mstz commited on
Commit
c5979f4
1 Parent(s): 0742aeb

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +17 -0
  2. Wine_Quality_Data.csv +0 -0
  3. wine.py +107 -0
README.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - wine
6
+ - tabular_classification
7
+ - binary_classification
8
+ pretty_name: Compas
9
+ size_categories:
10
+ - 1K<n<10K
11
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
12
+ - tabular-classification
13
+ configs:
14
+ - wine
15
+ ---
16
+ # Wine
17
+ The [Wine dataset](https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data) is cool.
Wine_Quality_Data.csv ADDED
The diff for this file is too large to render. See raw diff
 
wine.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Wine Dataset"""
2
+
3
+ from typing import List
4
+
5
+ import datasets
6
+
7
+ import pandas
8
+
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+ _BASE_FEATURE_NAMES = [
12
+ "fixed_acidity",
13
+ "volatile_acidity",
14
+ "citric_acid",
15
+ "residual_sugar",
16
+ "chlorides",
17
+ "free_sulfur_dioxide",
18
+ "total_sulfur_dioxide",
19
+ "density",
20
+ "pH",
21
+ "sulphates",
22
+ "alcohol",
23
+ "quality",
24
+ "color"
25
+ ]
26
+
27
+
28
+ DESCRIPTION = "Wine quality dataset."
29
+ _HOMEPAGE = "https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data"
30
+ _URLS = ("https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data")
31
+ _CITATION = """"""
32
+
33
+ # Dataset info
34
+ urls_per_split = {
35
+ "train": "https://huggingface.co/datasets/mstz/wine/raw/main/Wine_Quality_Data.csv",
36
+ }
37
+ features_types_per_config = {
38
+ "wine": {
39
+ "fixed_acidity": datasets.Value("float64"),
40
+ "volatile_acidity": datasets.Value("float64"),
41
+ "citric_acid": datasets.Value("float64"),
42
+ "residual_sugar": datasets.Value("float64"),
43
+ "chlorides": datasets.Value("float64"),
44
+ "free_sulfur_dioxide": datasets.Value("float64"),
45
+ "total_sulfur_dioxide": datasets.Value("float64"),
46
+ "density": datasets.Value("float64"),
47
+ "pH": datasets.Value("float64"),
48
+ "sulphates": datasets.Value("float64"),
49
+ "alcohol": datasets.Value("float64"),
50
+ "quality": datasets.Value("int8"),
51
+ "color": datasets.ClassLabel(num_classes=2, names=("red", "white"))
52
+ }
53
+
54
+ }
55
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
56
+
57
+
58
+ class WineConfig(datasets.BuilderConfig):
59
+ def __init__(self, **kwargs):
60
+ super(WineConfig, self).__init__(version=VERSION, **kwargs)
61
+ self.features = features_per_config[kwargs["name"]]
62
+
63
+
64
+ class Wine(datasets.GeneratorBasedBuilder):
65
+ # dataset versions
66
+ DEFAULT_CONFIG = "wine"
67
+ BUILDER_CONFIGS = [
68
+ WineConfig(name="wine",
69
+ description="Binary classification."),
70
+ ]
71
+
72
+
73
+ def _info(self):
74
+ if self.config.name not in features_per_config:
75
+ raise ValueError(f"Unknown configuration: {self.config.name}")
76
+
77
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
78
+ features=features_per_config[self.config.name])
79
+
80
+ return info
81
+
82
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
83
+ downloads = dl_manager.download_and_extract(urls_per_split)
84
+
85
+ return [
86
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
87
+ ]
88
+
89
+ def _generate_examples(self, filepath: str):
90
+ data = pandas.read_csv(filepath)
91
+ data = self.preprocess(data, config=self.config.name)
92
+
93
+ for row_id, row in data.iterrows():
94
+ data_row = dict(row)
95
+
96
+ yield row_id, data_row
97
+
98
+ def preprocess(self, data: pandas.DataFrame, config: str = "wine") -> pandas.DataFrame:
99
+ data.loc[data.color == "red", "color"] = 0
100
+ data.loc[data.color == "white", "color"] = 1
101
+
102
+ data.columns = _BASE_FEATURE_NAMES
103
+
104
+ if config == "wine":
105
+ return data
106
+ else:
107
+ raise ValueError(f"Unknown config: {config}")