Datasets:
added dataloader, preparation script and dataset card
Browse files- MultiLegalPile_Wikipedia_Filtered.py +121 -0
- README.md +209 -0
- prepare_legal_data.py +173 -0
MultiLegalPile_Wikipedia_Filtered.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MultiLegalPile Wikipedia Filtered"""
|
2 |
+
|
3 |
+
import json
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
from huggingface_hub.file_download import hf_hub_url
|
7 |
+
|
8 |
+
try:
|
9 |
+
import lzma as xz
|
10 |
+
except ImportError:
|
11 |
+
import pylzma as xz
|
12 |
+
|
13 |
+
datasets.logging.set_verbosity_info()
|
14 |
+
logger = datasets.logging.get_logger(__name__)
|
15 |
+
|
16 |
+
_CITATION = """
|
17 |
+
"""
|
18 |
+
|
19 |
+
_DESCRIPTION = """
|
20 |
+
A filtered version of the MultiLegalPile dataset, together with wikipedia articles.
|
21 |
+
"""
|
22 |
+
|
23 |
+
_URL = "https://huggingface.co/datasets/joelito/MultiLegalPile_Wikipedia_Filtered"
|
24 |
+
|
25 |
+
_LANGUAGES = ["bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "ga", "hr",
|
26 |
+
"hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "sk", "sl", "sv"]
|
27 |
+
|
28 |
+
_TYPES = ["caselaw", "contracts", "legislation", "other", "wikipedia"]
|
29 |
+
|
30 |
+
_JURISDICTONS = ["Austria", "Belgium", "Bulgaria", "Croatia", "Czechia", "Denmark", "Estonia", "Finland",
|
31 |
+
"France", "Germany", "Greece", "Hungary", "Ireland", "Italy", "Latvia", "Lithuania", "Luxembourg",
|
32 |
+
"Malta", "Netherlands", "Poland", "Portugal", "Romania", "Slovakia", "Slovenia", "Spain", "Sweden",
|
33 |
+
"EU", "Switzerland", "UK", "US", "Canada", "N/A"]
|
34 |
+
|
35 |
+
# IMPORTANT: Increase this once larger datasets are available (en_caselaw has 9 at the moment)
|
36 |
+
_HIGHEST_NUMBER_OF_SHARDS = 9
|
37 |
+
|
38 |
+
|
39 |
+
class MultiLegalPileWikipediaFilteredConfig(datasets.BuilderConfig):
|
40 |
+
"""BuilderConfig for MultiLegalPileWikipediaFiltered."""
|
41 |
+
|
42 |
+
def __init__(self, name: str, **kwargs):
|
43 |
+
"""BuilderConfig for MultiLegalPileWikipediaFiltered.
|
44 |
+
Args:
|
45 |
+
name: combination of language and type with _
|
46 |
+
language: One of bg,cs,da,de,el,en,es,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv or all
