Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Commit
•
241b331
1
Parent(s):
df02e04
Delete loading script
Browse files
mrqa.py
DELETED
@@ -1,196 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""MRQA 2019 Shared task dataset."""
|
16 |
-
|
17 |
-
|
18 |
-
import json
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@inproceedings{fisch2019mrqa,
|
25 |
-
title={{MRQA} 2019 Shared Task: Evaluating Generalization in Reading Comprehension},
|
26 |
-
author={Adam Fisch and Alon Talmor and Robin Jia and Minjoon Seo and Eunsol Choi and Danqi Chen},
|
27 |
-
booktitle={Proceedings of 2nd Machine Reading for Reading Comprehension (MRQA) Workshop at EMNLP},
|
28 |
-
year={2019},
|
29 |
-
}
|
30 |
-
"""
|
31 |
-
|
32 |
-
_DESCRIPTION = """\
|
33 |
-
The MRQA 2019 Shared Task focuses on generalization in question answering.
|
34 |
-
An effective question answering system should do more than merely
|
35 |
-
interpolate from the training set to answer test examples drawn
|
36 |
-
from the same distribution: it should also be able to extrapolate
|
37 |
-
to out-of-distribution examples — a significantly harder challenge.
|
38 |
-
|
39 |
-
The dataset is a collection of 18 existing QA dataset (carefully selected
|
40 |
-
subset of them) and converted to the same format (SQuAD format). Among
|
41 |
-
these 18 datasets, six datasets were made available for training,
|
42 |
-
six datasets were made available for development, and the final six
|
43 |
-
for testing. The dataset is released as part of the MRQA 2019 Shared Task.
|
44 |
-
"""
|
45 |
-
|
46 |
-
_HOMEPAGE = "https://mrqa.github.io/2019/shared.html"
|
47 |
-
|
48 |
-
_LICENSE = "Unknwon"
|
49 |
-
|
50 |
-
_URLs = {
|
51 |
-
# Train sub-datasets
|
52 |
-
"train+SQuAD": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/train/SQuAD.jsonl.gz",
|
53 |
-
"train+NewsQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/train/NewsQA.jsonl.gz",
|
54 |
-
"train+TriviaQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/train/TriviaQA-web.jsonl.gz",
|
55 |
-
"train+SearchQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/train/SearchQA.jsonl.gz",
|
56 |
-
"train+HotpotQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/train/HotpotQA.jsonl.gz",
|
57 |
-
"train+NaturalQuestions": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/train/NaturalQuestionsShort.jsonl.gz",
|
58 |
-
# Validation sub-datasets
|
59 |
-
"validation+SQuAD": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/SQuAD.jsonl.gz",
|
60 |
-
"validation+NewsQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/NewsQA.jsonl.gz",
|
61 |
-
"validation+TriviaQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/TriviaQA-web.jsonl.gz",
|
62 |
-
"validation+SearchQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/SearchQA.jsonl.gz",
|
63 |
-
"validation+HotpotQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/HotpotQA.jsonl.gz",
|
64 |
-
"validation+NaturalQuestions": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/NaturalQuestionsShort.jsonl.gz",
|
65 |
-
# Test sub-datasets
|
66 |
-
"test+BioASQ": "http://participants-area.bioasq.org/MRQA2019/", # BioASQ.jsonl.gz
|
67 |
-
"test+DROP": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/DROP.jsonl.gz",
|
68 |
-
"test+DuoRC": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/DuoRC.ParaphraseRC.jsonl.gz",
|
69 |
-
"test+RACE": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/RACE.jsonl.gz",
|
70 |
-
"test+RelationExtraction": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/RelationExtraction.jsonl.gz",
|
71 |
-
"test+TextbookQA": "https://s3.us-east-2.amazonaws.com/mrqa/release/v2/dev/TextbookQA.jsonl.gz",
|
72 |
-
}
|
73 |
-
|
74 |
-
|
75 |
-
class Mrqa(datasets.GeneratorBasedBuilder):
|
76 |
-
"""MRQA 2019 Shared task dataset."""
