|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""XNLI: The Cross-Lingual NLI Corpus.""" |
|
|
|
|
|
import collections |
|
import csv |
|
import os |
|
from contextlib import ExitStack |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{conneau2018xnli, |
|
author = {Conneau, Alexis |
|
and Rinott, Ruty |
|
and Lample, Guillaume |
|
and Williams, Adina |
|
and Bowman, Samuel R. |
|
and Schwenk, Holger |
|
and Stoyanov, Veselin}, |
|
title = {XNLI: Evaluating Cross-lingual Sentence Representations}, |
|
booktitle = {Proceedings of the 2018 Conference on Empirical Methods |
|
in Natural Language Processing}, |
|
year = {2018}, |
|
publisher = {Association for Computational Linguistics}, |
|
location = {Brussels, Belgium}, |
|
}""" |
|
|
|
_DESCRIPTION = """\ |
|
XNLI is a subset of a few thousand examples from MNLI which has been translated |
|
into a 14 different languages (some low-ish resource). As with MNLI, the goal is |
|
to predict textual entailment (does sentence A imply/contradict/neither sentence |
|
B) and is a classification task (given two sentences, predict one of three |
|
labels). |
|
""" |
|
|
|
_TRAIN_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip" |
|
_TESTVAL_DATA_URL = "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip" |
|
|
|
_LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh") |
|
|
|
|
|
class XnliConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for XNLI.""" |
|
|
|
def __init__(self, language: str, languages=None, **kwargs): |
|
"""BuilderConfig for XNLI. |
|
Args: |
|
language: One of ar,bg,de,el,en,es,fr,hi,ru,sw,th,tr,ur,vi,zh, or all_languages |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(XnliConfig, self).__init__(**kwargs) |
|
self.language = language |
|
if language != "all_languages": |
|
self.languages = [language] |
|
else: |
|
self.languages = languages if languages is not None else _LANGUAGES |
|
|
|
|
|
class Xnli(datasets.GeneratorBasedBuilder): |
|
"""XNLI: The Cross-Lingual NLI Corpus. Version 1.0.""" |
|
|
|
VERSION = datasets.Version("1.1.0", "") |
|
BUILDER_CONFIG_CLASS = XnliConfig |
|
BUILDER_CONFIGS = [ |
|
XnliConfig( |
|
name=lang, |
|
language=lang, |
|
version=datasets.Version("1.1.0", ""), |
|
description=f"Plain text import of XNLI for the {lang} language", |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://www.nyu.edu/projects/bowman/xnli/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dirs = dl_manager.download_and_extract( |
|
{ |
|
"train_data": _TRAIN_DATA_URL, |
|
"testval_data": _TESTVAL_DATA_URL, |
|
} |
|
) |
|
train_dir = os.path.join(dl_dirs["train_data"], "XNLI-MT-1.0", "multinli") |
|
testval_dir = os.path.join(dl_dirs["testval_data"], "XNLI-1.0") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.test.tsv")], "data_format": "XNLI"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepaths": [os.path.join(testval_dir, "xnli.dev.tsv")], "data_format": "XNLI"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_format, filepaths): |
|
"""This function returns the examples in the raw (text) form.""" |
|
|
|
if self.config.language == "all_languages": |
|
if data_format == "XNLI-MT": |
|
with ExitStack() as stack: |
|
files = [stack.enter_context(open(filepath, encoding="utf-8")) for filepath in filepaths] |
|
readers = [csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE) for file in files] |
|
for row_idx, rows in enumerate(zip(*readers)): |
|
yield row_idx, { |
|
"premise": {lang: row["premise"] for lang, row in zip(self.config.languages, rows)}, |
|
"hypothesis": {lang: row["hypo"] for lang, row in zip(self.config.languages, rows)}, |
|
"label": rows[0]["label"].replace("contradictory", "contradiction"), |
|
} |
|
else: |
|
rows_per_pair_id = collections.defaultdict(list) |
|
for filepath in filepaths: |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
rows_per_pair_id[row["pairID"]].append(row) |
|
|
|
for rows in rows_per_pair_id.values(): |
|
premise = {row["language"]: row["sentence1"] for row in rows} |
|
hypothesis = {row["language"]: row["sentence2"] for row in rows} |
|
yield rows[0]["pairID"], { |
|
"premise": premise, |
|
"hypothesis": hypothesis, |
|
"label": rows[0]["gold_label"], |
|
} |
|
else: |
|
if data_format == "XNLI-MT": |
|
for file_idx, filepath in enumerate(filepaths): |
|
file = open(filepath, encoding="utf-8") |
|
reader = csv.DictReader(file, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row_idx, row in enumerate(reader): |
|
key = str(file_idx) + "_" + str(row_idx) |
|
yield key, { |
|
"premise": row["premise"], |
|
"hypothesis": row["hypo"], |
|
"label": row["label"].replace("contradictory", "contradiction"), |
|
} |
|
else: |
|
for filepath in filepaths: |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
if row["language"] == self.config.language: |
|
yield row["pairID"], { |
|
"premise": row["sentence1"], |
|
"hypothesis": row["sentence2"], |
|
"label": row["gold_label"], |
|
} |
|
|