speeddating / speeddating.py
mstz's picture
Update speeddating.py
5f5a38e
"""Speeddating Dataset"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"is_dater_male",
"dater_age",
"dated_age",
"age_difference",
"dater_race",
"dated_race",
"are_same_race",
"same_race_importance_for_dater",
"same_religion_importance_for_dater",
"attractiveness_importance_for_dated",
"sincerity_importance_for_dated",
"intelligence_importance_for_dated",
"humor_importance_for_dated",
"ambition_importance_for_dated",
"shared_interests_importance_for_dated",
"attractiveness_score_of_dater_from_dated",
"sincerity_score_of_dater_from_dated",
"intelligence_score_of_dater_from_dated",
"humor_score_of_dater_from_dated",
"ambition_score_of_dater_from_dated",
"shared_interests_score_of_dater_from_dated",
"attractiveness_importance_for_dater",
"sincerity_importance_for_dater",
"intelligence_importance_for_dater",
"humor_importance_for_dater",
"ambition_importance_for_dater",
"shared_interests_importance_for_dater",
"self_reported_attractiveness_of_dater",
"self_reported_sincerity_of_dater",
"self_reported_intelligence_of_dater",
"self_reported_humor_of_dater",
"self_reported_ambition_of_dater",
"reported_attractiveness_of_dated_from_dater",
"reported_sincerity_of_dated_from_dater",
"reported_intelligence_of_dated_from_dater",
"reported_humor_of_dated_from_dater",
"reported_ambition_of_dated_from_dater",
"reported_shared_interests_of_dated_from_dater",
"dater_interest_in_sports",
"dater_interest_in_tvsports",
"dater_interest_in_exercise",
"dater_interest_in_dining",
"dater_interest_in_museums",
"dater_interest_in_art",
"dater_interest_in_hiking",
"dater_interest_in_gaming",
"dater_interest_in_clubbing",
"dater_interest_in_reading",
"dater_interest_in_tv",
"dater_interest_in_theater",
"dater_interest_in_movies",
"dater_interest_in_concerts",
"dater_interest_in_music",
"dater_interest_in_shopping",
"dater_interest_in_yoga",
"interests_correlation",
"expected_satisfaction_of_dater",
"expected_number_of_likes_of_dater_from_20_people",
"expected_number_of_dates_for_dater",
"dater_liked_dated",
"probability_dated_wants_to_date",
"already_met_before",
"dater_wants_to_date",
"dated_wants_to_date",
"is_match"
]
DESCRIPTION = "Speed-dating dataset."
_HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
_URLS = ("https://huggingface.co/datasets/mstz/speeddating/raw/main/speeddating.csv")
_CITATION = """"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/speeddating/raw/main/speeddating.csv",
}
features_types_per_config = {
"dating": {
"is_dater_male": datasets.Value("bool"),
"dater_age": datasets.Value("int8"),
"dated_age": datasets.Value("int8"),
"age_difference": datasets.Value("int8"),
"dater_race": datasets.Value("string"),
"dated_race": datasets.Value("string"),
"are_same_race": datasets.Value("bool"),
"same_race_importance_for_dater": datasets.Value("float64"),
"same_religion_importance_for_dater": datasets.Value("float64"),
"attractiveness_importance_for_dated": datasets.Value("float64"),
"sincerity_importance_for_dated": datasets.Value("float64"),
"intelligence_importance_for_dated": datasets.Value("float64"),
"humor_importance_for_dated": datasets.Value("float64"),
"ambition_importance_for_dated": datasets.Value("float64"),
"shared_interests_importance_for_dated": datasets.Value("float64"),
"attractiveness_score_of_dater_from_dated": datasets.Value("float64"),
"sincerity_score_of_dater_from_dated": datasets.Value("float64"),
"intelligence_score_of_dater_from_dated": datasets.Value("float64"),
"humor_score_of_dater_from_dated": datasets.Value("float64"),
"ambition_score_of_dater_from_dated": datasets.Value("float64"),
"shared_interests_score_of_dater_from_dated": datasets.Value("float64"),
"attractiveness_importance_for_dater": datasets.Value("float64"),
"sincerity_importance_for_dater": datasets.Value("float64"),
"intelligence_importance_for_dater": datasets.Value("float64"),
"humor_importance_for_dater": datasets.Value("float64"),
"ambition_importance_for_dater": datasets.Value("float64"),
"shared_interests_importance_for_dater": datasets.Value("float64"),
"self_reported_attractiveness_of_dater": datasets.Value("float64"),
"self_reported_sincerity_of_dater": datasets.Value("float64"),