|
47 |
+
type: One of caselaw,contracts,legislation,other,wikipedia or all
|
48 |
+
**kwargs: keyword arguments forwarded to super.
|
49 |
+
"""
|
50 |
+
super(MultiLegalPileWikipediaFilteredConfig, self).__init__(**kwargs)
|
51 |
+
self.name = name
|
52 |
+
self.language = name.split("_")[0]
|
53 |
+
self.type = name.split("_")[1]
|
54 |
+
|
55 |
+
|
56 |
+
class MultiLegalPileWikipediaFiltered(datasets.GeneratorBasedBuilder):
|
57 |
+
"""
|
58 |
+
MultiLegalPileWikipediaFiltered:
|
59 |
+
A filtered dataset of multilingual legal data and wikipedias in the EU languages
|
60 |
+
"""
|
61 |
+
BUILDER_CONFIG_CLASS = MultiLegalPileWikipediaFilteredConfig
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [MultiLegalPileWikipediaFilteredConfig(f"{language}_{type}")
|
64 |
+
for type in _TYPES + ["all"]
|
65 |
+
for language in _LANGUAGES + ["all"]]
|
66 |
+
|
67 |
+
def _info(self):
|
68 |
+
return datasets.DatasetInfo(
|
69 |
+
description=_DESCRIPTION,
|
70 |
+
features=datasets.Features(
|
71 |
+
{
|
72 |
+
"language": datasets.Value("string"), # one of _LANGUAGES
|
73 |
+
"type": datasets.Value("string"), # one of _TYPES
|
74 |
+
"jurisdiction": datasets.Value("string"), # one of _JURISDICTONS
|
75 |
+
"text": datasets.Value("string"),
|
76 |
+
}
|
77 |
+
),
|
78 |
+
supervised_keys=None,
|
79 |
+
homepage=_URL,
|
80 |
+
citation=_CITATION,
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager):
|
84 |
+
def download_url(file_name):
|
85 |
+
url = hf_hub_url(repo_id="joelito/MultiLegalPile_Wikipedia_Filtered",
|
86 |
+
filename=f"data/{file_name}.jsonl.xz", repo_type="dataset")
|
87 |
+
return dl_manager.download(url)
|
88 |
+
|
89 |
+
languages = _LANGUAGES if self.config.language == "all" else [self.config.language]
|
90 |
+
types = _TYPES if self.config.type == "all" else [self.config.type]
|
91 |
+
|
92 |
+
split_generators = []
|
93 |
+
for split in [datasets.Split.TRAIN, datasets.Split.VALIDATION]:
|
94 |
+
filepaths = []
|
95 |
+
for language in languages:
|
96 |
+
for type in types:
|
97 |
+
for shard in range(_HIGHEST_NUMBER_OF_SHARDS):
|
98 |
+
try:
|
99 |
+
filepaths.append(download_url(f"{language}_{type}_{split}_{shard}"))
|
100 |
+
except:
|
101 |
+
break # we found the last shard
|
102 |
+
split_generators.append(
|
103 |
+
datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": filepaths})
|
104 |
+
)
|
105 |
+
return split_generators
|
106 |
+
|
107 |
+
def _generate_examples(self, filepaths):
|
108 |
+
"""This function returns the examples in the raw (text) form by iterating on all the files."""
|
109 |
+
id_ = 0
|
110 |
+
for filepath in filepaths:
|
111 |
+
logger.info("Generating examples from = %s", filepath)
|
112 |
+
try:
|
113 |
+
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
|
114 |
+
for line in f:
|
115 |
+
if line:
|
116 |
+
example = json.loads(line)
|
117 |
+
if example is not None and isinstance(example, dict):
|
118 |
+
yield id_, example
|
119 |
+
id_ += 1
|
120 |
+
except Exception:
|
121 |
+
logger.exception("Error while processing file %s", filepath)
|
README.md
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- other
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
language:
|
7 |
+
- bg
|
8 |
+
- cs
|
9 |
+
- da
|
10 |
+
- de
|
11 |
+
- el
|
12 |
+
- en
|
13 |
+
- es
|
14 |
+
- et
|
15 |
+
- fi
|
16 |
+
- fr
|
17 |
+
- ga
|
18 |
+
- hr
|
19 |
+
- hu
|
20 |
+
- it
|
21 |
+
- lt
|
22 |
+
- lv
|
23 |
+
- mt
|
24 |
+
- nl
|
25 |
+
- pl
|
26 |
+
- pt
|
27 |
+
- ro
|
28 |
+
- sk
|
29 |
+
- sl
|
30 |
+
- sv
|
31 |
+
license:
|
32 |
+
- cc-by-4.0
|
33 |
+
multilinguality:
|
34 |
+
- multilingual
|
35 |
+
paperswithcode_id: null
|
36 |
+
pretty_name: "MultiLegalPile_Wikipedia_Filtered: A filtered version of the MultiLegalPile dataset, together with wikipedia articles."
