Joelito commited on
Commit
931df01
1 Parent(s): defb8a2

added dataloader, preparation script and dataset card

Browse files
MultiLegalPile_Wikipedia_Filtered.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MultiLegalPile Wikipedia Filtered"""
2
+
3
+ import json
4
+
5
+ import datasets
6
+ from huggingface_hub.file_download import hf_hub_url
7
+
8
+ try:
9
+ import lzma as xz
10
+ except ImportError:
11
+ import pylzma as xz
12
+
13
+ datasets.logging.set_verbosity_info()
14
+ logger = datasets.logging.get_logger(__name__)
15
+
16
+ _CITATION = """
17
+ """
18
+
19
+ _DESCRIPTION = """
20
+ A filtered version of the MultiLegalPile dataset, together with wikipedia articles.
21
+ """
22
+
23
+ _URL = "https://huggingface.co/datasets/joelito/MultiLegalPile_Wikipedia_Filtered"
24
+
25
+ _LANGUAGES = ["bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr",
26
+ "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv"]
27
+
28
+ _TYPES = ["caselaw", "contracts", "legislation", "other", "wikipedia"]
29
+
30
+ _JURISDICTONS = ["Austria", "Belgium", "Bulgaria", "Croatia", "Czechia", "Denmark", "Estonia", "Finland",
31
+ "France", "Germany", "Greece", "Hungary", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg",
32
+ "Malta", "Netherlands", "Poland", "Portugal", "Romania", "Slovakia", "Slovenia", "Spain", "Sweden",
33
+ "EU", "Switzerland", "UK", "US", "Canada", "N/A"]
34
+
35
+ # IMPORTANT: Increase this once larger datasets are available (en_caselaw has 9 at the moment)
36
+ _HIGHEST_NUMBER_OF_SHARDS = 9
37
+
38
+
39
+ class MultiLegalPileWikipediaFilteredConfig(datasets.BuilderConfig):
40
+ """BuilderConfig for MultiLegalPileWikipediaFiltered."""
41
+
42
+ def __init__(self, name: str, **kwargs):
43
+ """BuilderConfig for MultiLegalPileWikipediaFiltered.
44
+ Args:
45
+ name: combination of language and type with _
46
+ language: One of bg,cs,da,de,el,en,es,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv or all
47
+ type: One of caselaw,contracts,legislation,other,wikipedia or all
48
+ **kwargs: keyword arguments forwarded to super.
49
+ """
50
+ super(MultiLegalPileWikipediaFilteredConfig, self).__init__(**kwargs)
51
+ self.name = name
52
+ self.language = name.split("_")[0]
53
+ self.type = name.split("_")[1]
54
+
55
+
56
+ class MultiLegalPileWikipediaFiltered(datasets.GeneratorBasedBuilder):
57
+ """
58
+ MultiLegalPileWikipediaFiltered:
59
+ A filtered dataset of multilingual legal data and wikipedias in the EU languages
60
+ """
61
+ BUILDER_CONFIG_CLASS = MultiLegalPileWikipediaFilteredConfig
62
+
63
+ BUILDER_CONFIGS = [MultiLegalPileWikipediaFilteredConfig(f"{language}_{type}")
64
+ for type in _TYPES + ["all"]
65
+ for language in _LANGUAGES + ["all"]]
66
+
67
+ def _info(self):
68
+ return datasets.DatasetInfo(
69
+ description=_DESCRIPTION,
70
+ features=datasets.Features(
71
+ {
72
+ "language": datasets.Value("string"), # one of _LANGUAGES
73
+ "type": datasets.Value("string"), # one of _TYPES
74
+ "jurisdiction": datasets.Value("string"), # one of _JURISDICTONS
75
+ "text": datasets.Value("string"),
76
+ }
77
+ ),
78
+ supervised_keys=None,
79
+ homepage=_URL,
80
+ citation=_CITATION,
81
+ )
82
+
83
+ def _split_generators(self, dl_manager):
84
+ def download_url(file_name):
85
+ url = hf_hub_url(repo_id="joelito/MultiLegalPile_Wikipedia_Filtered",
86
+ filename=f"data/{file_name}.jsonl.xz", repo_type="dataset")
87
+ return dl_manager.download(url)
88
+
89
+ languages = _LANGUAGES if self.config.language == "all" else [self.config.language]
90
+ types = _TYPES if self.config.type == "all" else [self.config.type]
91
+
92
+ split_generators = []
93
+ for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION]:
94
+ filepaths = []
95
+ for language in languages:
96
+ for type in types:
97
+ for shard in range(_HIGHEST_NUMBER_OF_SHARDS):
98
+ try:
99
+ filepaths.append(download_url(f"{language}_{type}_{split}_{shard}"))
100
+ except:
101
+ break # we found the last shard
102
+ split_generators.append(
103
+ datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": filepaths})
104
+ )
105
+ return split_generators
106
+
107
+ def _generate_examples(self, filepaths):
108
+ """This function returns the examples in the raw (text) form by iterating on all the files."""
