# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors, The Google AI Language Team Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Microsoft Research Sequential Question Answering (SQA) Dataset""" import ast import csv import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @inproceedings{iyyer2017search, title={Search-based neural structured learning for sequential question answering}, author={Iyyer, Mohit and Yih, Wen-tau and Chang, Ming-Wei}, booktitle={Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={1821--1831}, year={2017} } """ _DESCRIPTION = """\ Recent work in semantic parsing for question answering has focused on long and complicated questions, \ many of which would seem unnatural if asked in a normal conversation between two humans. \ In an effort to explore a conversational QA setting, we present a more realistic task: \ answering sequences of simple but inter-related questions. We created SQA by asking crowdsourced workers \ to decompose 2,022 questions from WikiTableQuestions (WTQ), which contains highly-compositional questions about \ tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences \ that contain 17,553 questions in total. Each question is also associated with answers in the form of cell \ locations in the tables. """ _HOMEPAGE = "https://msropendata.com/datasets/b25190ed-0f59-47b1-9211-5962858142c2" _LICENSE = "Microsoft Research Data License Agreement" _URL = "https://download.microsoft.com/download/1/D/C/1DC270D2-1B53-4A61-A2E3-88AB3E4E6E1F/SQA%20Release%201.0.zip" def _load_table_data(table_file): """Load additional data from a csv table file. Args: table_file: Path to the csv file. Returns: header: a list of headers in the table. data: 2d array of data in the table. """ with open(table_file, encoding="utf-8") as f: lines = f.readlines() header = lines[0].strip().split(",") data = [line.strip().split(",") for line in lines[1:]] return header, data def _parse_answer_coordinates(answer_coordinate_str): """Parsing answer_coordinates field to a list of answer coordinates. The original code is from https://github.com/google-research/tapas. Args: answer_coordinate_str: A string representation of a Python list of tuple strings. For example: "['(1, 4)','(1, 3)', ...]" Returns: answer_coordinates: A list of answer cordinates. """ try: answer_coordinates = [] coords = ast.literal_eval(answer_coordinate_str) for row_index, column_index in sorted(ast.literal_eval(coord) for coord in coords): answer_coordinates.append({"row_index": row_index, "column_index": column_index}) return answer_coordinates except SyntaxError: raise ValueError("Unable to evaluate %s" % answer_coordinate_str) def _parse_answer_text(answer_text_str): """Parsing `answer_text` field to list of answers. The original code is from https://github.com/google-research/tapas. Args: answer_text_str: A string representation of a Python list of strings. For example: "[u'test', u'hello', ...]" Returns: answer_texts: A list of answers. """ try: answer_texts = [] for value in ast.literal_eval(answer_text_str): answer_texts.append(value) return answer_texts except SyntaxError: raise ValueError("Unable to evaluate %s" % answer_text_str) class MsrSQA(datasets.GeneratorBasedBuilder): """Microsoft Research Sequential Question Answering (SQA) Dataset""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "annotator": datasets.Value("int32"), "position": datasets.Value("int32"), "question": datasets.Value("string"), "table_file": datasets.Value("string"), "table_header": datasets.features.Sequence(datasets.Value("string")), "table_data": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), "answer_coordinates": datasets.features.Sequence( {"row_index": datasets.Value("int32"), "column_index": datasets.Value("int32")} ), "answer_text": datasets.features.Sequence(datasets.Value("string")), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = os.path.join(dl_manager.download_and_extract(_URL), "SQA Release 1.0") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv"), "data_dir": data_dir}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv"), "data_dir": data_dir}, ), ] def _generate_examples(self, filepath, data_dir): """Yields examples.""" with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for row in reader: item = dict(row) item["answer_text"] = _parse_answer_text(item["answer_text"]) item["answer_coordinates"] = _parse_answer_coordinates(item["answer_coordinates"]) header, table_data = _load_table_data(os.path.join(data_dir, item["table_file"])) item["table_header"] = header item["table_data"] = table_data yield item["id"], item