|
37 |
+
size_categories:
|
38 |
+
- 10M<n<100M
|
39 |
+
source_datasets:
|
40 |
+
- original
|
41 |
+
task_categories:
|
42 |
+
- fill-mask
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
# Dataset Card for MultiLegalPile_Wikipedia_Filtered: A filtered version of the MultiLegalPile dataset, together with wikipedia articles
|
47 |
+
|
48 |
+
## Table of Contents
|
49 |
+
|
50 |
+
- [Table of Contents](#table-of-contents)
|
51 |
+
- [Dataset Description](#dataset-description)
|
52 |
+
- [Dataset Summary](#dataset-summary)
|
53 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
54 |
+
- [Languages](#languages)
|
55 |
+
- [Dataset Structure](#dataset-structure)
|
56 |
+
- [Data Instances](#data-instances)
|
57 |
+
- [Data Fields](#data-fields)
|
58 |
+
- [Data Splits](#data-splits)
|
59 |
+
- [Dataset Creation](#dataset-creation)
|
60 |
+
- [Curation Rationale](#curation-rationale)
|
61 |
+
- [Source Data](#source-data)
|
62 |
+
- [Annotations](#annotations)
|
63 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
64 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
65 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
66 |
+
- [Discussion of Biases](#discussion-of-biases)
|
67 |
+
- [Other Known Limitations](#other-known-limitations)
|
68 |
+
- [Additional Information](#additional-information)
|
69 |
+
- [Dataset Curators](#dataset-curators)
|
70 |
+
- [Licensing Information](#licensing-information)
|
71 |
+
- [Citation Information](#citation-information)
|
72 |
+
- [Contributions](#contributions)
|
73 |
+
|
74 |
+
## Dataset Description
|
75 |
+
|
76 |
+
- **Homepage:**
|
77 |
+
- **Repository:**
|
78 |
+
- **Paper:**
|
79 |
+
- **Leaderboard:**
|
80 |
+
- **Point of Contact:** [Joel Niklaus](mailto:[email protected])
|
81 |
+
|
82 |
+
### Dataset Summary
|
83 |
+
|
84 |
+
The Multi_Legal_Pile is a large-scale multilingual legal dataset suited for pretraining language models.
|
85 |
+
It spans over 24 languages and four legal text types.
|
86 |
+
|
87 |
+
### Supported Tasks and Leaderboards
|
88 |
+
|
89 |
+
The dataset supports the tasks of fill-mask.
|
90 |
+
|
91 |
+
### Languages
|
92 |
+
|
93 |
+
The following languages are supported:
|
94 |
+
bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv
|
95 |
+
|
96 |
+
## Dataset Structure
|
97 |
+
|
98 |
+
It is structured in the following format: {language}_{text_type}_{shard}.jsonl.xz
|
99 |
+
|
100 |
+
text_type is one of the following:
|
101 |
+
|
102 |
+
- caselaw
|
103 |
+
- contracts
|
104 |
+
- legislation
|
105 |
+
- other
|
106 |
+
- wikipedia
|
107 |
+
|
108 |
+
|
109 |
+
Use the dataset like this:
|
110 |
+
```python
|
111 |
+
from datasets import load_dataset
|
112 |
+
|
113 |
+
config = 'en_contracts' # {language}_{text_type}
|
114 |
+
dataset = load_dataset('joelito/Multi_Legal_Pile', config, split='train', streaming=True)
|
115 |
+
```
|
116 |
+
|
117 |
+
'config' is a combination of language and text_type, e.g. 'en_contracts' or 'de_caselaw'.
|
118 |
+
To load all the languages or all the text_types, use 'all' instead of the language or text_type (e.g., '
|
119 |
+
all_legislation').
|
120 |
+
|
121 |
+
### Data Instances
|
122 |
+
|
123 |
+
The file format is jsonl.xz and there is a `train` and `validation` split available.
|
124 |
+
Since some configurations are very small or non-existent, they might not contain a train split or not be present at all.
|
125 |
+
|
126 |
+
The complete dataset consists of five large subsets:
|
127 |
+
- [Native Multi Legal Pile](https://huggingface.co/datasets/joelito/Multi_Legal_Pile)
|
128 |
+
- [Eurlex Resources](https://huggingface.co/datasets/joelito/eurlex_resources)
|
129 |
+
- [MC4 Legal](https://huggingface.co/datasets/joelito/mc4_legal)
|
130 |
+
- [Pile of Law](https://huggingface.co/datasets/pile-of-law/pile-of-law)
|
131 |
+
- [EU Wikipedias](https://huggingface.co/datasets/joelito/EU_Wikipedias)
|
132 |
+
|
133 |
+
### Data Fields
|
134 |
+
|
135 |
+
[More Information Needed]
|
136 |
+
|
137 |
+
### Data Splits
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Dataset Creation
|
142 |
+
|
143 |
+
This dataset has been created by combining the following datasets:
|
144 |
+
Native Multi Legal Pile, Eurlex Resources, MC4 Legal, Pile of Law, EU Wikipedias.
