	"wine_origin_1": {
		"malic_acid": datasets.Value("float64"),
		"ash": datasets.Value("float64"),
		"alcalinity_of_ash": datasets.Value("float64"),
		"magnesium": datasets.Value("float64"),
		"phenols": datasets.Value("float64"),
		"flavanoids": datasets.Value("float64"),
		"nonflavanoid_phenols": datasets.Value("float64"),
		"proanthocyanins": datasets.Value("float64"),
		"color_intensity": datasets.Value("float64"),
		"hue": datasets.Value("float64"),
		"diluted_wines": datasets.Value("float64"),
		"proline": datasets.Value("float64"),
		"unknown": datasets.Value("int64"),
		"class": datasets.ClassLabel(num_classes=2)
	},
	"wine_origin_2": {
		"malic_acid": datasets.Value("float64"),
		"ash": datasets.Value("float64"),
		"alcalinity_of_ash": datasets.Value("float64"),
		"magnesium": datasets.Value("float64"),
		"phenols": datasets.Value("float64"),
		"flavanoids": datasets.Value("float64"),
		"nonflavanoid_phenols": datasets.Value("float64"),
		"proanthocyanins": datasets.Value("float64"),
		"color_intensity": datasets.Value("float64"),
		"hue": datasets.Value("float64"),
		"diluted_wines": datasets.Value("float64"),
		"proline": datasets.Value("float64"),
		"unknown": datasets.Value("int64"),
		"class": datasets.ClassLabel(num_classes=2)
	},

}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class WineOriginConfig(datasets.BuilderConfig):
	def __init__(self, **kwargs):
		super(WineOriginConfig, self).__init__(version=VERSION, **kwargs)
		self.features = features_per_config[kwargs["name"]]


class WineOrigin(datasets.GeneratorBasedBuilder):
	# dataset versions
	DEFAULT_CONFIG = "wine_origin"
	BUILDER_CONFIGS = [
		WineOriginConfig(name="wine_origin", description="WineOrigin for multiclass classification."),
		WineOriginConfig(name="wine_origin_0", description="WineOrigin for binary classification."),
		WineOriginConfig(name="wine_origin_1", description="WineOrigin for binary classification."),
		WineOriginConfig(name="wine_origin_2", description="WineOrigin for binary classification."),
		
	]


	def _info(self):
		info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
									features=features_per_config[self.config.name])

		return info
	
	def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
		downloads = dl_manager.download_and_extract(urls_per_split)

		return [
			datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
		]
	
	def _generate_examples(self, filepath: str):
		data = pandas.read_csv(filepath)
		data = self.preprocess(data)

		for row_id, row in data.iterrows():
			data_row = dict(row)

			yield row_id, data_row

	def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
		data["class"] = data["class"].apply(lambda x: x - 1)

		if self.config.name == "wine_origin_0":
			data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
		elif self.config.name == "wine_origin_1":
			data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
		elif self.config.name == "wine_origin_2":
			data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)

		for feature in _ENCODING_DICS:
			encoding_function = partial(self.encode, feature)
			data.loc[:, feature] = data[feature].apply(encoding_function)
				
		return data[list(features_types_per_config[self.config.name].keys())]

	def encode(self, feature, value):
		if feature in _ENCODING_DICS:
			return _ENCODING_DICS[feature][value]
		raise ValueError(f"Unknown feature: {feature}")