File size: 7,361 Bytes
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fade991
 
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fade991
ff0df65
fade991
 
 
 
 
 
 
 
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fade991
 
ff0df65
 
 
 
 
 
 
 
 
fade991
ff0df65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fade991
 
 
 
 
ff0df65
 
 
 
 
 
 
 
617d953
ff0df65
 
fade991
e67d674
ff0df65
 
 
 
 
fade991
 
 
 
e67d674
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors, The Google AI Language Team Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Microsoft Research Sequential Question Answering (SQA) Dataset"""


import ast
import csv
import os

import pandas as pd

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{iyyer2017search,
  title={Search-based neural structured learning for sequential question answering},
  author={Iyyer, Mohit and Yih, Wen-tau and Chang, Ming-Wei},
  booktitle={Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  pages={1821--1831},
  year={2017}
}
"""

_DESCRIPTION = """\
Recent work in semantic parsing for question answering has focused on long and complicated questions, \
many of which would seem unnatural if asked in a normal conversation between two humans. \
In an effort to explore a conversational QA setting, we present a more realistic task: \
answering sequences of simple but inter-related questions. We created SQA by asking crowdsourced workers \
to decompose 2,022 questions from WikiTableQuestions (WTQ), which contains highly-compositional questions about \
tables from Wikipedia. We had three workers decompose each WTQ question, resulting in a dataset of 6,066 sequences \
that contain 17,553 questions in total. Each question is also associated with answers in the form of cell \
locations in the tables.
"""

_HOMEPAGE = "https://msropendata.com/datasets/b25190ed-0f59-47b1-9211-5962858142c2"

_LICENSE = "Microsoft Research Data License Agreement"

_URL = "https://download.microsoft.com/download/1/D/C/1DC270D2-1B53-4A61-A2E3-88AB3E4E6E1F/SQA%20Release%201.0.zip"


def _load_table_data(table_file):
    """Load additional data from a csv table file.

    Args:
        table_file: Path to the csv file.

    Returns:
        header: a list of headers in the table.
        rows: 2d array of data in the table.
    """
    rows = []
    table_data = pd.read_csv(table_file)
    # the first line is header
    header = list(table_data.columns)
    for row_data in table_data.values:
        rows.append([str(_) for _ in list(row_data)])

    return header, rows


def _parse_answer_coordinates(answer_coordinate_str):
    """Parsing answer_coordinates field to a list of answer coordinates.
    The original code is from https://github.com/google-research/tapas.

    Args:
      answer_coordinate_str: A string representation of a Python list of tuple
        strings.
        For example: "['(1, 4)','(1, 3)', ...]"

    Returns:
      answer_coordinates: A list of answer cordinates.
    """
    try:
        answer_coordinates = []
        coords = ast.literal_eval(answer_coordinate_str)
        for row_index, column_index in sorted(ast.literal_eval(coord) for coord in coords):
            answer_coordinates.append({"row_index": row_index, "column_index": column_index})
        return answer_coordinates
    except SyntaxError:
        raise ValueError("Unable to evaluate %s" % answer_coordinate_str)


def _parse_answer_text(answer_text_str):
    """Parsing `answer_text` field to list of answers.
    The original code is from https://github.com/google-research/tapas.
    Args:
      answer_text_str: A string representation of a Python list of strings.
        For example: "[u'test', u'hello', ...]"

    Returns:
      answer_texts: A list of answers.
    """
    try:
        answer_texts = []
        for value in ast.literal_eval(answer_text_str):
            answer_texts.append(value)
        return answer_texts
    except SyntaxError:
        raise ValueError("Unable to evaluate %s" % answer_text_str)


class MsrSQA(datasets.GeneratorBasedBuilder):
    """Microsoft Research Sequential Question Answering (SQA) Dataset"""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "annotator": datasets.Value("int32"),
                    "position": datasets.Value("int32"),
                    "question": datasets.Value("string"),
                    "question_and_history": datasets.Sequence(datasets.Value("string")),
                    "table_file": datasets.Value("string"),
                    "table_header": datasets.features.Sequence(datasets.Value("string")),
                    "table_data": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
                    "answer_coordinates": datasets.features.Sequence(
                        {"row_index": datasets.Value("int32"), "column_index": datasets.Value("int32")}
                    ),
                    "answer_text": datasets.features.Sequence(datasets.Value("string")),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = os.path.join(dl_manager.download_and_extract(_URL), "SQA Release 1.0")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(data_dir, "random-split-1-train.tsv"), "data_dir": data_dir},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": os.path.join(data_dir, "random-split-1-dev.tsv"), "data_dir": data_dir},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv"), "data_dir": data_dir},
            ),
        ]

    def _generate_examples(self, filepath, data_dir):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            question_and_history = []
            for idx, item in enumerate(reader):
                item["answer_text"] = _parse_answer_text(item["answer_text"])
                item["answer_coordinates"] = _parse_answer_coordinates(item["answer_coordinates"])
                header, table_data = _load_table_data(os.path.join(data_dir, item["table_file"]))
                item["table_header"] = header
                item["table_data"] = table_data
                if item["position"] == "0":
                    question_and_history = []  # reset history
                question_and_history.append(item["question"])
                item["question_and_history"] = question_and_history
                yield idx, item