|
145 |
+
It has been filtered to remove short documents (less than 64 whitespace-separated tokens) and
|
146 |
+
documents with more than 30% punctuation or numbers (see prepare_legal_data.py for more details).
|
147 |
+
|
148 |
+
### Curation Rationale
|
149 |
+
|
150 |
+
[More Information Needed]
|
151 |
+
|
152 |
+
### Source Data
|
153 |
+
|
154 |
+
#### Initial Data Collection and Normalization
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
#### Who are the source language producers?
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
|
163 |
+
### Annotations
|
164 |
+
|
165 |
+
#### Annotation process
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
#### Who are the annotators?
|
170 |
+
|
171 |
+
[More Information Needed]
|
172 |
+
|
173 |
+
### Personal and Sensitive Information
|
174 |
+
|
175 |
+
[More Information Needed]
|
176 |
+
|
177 |
+
## Considerations for Using the Data
|
178 |
+
|
179 |
+
### Social Impact of Dataset
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
### Discussion of Biases
|
184 |
+
|
185 |
+
[More Information Needed]
|
186 |
+
|
187 |
+
### Other Known Limitations
|
188 |
+
|
189 |
+
[More Information Needed]
|
190 |
+
|
191 |
+
## Additional Information
|
192 |
+
|
193 |
+
### Dataset Curators
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
### Licensing Information
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
### Citation Information
|
202 |
+
|
203 |
+
```
|
204 |
+
TODO add citation
|
205 |
+
```
|
206 |
+
|
207 |
+
### Contributions
|
208 |
+
|
209 |
+
Thanks to [@JoelNiklaus](https://github.com/joelniklaus) for adding this dataset.
|
prepare_legal_data.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# No chunks, one doc per line
|
2 |
+
|
3 |
+
# remove new lines, etc.
|
4 |
+
# create a corpus of min 200-400 GB ==> ~100B tokens
|
5 |
+
# max file size: 4GB because of huggingface
|
6 |
+
# validation set: ~100M tokens ==> 200-400MB
|
7 |
+
|
8 |
+
import glob
|
9 |
+
import json
|
10 |
+
import multiprocessing
|
11 |
+
|
12 |
+
import tqdm
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
from multiprocessing import Pool
|
16 |
+
|
17 |
+
from datasets import load_dataset
|
18 |
+
from tokenizers import normalizers
|
19 |
+
|
20 |
+
_LANGUAGES = ['bg', 'cs', 'da', 'de', 'el', 'en', 'es', 'et', 'fi', 'fr', 'ga', 'hr',
|
21 |
+
'hu', 'it', 'lt', 'lv', 'mt', 'nl', 'pl', 'pt', 'ro', 'sk', 'sl', 'sv']
|
22 |
+
_DOMAIN_TYPES = ['legislation', 'caselaw', 'contracts', 'other', 'wikipedia']
|
23 |
+
|
24 |
+
custom_normalizer = normalizers.NFKD()
|
25 |
+
|
26 |
+
VALIDATION_SIZE = 1_000 # ~1MB per configuration ==> some low-resource configs will only have a validation file
|
27 |
+
|
28 |
+
filtered_dir = os.path.join('data', 'filtered')
|
29 |
+
os.makedirs(filtered_dir, exist_ok=True)
|
30 |
+
|
31 |
+
|
32 |
+
def preprocess_dataset(languages=None, domain_types=None):
|
33 |
+
lang_type_datasets = []
|
34 |
+
# set defaults if they are not set
|
35 |
+
if languages is None:
|
36 |
+
languages = _LANGUAGES
|
37 |
+
if domain_types is None:
|
38 |
+
domain_types = _DOMAIN_TYPES
|
39 |
+
|
40 |
+
for LANG in languages:
|
41 |
+
for DOMAIN_TYPE in domain_types:
|
42 |
+
try:
|
43 |
+
if DOMAIN_TYPE == 'wikipedia':
|
44 |
+
# get from EU_Wikipedias
|
45 |
+
dataset = load_dataset("joelito/EU_Wikipedias", date="20221120", language=LANG,
|
46 |
+
split='train', streaming=True, use_auth_token=True)
|
47 |
+
else:
|
48 |
+
# get from Multi_Legal_Pile
|
49 |
+
dataset = load_dataset("joelito/Multi_Legal_Pile", f'{LANG}_{DOMAIN_TYPE}',
|
50 |
+
split='train', streaming=True, use_auth_token=True)
|
51 |
+
dataset = dataset.shuffle(seed=42, buffer_size=10_000)
|
52 |
+
print(f'Found data for `{DOMAIN_TYPE}` in language `{LANG}`.')
