--- dataset_info: features: - name: id dtype: string - name: author dtype: string - name: sha dtype: 'null' - name: created_at dtype: timestamp[us, tz=UTC] - name: last_modified dtype: 'null' - name: disabled dtype: 'null' - name: downloads dtype: int64 - name: downloads_all_time dtype: 'null' - name: gated dtype: bool - name: gguf dtype: 'null' - name: inference dtype: 'null' - name: likes dtype: int64 - name: library_name dtype: string - name: tags sequence: string - name: pipeline_tag dtype: string - name: mask_token dtype: 'null' - name: model_index dtype: 'null' - name: trending_score dtype: int64 - name: architectures sequence: string - name: bos_token_id dtype: int64 - name: eos_token_id dtype: int64 - name: hidden_act dtype: string - name: hidden_size dtype: int64 - name: initializer_range dtype: float64 - name: intermediate_size dtype: int64 - name: max_position_embeddings dtype: int64 - name: model_type dtype: string - name: num_attention_heads dtype: int64 - name: num_hidden_layers dtype: int64 - name: num_key_value_heads dtype: int64 - name: rms_norm_eps dtype: float64 - name: rope_theta dtype: float64 - name: sliding_window dtype: int64 - name: tie_word_embeddings dtype: bool - name: torch_dtype dtype: string - name: transformers_version dtype: string - name: use_cache dtype: bool - name: vocab_size dtype: int64 - name: attention_bias dtype: bool - name: attention_dropout dtype: float64 - name: head_dim dtype: int64 - name: mlp_bias dtype: bool - name: pretraining_tp dtype: int64 - name: rope_scaling struct: - name: factor dtype: float64 - name: original_max_position_embeddings dtype: float64 splits: - name: raw num_bytes: 70119636 num_examples: 129379 download_size: 9132674 dataset_size: 70119636 configs: - config_name: default data_files: - split: raw path: data/raw-* license: apache-2.0 task_categories: - question-answering language: - en - fr tags: - merge - mergekit - configs - code - automation pretty_name: 'mergekit-configs: access all Hub architecture' size_categories: - 100K # MergeKit-configs: access all Hub architectures and automate your model merging process This dataset facilitates the search for compatible architectures for model merging with MergeKit, streamlining the automation of high-performance merge searches. It provides a snapshot of the Hub’s configuration state, eliminating the need to manually open configuration files. ```python import polars as pl # Login using e.g. `huggingface-cli login` to access this dataset df = pl.read_parquet('hf://datasets/louisbrulenaudet/mergekit-configs/data/raw-00000-of-00001.parquet') result = ( df.groupby( [ "architectures", "hidden_size", "model_type", "intermediate_size" ] ).agg( pl.struct([pl.col("id")]).alias("models") ) ) ``` ## Citing & Authors If you use this dataset in your research, please use the following BibTeX entry. ```BibTeX @misc{HFforLegal2024, author = {Louis Brulé Naudet}, title = {MergeKit-configs: access all Hub architectures and automate your model merging process}, year = {2024} howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/mergekit-configs}}, } ``` ## Feedback If you have any feedback, please reach out at [louisbrulenaudet@icloud.com](mailto:louisbrulenaudet@icloud.com).