109
+ id_ = 0
110
+ for filepath in filepaths:
111
+ logger.info("Generating examples from = %s", filepath)
112
+ try:
113
+ with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
114
+ for line in f:
115
+ if line:
116
+ example = json.loads(line)
117
+ if example is not None and isinstance(example, dict):
118
+ yield id_, example
119
+ id_ += 1
120
+ except Exception:
121
+ logger.exception("Error while processing file %s", filepath)
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - other
4
+ language_creators:
5
+ - found
6
+ language:
7
+ - bg
8
+ - cs
9
+ - da
10
+ - de
11
+ - el
12
+ - en
13
+ - es
14
+ - et
15
+ - fi
16
+ - fr
17
+ - ga
18
+ - hr
19
+ - hu
20
+ - it
21
+ - lt
22
+ - lv
23
+ - mt
24
+ - nl
25
+ - pl
26
+ - pt
27
+ - ro
28
+ - sk
29
+ - sl
30
+ - sv
31
+ license:
32
+ - cc-by-4.0
33
+ multilinguality:
34
+ - multilingual
35
+ paperswithcode_id: null
36
+ pretty_name: "MultiLegalPile_Wikipedia_Filtered: A filtered version of the MultiLegalPile dataset, together with wikipedia articles."
37
+ size_categories:
38
+ - 10M<n<100M
39
+ source_datasets:
40
+ - original
41
+ task_categories:
42
+ - fill-mask
43
+
44
+ ---
45
+
46
+ # Dataset Card for MultiLegalPile_Wikipedia_Filtered: A filtered version of the MultiLegalPile dataset, together with wikipedia articles
47
+
48
+ ## Table of Contents
49
+
50
+ - [Table of Contents](#table-of-contents)
51
+ - [Dataset Description](#dataset-description)
52
+ - [Dataset Summary](#dataset-summary)
53
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
54
+ - [Languages](#languages)
55
+ - [Dataset Structure](#dataset-structure)
56
+ - [Data Instances](#data-instances)
57
+ - [Data Fields](#data-fields)
58
+ - [Data Splits](#data-splits)
59
+ - [Dataset Creation](#dataset-creation)
60
+ - [Curation Rationale](#curation-rationale)
61
+ - [Source Data](#source-data)
62
+ - [Annotations](#annotations)
63
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
64
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
65
+ - [Social Impact of Dataset](#social-impact-of-dataset)
66
+ - [Discussion of Biases](#discussion-of-biases)
67
+ - [Other Known Limitations](#other-known-limitations)
68
+ - [Additional Information](#additional-information)
69
+ - [Dataset Curators](#dataset-curators)
70
+ - [Licensing Information](#licensing-information)
71
+ - [Citation Information](#citation-information)
72
+ - [Contributions](#contributions)
73
+
74
+ ## Dataset Description
75
+
76
+ - **Homepage:**
77
+ - **Repository:**
78
+ - **Paper:**
79
+ - **Leaderboard:**
80
+ - **Point of Contact:** [Joel Niklaus](mailto:[email protected])
81
+
82
+ ### Dataset Summary
83
+
84
+ The Multi_Legal_Pile is a large-scale multilingual legal dataset suited for pretraining language models.
85
+ It spans over 24 languages and four legal text types.