"self_reported_intelligence_of_dater": datasets.Value("float64"),
"self_reported_humor_of_dater": datasets.Value("float64"),
"self_reported_ambition_of_dater": datasets.Value("float64"),
"reported_attractiveness_of_dated_from_dater": datasets.Value("float64"),
"reported_sincerity_of_dated_from_dater": datasets.Value("float64"),
"reported_intelligence_of_dated_from_dater": datasets.Value("float64"),
"reported_humor_of_dated_from_dater": datasets.Value("float64"),
"reported_ambition_of_dated_from_dater": datasets.Value("float64"),
"reported_shared_interests_of_dated_from_dater": datasets.Value("float64"),
"dater_interest_in_sports": datasets.Value("float64"),
"dater_interest_in_tvsports": datasets.Value("float64"),
"dater_interest_in_exercise": datasets.Value("float64"),
"dater_interest_in_dining": datasets.Value("float64"),
"dater_interest_in_museums": datasets.Value("float64"),
"dater_interest_in_art": datasets.Value("float64"),
"dater_interest_in_hiking": datasets.Value("float64"),
"dater_interest_in_gaming": datasets.Value("float64"),
"dater_interest_in_clubbing": datasets.Value("float64"),
"dater_interest_in_reading": datasets.Value("float64"),
"dater_interest_in_tv": datasets.Value("float64"),
"dater_interest_in_theater": datasets.Value("float64"),
"dater_interest_in_movies": datasets.Value("float64"),
"dater_interest_in_concerts": datasets.Value("float64"),
"dater_interest_in_music": datasets.Value("float64"),
"dater_interest_in_shopping": datasets.Value("float64"),
"dater_interest_in_yoga": datasets.Value("float64"),
"interests_correlation": datasets.Value("float64"),
"expected_satisfaction_of_dater": datasets.Value("float64"),
"expected_number_of_likes_of_dater_from_20_people": datasets.Value("int8"),
"expected_number_of_dates_for_dater": datasets.Value("int8"),
"dater_liked_dated": datasets.Value("float64"),
"probability_dated_wants_to_date": datasets.Value("float64"),
"already_met_before": datasets.Value("bool"),
"dater_wants_to_date": datasets.Value("bool"),
"dated_wants_to_date": datasets.Value("bool"),
"is_match": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class SpeeddatingConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(SpeeddatingConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Speeddating(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "dating"
BUILDER_CONFIGS = [
SpeeddatingConfig(name="dating",
description="Binary classification."),
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
data.loc[data.race == "?", "race"] = "unknown"
data.loc[data.race_o == "?", "race_o"] = "unknown"
data.loc[data.race == "Asian/Pacific Islander/Asian-American", "race"] = "asian"
data.loc[data.race_o == "Asian/Pacific Islander/Asian-American", "race_o"] = "asian"
data.loc[data.race == "European/Caucasian-American", "race"] = "caucasian"
data.loc[data.race_o == "European/Caucasian-American", "race_o"] = "caucasian"
data.loc[data.race == "Other", "race"] = "other"
data.loc[data.race_o == "Other", "race_o"] = "other"
data.loc[data.race == "Latino/Hispanic American", "race"] = "hispanic"
data.loc[data.race_o == "Latino/Hispanic American", "race_o"] = "hispanic"
data.loc[data.race == "Black/African American", "race"] = "african-american"
data.loc[data.race_o == "Black/African American", "race_o"] = "african-american"
data = data.rename(columns={"gender": "is_dater_male"})
data.loc[:, "is_dater_male"] = data.is_dater_male.apply(lambda x: 1 if x == "male" else 0)
data.drop("has_null", axis="columns", inplace=True)
data.drop("field", axis="columns", inplace=True)
data.drop("wave", axis="columns", inplace=True)
# data.drop("d_age", axis="columns", inplace=True)
data.drop("d_d_age", axis="columns", inplace=True)
data.drop("d_importance_same_race", axis="columns", inplace=True)
data.drop("d_importance_same_religion", axis="columns", inplace=True)
data.drop("d_pref_o_attractive", axis="columns", inplace=True)
data.drop("d_pref_o_sincere", axis="columns", inplace=True)
data.drop("d_pref_o_intelligence", axis="columns", inplace=True)
data.drop("d_pref_o_funny", axis="columns", inplace=True)
data.drop("d_pref_o_ambitious", axis="columns", inplace=True)
data.drop("d_pref_o_shared_interests", axis="columns", inplace=True)
data.drop("d_attractive_o", axis="columns", inplace=True)