|
77 |
-
|
78 |
-
VERSION = datasets.Version("1.1.0")
|
79 |
-
|
80 |
-
BUILDER_CONFIGS = [
|
81 |
-
datasets.BuilderConfig(name="plain_text", description="Plain text", version=VERSION),
|
82 |
-
]
|
83 |
-
|
84 |
-
def _info(self):
|
85 |
-
return datasets.DatasetInfo(
|
86 |
-
description=_DESCRIPTION,
|
87 |
-
# Format is derived from https://github.com/mrqa/MRQA-Shared-Task-2019#mrqa-format
|
88 |
-
features=datasets.Features(
|
89 |
-
{
|
90 |
-
"subset": datasets.Value("string"),
|
91 |
-
"context": datasets.Value("string"),
|
92 |
-
"context_tokens": datasets.Sequence(
|
93 |
-
{
|
94 |
-
"tokens": datasets.Value("string"),
|
95 |
-
"offsets": datasets.Value("int32"),
|
96 |
-
}
|
97 |
-
),
|
98 |
-
"qid": datasets.Value("string"),
|
99 |
-
"question": datasets.Value("string"),
|
100 |
-
"question_tokens": datasets.Sequence(
|
101 |
-
{
|
102 |
-
"tokens": datasets.Value("string"),
|
103 |
-
"offsets": datasets.Value("int32"),
|
104 |
-
}
|
105 |
-
),
|
106 |
-
"detected_answers": datasets.Sequence(
|
107 |
-
{
|
108 |
-
"text": datasets.Value("string"),
|
109 |
-
"char_spans": datasets.Sequence(
|
110 |
-
{
|
111 |
-
"start": datasets.Value("int32"),
|
112 |
-
"end": datasets.Value("int32"),
|
113 |
-
}
|
114 |
-
),
|
115 |
-
"token_spans": datasets.Sequence(
|
116 |
-
{
|
117 |
-
"start": datasets.Value("int32"),
|
118 |
-
"end": datasets.Value("int32"),
|
119 |
-
}
|
120 |
-
),
|
121 |
-
}
|
122 |
-
),
|
123 |
-
"answers": datasets.Sequence(datasets.Value("string")),
|
124 |
-
}
|
125 |
-
),
|
126 |
-
supervised_keys=None,
|
127 |
-
homepage=_HOMEPAGE,
|
128 |
-
license=_LICENSE,
|
129 |
-
citation=_CITATION,
|
130 |
-
)
|
131 |
-
|
132 |
-
def _split_generators(self, dl_manager):
|
133 |
-
"""Returns SplitGenerators."""
|
134 |
-
data_dir = dl_manager.download_and_extract(_URLs)
|
135 |
-
|
136 |
-
return [
|
137 |
-
datasets.SplitGenerator(
|
138 |
-
name=datasets.Split.TRAIN,
|
139 |
-
gen_kwargs={
|
140 |
-
"filepaths_dict": data_dir,
|
141 |
-
"split": "train",
|
142 |
-
},
|
143 |
-
),
|
144 |
-
datasets.SplitGenerator(
|
145 |
-
name=datasets.Split.TEST,
|
146 |
-
gen_kwargs={
|
147 |
-
"filepaths_dict": data_dir,
|
148 |
-
"split": "test",
|
149 |
-
},
|
150 |
-
),
|
151 |
-
datasets.SplitGenerator(
|
152 |
-
name=datasets.Split.VALIDATION,
|
153 |
-
gen_kwargs={
|
154 |
-
"filepaths_dict": data_dir,
|
155 |
-
"split": "validation",
|
156 |
-
},
|
157 |
-
),
|
158 |
-
]
|
159 |
-
|
160 |
-
def _generate_examples(self, filepaths_dict, split):
|
161 |
-
"""Yields examples."""
|
162 |
-
for source, filepath in filepaths_dict.items():
|
163 |
-
if split not in source:
|
164 |
-
continue
|
165 |
-
with open(filepath, encoding="utf-8") as f:
|
166 |
-
header = next(f)
|
167 |
-
subset = json.loads(header)["header"]["dataset"]
|
168 |
-
|
169 |
-
for row in f:
|
170 |
-
paragraph = json.loads(row)
|
171 |
-
context = paragraph["context"].strip()
|
172 |
-
context_tokens = [{"tokens": t[0], "offsets": t[1]} for t in paragraph["context_tokens"]]
|
173 |
-
for qa in paragraph["qas"]:
|
174 |
-
qid = qa["qid"]
|
175 |
-
question = qa["question"].strip()
|
176 |
-
question_tokens = [{"tokens": t[0], "offsets": t[1]} for t in qa["question_tokens"]]
|
177 |
-
detected_answers = []
|
178 |
-
for detect_ans in qa["detected_answers"]:
|
179 |
-
detected_answers.append(
|
180 |
-
{
|
181 |
-
"text": detect_ans["text"].strip(),
|
182 |
-
"char_spans": [{"start": t[0], "end": t[1]} for t in detect_ans["char_spans"]],
|
183 |
-
"token_spans": [{"start": t[0], "end": t[1]} for t in detect_ans["token_spans"]],
|
184 |
-
}
|
185 |
-
)
|
186 |
-
answers = qa["answers"]
|
187 |
-
yield f"{source}_{qid}", {
|
188 |
-
"subset": subset,
|
189 |
-
"context": context,
|
190 |
-
"context_tokens": context_tokens,
|
191 |
-
"qid": qid,
|
192 |
-
"question": question,
|
193 |
-
"question_tokens": question_tokens,
|
194 |
-
"detected_answers": detected_answers,
|
195 |
-
"answers": answers,
|
196 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|