86
+
87
+ ### Supported Tasks and Leaderboards
88
+
89
+ The dataset supports the tasks of fill-mask.
90
+
91
+ ### Languages
92
+
93
+ The following languages are supported:
94
+ bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv
95
+
96
+ ## Dataset Structure
97
+
98
+ It is structured in the following format: {language}_{text_type}_{shard}.jsonl.xz
99
+
100
+ text_type is one of the following:
101
+
102
+ - caselaw
103
+ - contracts
104
+ - legislation
105
+ - other
106
+ - wikipedia
107
+
108
+
109
+ Use the dataset like this:
110
+ ```python
111
+ from datasets import load_dataset
112
+
113
+ config = 'en_contracts' # {language}_{text_type}
114
+ dataset = load_dataset('joelito/Multi_Legal_Pile', config, split='train', streaming=True)
115
+ ```
116
+
117
+ 'config' is a combination of language and text_type, e.g. 'en_contracts' or 'de_caselaw'.
118
+ To load all the languages or all the text_types, use 'all' instead of the language or text_type (e.g., '
119
+ all_legislation').
120
+
121
+ ### Data Instances
122
+
123
+ The file format is jsonl.xz and there is a `train` and `validation` split available.
124
+ Since some configurations are very small or non-existent, they might not contain a train split or not be present at all.
125
+
126
+ The complete dataset consists of five large subsets:
127
+ - [Native Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile)
128
+ - [Eurlex Resources](https://huggingface.co/datasets/joelito/eurlex_resources)
129
+ - [MC4 Legal](https://huggingface.co/datasets/joelito/mc4_legal)
130
+ - [Pile of Law](https://huggingface.co/datasets/pile-of-law/pile-of-law)
131
+ - [EU Wikipedias](https://huggingface.co/datasets/joelito/EU_Wikipedias)
132
+
133
+ ### Data Fields
134
+
135
+ [More Information Needed]
136
+
137
+ ### Data Splits
138
+
139
+ [More Information Needed]
140
+
141
+ ## Dataset Creation
142
+
143
+ This dataset has been created by combining the following datasets:
144
+ Native Multi Legal Pile, Eurlex Resources, MC4 Legal, Pile of Law, EU Wikipedias.
145
+ It has been filtered to remove short documents (less than 64 whitespace-separated tokens) and
146
+ documents with more than 30% punctuation or numbers (see prepare_legal_data.py for more details).
147
+
148
+ ### Curation Rationale
149
+
150
+ [More Information Needed]
151
+
152
+ ### Source Data
153
+
154
+ #### Initial Data Collection and Normalization
155
+
156
+ [More Information Needed]
157
+
158
+ #### Who are the source language producers?
159
+
160
+ [More Information Needed]
161
+
162
+
163
+ ### Annotations
164
+
165
+ #### Annotation process
166
+
167
+ [More Information Needed]
168
+
169
+ #### Who are the annotators?
170
+
171
+ [More Information Needed]
172
+
173
+ ### Personal and Sensitive Information
174
+
175
+ [More Information Needed]
176
+
177
+ ## Considerations for Using the Data
178
+
179
+ ### Social Impact of Dataset
180
+
181
+ [More Information Needed]
182
+
183
+ ### Discussion of Biases
184
+
185
+ [More Information Needed]
186
+
187
+ ### Other Known Limitations
188
+
189
+ [More Information Needed]
190
+
191
+ ## Additional Information
192
+
193
+ ### Dataset Curators
194
+
195
+ [More Information Needed]
196
+
197
+ ### Licensing Information
198
+
199
+ [More Information Needed]
200
+
201
+ ### Citation Information
202
+
203
+ ```
204
+ TODO add citation
205
+ ```
206
+
207
+ ### Contributions
208
+
209
+ Thanks to [@JoelNiklaus](https://github.com/joelniklaus) for adding this dataset.
prepare_legal_data.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # No chunks, one doc per line
2
+
3
+ # remove new lines, etc.