|
53 |
+
except:
|
54 |
+
print(f'There is no data for `{DOMAIN_TYPE}` in language `{LANG}`.')
|
55 |
+
continue
|
56 |
+
lang_type_datasets.append(dataset)
|
57 |
+
return lang_type_datasets
|
58 |
+
|
59 |
+
|
60 |
+
def write_samples(dataset_number):
|
61 |
+
dataset, dataset_name = dataset_number
|
62 |
+
if len(dataset_name.split('_')) == 1: # wikipedia
|
63 |
+
language = dataset_name.split('.')[1]
|
64 |
+
domain_type = "wikipedia"
|
65 |
+
dataset_name = f"{language}_{domain_type}" # reformat the config name so that we have wikipedia in the name
|
66 |
+
else:
|
67 |
+
language, domain_type = dataset_name.split('_')
|
68 |
+
total_count, temp_count, all_samples, file_number = 0, 0, 0, 0
|
69 |
+
out_file = open_file(dataset_name, file_number, "validation") # we save the first examples to the validation set
|
70 |
+
print(f'Processing for dataset {dataset_name} started!')
|
71 |
+
# Read each document
|
72 |
+
for sample in tqdm.tqdm(dataset):
|
73 |
+
try:
|
74 |
+
text = normalize_text(sample['text'])
|
75 |
+
if "validation" in out_file.name and temp_count > VALIDATION_SIZE:
|
76 |
+
# if we are saving to eval, and we have enough samples in the eval set, switch to train
|
77 |
+
out_file.close()
|
78 |
+
temp_count = 0
|
79 |
+
out_file = open_file(dataset_name, file_number, "train")
|
80 |
+
# on average approx. 2GB per file, compresses (with xz) to around ~500MB (xz: ~75% compression ratio)
|
81 |
+
if "train" in out_file.name and temp_count > 500_000: # err on the small side of the file size
|
82 |
+
# if we are saving to train, and we reached the max size per file, switch to the next file
|
83 |
+
out_file.close()
|
84 |
+
file_number += 1
|
85 |
+
temp_count = 0
|
86 |
+
out_file = open_file(dataset_name, file_number, "train")
|
87 |
+
# if the text is usable for pretraining, save it
|
88 |
+
if is_text_usable(text):
|
89 |
+
jurisdiction = sample.get('jurisdiction', "N/A") # set defaults for wikipedia
|
90 |
+
type = sample.get("type", "wikipedia") # set defaults for wikipedia
|
91 |
+
entry = {"language": sample["language"], "type": type, "jurisdiction": jurisdiction, "text": text}
|
92 |
+
out_file.write(json.dumps(entry) + '\n')
|
93 |
+
total_count += 1
|
94 |
+
temp_count += 1
|
95 |
+
all_samples += 1
|
96 |
+
except:
|
97 |
+
continue
|
98 |
+
|
99 |
+
try:
|
100 |
+
out_file.close()
|
101 |
+
except:
|
102 |
+
pass
|
103 |
+
|
104 |
+
print(f'Processing for dataset {dataset_name} finished with {total_count}/{all_samples}!')