data.drop("d_sinsere_o", axis="columns", inplace=True)
data.drop("d_intelligence_o", axis="columns", inplace=True)
data.drop("d_funny_o", axis="columns", inplace=True)
data.drop("d_ambitous_o", axis="columns", inplace=True)
data.drop("d_shared_interests_o", axis="columns", inplace=True)
data.drop("d_attractive_important", axis="columns", inplace=True)
data.drop("d_sincere_important", axis="columns", inplace=True)
data.drop("d_intellicence_important", axis="columns", inplace=True)
data.drop("d_funny_important", axis="columns", inplace=True)
data.drop("d_ambtition_important", axis="columns", inplace=True)
data.drop("d_shared_interests_important", axis="columns", inplace=True)
data.drop("d_attractive", axis="columns", inplace=True)
data.drop("d_sincere", axis="columns", inplace=True)
data.drop("d_intelligence", axis="columns", inplace=True)
data.drop("d_funny", axis="columns", inplace=True)
data.drop("d_ambition", axis="columns", inplace=True)
data.drop("d_attractive_partner", axis="columns", inplace=True)
data.drop("d_sincere_partner", axis="columns", inplace=True)
data.drop("d_intelligence_partner", axis="columns", inplace=True)
data.drop("d_funny_partner", axis="columns", inplace=True)
data.drop("d_ambition_partner", axis="columns", inplace=True)
data.drop("d_shared_interests_partner", axis="columns", inplace=True)
data.drop("d_sports", axis="columns", inplace=True)
data.drop("d_tvsports", axis="columns", inplace=True)
data.drop("d_exercise", axis="columns", inplace=True)
data.drop("d_dining", axis="columns", inplace=True)
data.drop("d_museums", axis="columns", inplace=True)
data.drop("d_art", axis="columns", inplace=True)
data.drop("d_hiking", axis="columns", inplace=True)
data.drop("d_gaming", axis="columns", inplace=True)
data.drop("d_clubbing", axis="columns", inplace=True)
data.drop("d_reading", axis="columns", inplace=True)
data.drop("d_tv", axis="columns", inplace=True)
data.drop("d_theater", axis="columns", inplace=True)
data.drop("d_movies", axis="columns", inplace=True)
data.drop("d_concerts", axis="columns", inplace=True)
data.drop("d_music", axis="columns", inplace=True)
data.drop("d_shopping", axis="columns", inplace=True)
data.drop("d_yoga", axis="columns", inplace=True)
data.drop("d_interests_correlate", axis="columns", inplace=True)
data.drop("d_expected_happy_with_sd_people", axis="columns", inplace=True)
data.drop("d_expected_num_interested_in_me", axis="columns", inplace=True)
data.drop("d_expected_num_matches", axis="columns", inplace=True)
data.drop("d_like", axis="columns", inplace=True)
data.drop("d_guess_prob_liked", axis="columns", inplace=True)
if "Unnamed: 123" in data.columns:
data.drop("Unnamed: 123", axis="columns", inplace=True)
data = data[data.age != "?"]
data = data[data.age_o != "?"]
data = data[data.importance_same_race != "?"]
data = data[data.pref_o_attractive != "?"]
data = data[data.pref_o_sincere != "?"]
data = data[data.interests_correlate != "?"]
data = data[data.pref_o_funny != "?"]
data = data[data.pref_o_ambitious != "?"]
data = data[data.pref_o_shared_interests != "?"]
data = data[data.attractive_o != "?"]
data = data[data.sinsere_o != "?"]
data = data[data.intelligence_o != "?"]
data = data[data.funny_o != "?"]
data = data[data.ambitous_o != "?"]
data = data[data.shared_interests_o != "?"]
data = data[data.funny_important != "?"]
data = data[data.ambtition_important != "?"]
data = data[data.shared_interests_important != "?"]
data = data[data.attractive != "?"]
data = data[data.sincere != "?"]
data = data[data.intelligence != "?"]
data = data[data.funny != "?"]
data = data[data.ambition != "?"]
data = data[data.attractive_partner != "?"]
data = data[data.sincere_partner != "?"]
data = data[data.intelligence_partner != "?"]
data = data[data.funny_partner != "?"]
data = data[data.ambition_partner != "?"]
data = data[data.shared_interests_partner != "?"]
data = data[data.expected_num_interested_in_me != "?"]
data = data[data.expected_num_matches != "?"]
data = data[data.like != "?"]
data = data[data.guess_prob_liked != "?"]
data = data[data.met != "?"]
data.columns = _BASE_FEATURE_NAMES
data = data.astype({"is_dater_male": "bool", "are_same_race": "bool", "already_met_before": "bool",
"dater_wants_to_date": "bool", "dated_wants_to_date": "bool"})
return data