4
+ # create a corpus of min 200-400 GB ==> ~100B tokens
5
+ # max file size: 4GB because of huggingface
6
+ # validation set: ~100M tokens ==> 200-400MB
7
+
8
+ import glob
9
+ import json
10
+ import multiprocessing
11
+
12
+ import tqdm
13
+ import os
14
+ import re
15
+ from multiprocessing import Pool
16
+
17
+ from datasets import load_dataset
18
+ from tokenizers import normalizers
19
+
20
+ _LANGUAGES = ['bg', 'cs', 'da', 'de', 'el', 'en', 'es', 'et', 'fi', 'fr', 'ga', 'hr',
21
+ 'hu', 'it', 'lt', 'lv', 'mt', 'nl', 'pl', 'pt', 'ro', 'sk', 'sl', 'sv']
22
+ _DOMAIN_TYPES = ['legislation', 'caselaw', 'contracts', 'other', 'wikipedia']
23
+
24
+ custom_normalizer = normalizers.NFKD()
25
+
26
+ VALIDATION_SIZE = 1_000 # ~1MB per configuration ==> some low-resource configs will only have a validation file
27
+
28
+ filtered_dir = os.path.join('data', 'filtered')
29
+ os.makedirs(filtered_dir, exist_ok=True)
30
+
31
+
32
+ def preprocess_dataset(languages=None, domain_types=None):
33
+ lang_type_datasets = []
34
+ # set defaults if they are not set
35
+ if languages is None:
36
+ languages = _LANGUAGES
37
+ if domain_types is None:
38
+ domain_types = _DOMAIN_TYPES
39
+
40
+ for LANG in languages:
41
+ for DOMAIN_TYPE in domain_types:
42
+ try:
43
+ if DOMAIN_TYPE == 'wikipedia':
44
+ # get from EU_Wikipedias
45
+ dataset = load_dataset("joelito/EU_Wikipedias", date="20221120", language=LANG,
46
+ split='train', streaming=True, use_auth_token=True)
47
+ else:
48
+ # get from Multi_Legal_Pile
49
+ dataset = load_dataset("joelito/Multi_Legal_Pile", f'{LANG}_{DOMAIN_TYPE}',
50
+ split='train', streaming=True, use_auth_token=True)
51
+ dataset = dataset.shuffle(seed=42, buffer_size=10_000)
52
+ print(f'Found data for `{DOMAIN_TYPE}` in language `{LANG}`.')
53
+ except:
54
+ print(f'There is no data for `{DOMAIN_TYPE}` in language `{LANG}`.')
55
+ continue
56
+ lang_type_datasets.append(dataset)
57
+ return lang_type_datasets
58
+
59
+
60
+ def write_samples(dataset_number):
61
+ dataset, dataset_name = dataset_number
62
+ if len(dataset_name.split('_')) == 1: # wikipedia
63
+ language = dataset_name.split('.')[1]
64
+ domain_type = "wikipedia"
65
+ dataset_name = f"{language}_{domain_type}" # reformat the config name so that we have wikipedia in the name
66
+ else:
67
+ language, domain_type = dataset_name.split('_')
68
+ total_count, temp_count, all_samples, file_number = 0, 0, 0, 0
69
+ out_file = open_file(dataset_name, file_number, "validation") # we save the first examples to the validation set
70
+ print(f'Processing for dataset {dataset_name} started!')
71
+ # Read each document
72
+ for sample in tqdm.tqdm(dataset):
73
+ try:
74
+ text = normalize_text(sample['text'])
75
+ if "validation" in out_file.name and temp_count > VALIDATION_SIZE:
76
+ # if we are saving to eval, and we have enough samples in the eval set, switch to train
77
+ out_file.close()
78
+ temp_count = 0
79
+ out_file = open_file(dataset_name, file_number, "train")
80
+ # on average approx. 2GB per file, compresses (with xz) to around ~500MB (xz: ~75% compression ratio)
81
+ if "train" in out_file.name and temp_count > 500_000: # err on the small side of the file size
82
+ # if we are saving to train, and we reached the max size per file, switch to the next file
83
+ out_file.close()
84
+ file_number += 1
85
+ temp_count = 0
86
+ out_file = open_file(dataset_name, file_number, "train")
87
+ # if the text is usable for pretraining, save it
88
+ if is_text_usable(text):
89
+ jurisdiction = sample.get('jurisdiction', "N/A") # set defaults for wikipedia
90
+ type = sample.get("type", "wikipedia") # set defaults for wikipedia
91
+ entry = {"language": sample["language"], "type": type, "jurisdiction": jurisdiction, "text": text}
92
+ out_file.write(json.dumps(entry) + '\n')
93
+ total_count += 1
94
+ temp_count += 1
95
+ all_samples += 1
96
+ except:
97
+ continue
98
+
99
+ try:
100
+ out_file.close()
101
+ except:
102
+ pass
103
+
104
+ print(f'Processing for dataset {dataset_name} finished with {total_count}/{all_samples}!')