|
105 |
+
return
|
106 |
+
|
107 |
+
|
108 |
+
def is_text_usable(text):
|
109 |
+
# Compute percentage of alphabetical characters in relation to full sequence length
|
110 |
+
punctuation = '!\"#$%&\'()*+,\-\./:;<=>?@\[\\\]\^_`{\|}~'
|
111 |
+
alpha_text = re.sub(rf'[{punctuation}\d]', '', text) # remove numbers and punctuation
|
112 |
+
alpha_percent = len(alpha_text) / len(text)
|
113 |
+
# Compute total chunk length
|
114 |
+
text_length = len(text.split())
|
115 |
+
# Ignore sequences with more than 30% numbers or short sequences (less than 64 tokens)
|
116 |
+
return alpha_percent > 0.7 and text_length > 64
|
117 |
+
|
118 |
+
|
119 |
+
def normalize_text(text):
|
120 |
+
# Normalize the document
|
121 |
+
text = custom_normalizer.normalize_str(text)
|
122 |
+
# Replace multiple newline and whitespaces
|
123 |
+
return re.sub(r'(\n )+', r'\n ', re.sub(r'( *[\n\r]+ *)+', r'\n ', re.sub(r'[\t ]+', r' ', text)))
|
124 |
+
|
125 |
+
|
126 |
+
def open_file(dataset_name, file_number, split):
|
127 |
+
return open(os.path.join(filtered_dir, f'{dataset_name}_{split}_{file_number}.jsonl'), 'w', encoding='utf8')
|
128 |
+
|
129 |
+
|
130 |
+
def clean_and_filter_documents():
|
131 |
+
# Load all datasets across languages and types
|
132 |
+
lang_type_datasets = preprocess_dataset(languages=None, domain_types=None)
|
133 |
+
# also pass in dataset_name
|
134 |
+
lang_type_datasets = [(dataset, dataset.config_name) for dataset in lang_type_datasets]
|
135 |
+
print(lang_type_datasets)
|
136 |
+
|
137 |
+
# Launch pool to preprocess datasets in parallel
|
138 |
+
max_num_processes = min(multiprocessing.cpu_count() - 2, len(lang_type_datasets))
|
139 |
+
num_processes = max(max_num_processes, 1)
|
140 |
+
print(f'Launching a Pool with maximum {num_processes} processes...')
|
141 |
+
with Pool(num_processes) as pool:
|
142 |
+
pool.map(write_samples, lang_type_datasets)
|
143 |
+
|
144 |
+
# Compress datasets
|
145 |
+
print(f"Compressing datasets at {filtered_dir}")
|
146 |
+
# Do this at the end because we use multithreading
|
147 |
+
for path in glob.glob(os.path.join(filtered_dir, '*.jsonl')):
|
148 |
+
print(f"Compressing {path}")
|
149 |
+
os.system(f'xz -zkf -T0 {path}') # -TO to use multithreading
|
150 |
+
print(f"Removing uncompressed file at {path}")
|
151 |
+
os.system(f'rm {path}') # remove uncompressed file to save space
|
152 |
+
|
153 |
+
print(f"Finished preparing legal data")
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
if __name__ == '__main__':
|
158 |
+
"""
|
159 |
+
Run with
|
160 |
+
export PYTHONPATH=. && python prepare_legal_data.py | tee prepare_legal_data.log
|
161 |
+
"""
|
162 |
+
clean_and_filter_documents()
|
163 |
+
|
164 |
+
# Get locally
|
165 |
+
# def get_file(LANG, DOMAIN_TYPE, split, number):
|
166 |
+
# base_folder = "data/mlm_dataset/chunks_512"
|
167 |
+
# return f'{base_folder}/{LANG}_{DOMAIN_TYPE}_{split}_{number}.jsonl.xz'
|
168 |
+
|
169 |
+
# files = [get_file(LANG, DOMAIN_TYPE, 'train', i) for i in range(1, 5)]
|
170 |
+
# files = [f for f in files if os.path.exists(f)] # make sure the file actually exists
|
171 |
+
# dataset = load_dataset("json", data_files={'train': files}, split='train', streaming=True)
|
172 |
+
|
173 |
+
# TODO write dataset cards for chunked, eu wikipedia and filtered dataset
|