Datasets:
Upload README.md
Browse files
README.md
CHANGED
@@ -24,6 +24,7 @@ task_categories:
|
|
24 |
- text-classification
|
25 |
task_ids:
|
26 |
- multi-label-classification
|
|
|
27 |
paperswithcode_id: korean-multi-label-hate-speech-dataset
|
28 |
dataset_info:
|
29 |
features:
|
@@ -86,7 +87,7 @@ dataset_info:
|
|
86 |
|
87 |
- **Homepage:** [K-MHaS](https://github.com/adlnlp/K-MHaS)
|
88 |
- **Repository:** [Korean Multi-label Hate Speech Dataset](https://github.com/adlnlp/K-MHaS)
|
89 |
-
- **Paper:** [K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment](https://
|
90 |
- **Point of Contact:** [Caren Han]([email protected])
|
91 |
|
92 |
### Dataset Summary
|
@@ -97,7 +98,9 @@ The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utteranc
|
|
97 |
Hate Speech Detection
|
98 |
|
99 |
* `binary classification` (labels: `Hate Speech`, `Not Hate Speech`)
|
100 |
-
* `multi-label classification`: (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`, `Not Hate Speech`)
|
|
|
|
|
101 |
|
102 |
### Languages
|
103 |
|
@@ -107,7 +110,7 @@ Korean
|
|
107 |
|
108 |
### Data Instances
|
109 |
|
110 |
-
The
|
111 |
|
112 |
```python
|
113 |
{'document':'μκΌ΄νλ±μν€λ€μ΄ λ€ λμ ΈμΌ λλΌκ° λλ°λ‘ λ κ²κ°λ€..λ΅μ΄ μλ μ’
μλ€γ
'
|
|
|
24 |
- text-classification
|
25 |
task_ids:
|
26 |
- multi-label-classification
|
27 |
+
- hate-speech-detection
|
28 |
paperswithcode_id: korean-multi-label-hate-speech-dataset
|
29 |
dataset_info:
|
30 |
features:
|
|
|
87 |
|
88 |
- **Homepage:** [K-MHaS](https://github.com/adlnlp/K-MHaS)
|
89 |
- **Repository:** [Korean Multi-label Hate Speech Dataset](https://github.com/adlnlp/K-MHaS)
|
90 |
+
- **Paper:** [K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment](https://arxiv.org/abs/2208.10684)
|
91 |
- **Point of Contact:** [Caren Han]([email protected])
|
92 |
|
93 |
### Dataset Summary
|
|
|
98 |
Hate Speech Detection
|
99 |
|
100 |
* `binary classification` (labels: `Hate Speech`, `Not Hate Speech`)
|
101 |
+
* `multi-label classification`: (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`, `Not Hate Speech`)
|
102 |
+
|
103 |
+
For the multi-label classification, a `Hate Speech` class from the binary classification, is broken down into eight classes, associated with the hate speech category. In order to reflect the social and historical context, we select the eight hate speech classes. For example, the `Politics` class is chosen, due to a significant influence on the style of Korean hate speech.
|
104 |
|
105 |
### Languages
|
106 |
|
|
|
110 |
|
111 |
### Data Instances
|
112 |
|
113 |
+
The dataset is provided with train/validation/test set in the txt format. Each instance is a news comment with a corresponding one or more hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. The label numbers matching in both English and Korean is in the data fields section.
|
114 |
|
115 |
```python
|
116 |
{'document':'μκΌ΄νλ±μν€λ€μ΄ λ€ λμ ΈμΌ λλΌκ° λλ°λ‘ λ κ²κ°λ€..λ΅μ΄ μλ μ’
μλ€γ
'
|