105
+ return
106
+
107
+
108
+ def is_text_usable(text):
109
+ # Compute percentage of alphabetical characters in relation to full sequence length
110
+ punctuation = '!\"#$%&\'()*+,\-\./:;<=>?@\[\\\]\^_`{\|}~'
111
+ alpha_text = re.sub(rf'[{punctuation}\d]', '', text) # remove numbers and punctuation
112
+ alpha_percent = len(alpha_text) / len(text)
113
+ # Compute total chunk length
114
+ text_length = len(text.split())
115
+ # Ignore sequences with more than 30% numbers or short sequences (less than 64 tokens)
116
+ return alpha_percent > 0.7 and text_length > 64
117
+
118
+
119
+ def normalize_text(text):
120
+ # Normalize the document
121
+ text = custom_normalizer.normalize_str(text)
122
+ # Replace multiple newline and whitespaces
123
+ return re.sub(r'(\n )+', r'\n ', re.sub(r'( *[\n\r]+ *)+', r'\n ', re.sub(r'[\t ]+', r' ', text)))
124
+
125
+
126
+ def open_file(dataset_name, file_number, split):
127
+ return open(os.path.join(filtered_dir, f'{dataset_name}_{split}_{file_number}.jsonl'), 'w', encoding='utf8')
128
+
129
+
130
+ def clean_and_filter_documents():
131
+ # Load all datasets across languages and types
132
+ lang_type_datasets = preprocess_dataset(languages=None, domain_types=None)
133
+ # also pass in dataset_name
134
+ lang_type_datasets = [(dataset, dataset.config_name) for dataset in lang_type_datasets]
135
+ print(lang_type_datasets)
136
+
137
+ # Launch pool to preprocess datasets in parallel
138
+ max_num_processes = min(multiprocessing.cpu_count() - 2, len(lang_type_datasets))
139
+ num_processes = max(max_num_processes, 1)
140
+ print(f'Launching a Pool with maximum {num_processes} processes...')
141
+ with Pool(num_processes) as pool:
142
+ pool.map(write_samples, lang_type_datasets)
143
+
144
+ # Compress datasets
145
+ print(f"Compressing datasets at {filtered_dir}")
146
+ # Do this at the end because we use multithreading
147
+ for path in glob.glob(os.path.join(filtered_dir, '*.jsonl')):
148
+ print(f"Compressing {path}")
149
+ os.system(f'xz -zkf -T0 {path}') # -TO to use multithreading
150
+ print(f"Removing uncompressed file at {path}")
151
+ os.system(f'rm {path}') # remove uncompressed file to save space
152
+
153
+ print(f"Finished preparing legal data")
154
+
155
+
156
+
157
+ if __name__ == '__main__':
158
+ """
159
+ Run with
160
+ export PYTHONPATH=. && python prepare_legal_data.py | tee prepare_legal_data.log
161
+ """
162
+ clean_and_filter_documents()
163
+
164
+ # Get locally
165
+ # def get_file(LANG, DOMAIN_TYPE, split, number):
166
+ # base_folder = "data/mlm_dataset/chunks_512"
167
+ # return f'{base_folder}/{LANG}_{DOMAIN_TYPE}_{split}_{number}.jsonl.xz'
168
+
169
+ # files = [get_file(LANG, DOMAIN_TYPE, 'train', i) for i in range(1, 5)]
170
+ # files = [f for f in files if os.path.exists(f)] # make sure the file actually exists
171
+ # dataset = load_dataset("json", data_files={'train': files}, split='train', streaming=True)
172
+
173
+ # TODO write dataset cards for chunked, eu wikipedia and filtered dataset