Datasets:

Modalities:
Audio
Text
ArXiv:
Libraries:
Datasets
License:
coyotte508 HF staff mishig HF staff commited on
Commit
e095840
1 Parent(s): 296b500

Update how to use headers (#6)

Browse files

- Update how to use headers (0707527e0c6d4d551818cfd79015100e2e8b2e14)


Co-authored-by: Mishig Davaadorj <[email protected]>

Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -375,7 +375,7 @@ The results for models trained on the Common Voice datasets are available via th
375
  Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Kurmanji Kurdish, Kyrgyz, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Odia, Persian, Polish, Portuguese, Punjabi, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh
376
  ```
377
 
378
- ### How to use
379
 
380
  The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
381
 
@@ -397,7 +397,7 @@ print(next(iter(cv_11)))
397
 
398
  *Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
399
 
400
- Local:
401
 
402
  ```python
403
  from datasets import load_dataset
@@ -408,7 +408,7 @@ batch_sampler = BatchSampler(RandomSampler(cv_11), batch_size=32, drop_last=Fals
408
  dataloader = DataLoader(cv_11, batch_sampler=batch_sampler)
409
  ```
410
 
411
- Streaming:
412
 
413
  ```python
414
  from datasets import load_dataset
 
375
  Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basque, Belarusian, Bengali, Breton, Bulgarian, Cantonese, Catalan, Central Kurdish, Chinese (China), Chinese (Hong Kong), Chinese (Taiwan), Chuvash, Czech, Danish, Dhivehi, Dutch, English, Erzya, Esperanto, Estonian, Finnish, French, Frisian, Galician, Georgian, German, Greek, Guarani, Hakha Chin, Hausa, Hill Mari, Hindi, Hungarian, Igbo, Indonesian, Interlingua, Irish, Italian, Japanese, Kabyle, Kazakh, Kinyarwanda, Kurmanji Kurdish, Kyrgyz, Latvian, Lithuanian, Luganda, Macedonian, Malayalam, Maltese, Marathi, Meadow Mari, Moksha, Mongolian, Nepali, Norwegian Nynorsk, Odia, Persian, Polish, Portuguese, Punjabi, Romanian, Romansh Sursilvan, Romansh Vallader, Russian, Sakha, Santali (Ol Chiki), Saraiki, Sardinian, Serbian, Slovak, Slovenian, Sorbian, Upper, Spanish, Swahili, Swedish, Taiwanese (Minnan), Tamil, Tatar, Thai, Tigre, Tigrinya, Toki Pona, Turkish, Twi, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Votic, Welsh
376
  ```
377
 
378
+ ## How to use
379
 
380
  The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
381
 
 
397
 
398
  *Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
399
 
400
+ ### Local
401
 
402
  ```python
403
  from datasets import load_dataset
 
408
  dataloader = DataLoader(cv_11, batch_sampler=batch_sampler)
409
  ```
410
 
411
+ ### Streaming
412
 
413
  ```python
414
  from datasets import load_dataset