jeanlee commited on
Commit
f2144f3
β€’
1 Parent(s): ad9db52

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -24,6 +24,7 @@ task_categories:
24
  - text-classification
25
  task_ids:
26
  - multi-label-classification
 
27
  paperswithcode_id: korean-multi-label-hate-speech-dataset
28
  dataset_info:
29
  features:
@@ -86,7 +87,7 @@ dataset_info:
86
 
87
  - **Homepage:** [K-MHaS](https://github.com/adlnlp/K-MHaS)
88
  - **Repository:** [Korean Multi-label Hate Speech Dataset](https://github.com/adlnlp/K-MHaS)
89
- - **Paper:** [K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment](https://aclanthology.org/2022.coling-1.311/)
90
  - **Point of Contact:** [Caren Han]([email protected])
91
 
92
  ### Dataset Summary
@@ -97,7 +98,9 @@ The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utteranc
97
  Hate Speech Detection
98
 
99
  * `binary classification` (labels: `Hate Speech`, `Not Hate Speech`)
100
- * `multi-label classification`: (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`, `Not Hate Speech`)For the multi-label classification, a `Hate Speech` class from the binary classification, is broken down into eight classes, associated with the hate speech category. In order to reflect the social and historical context, we select the eight hate speech classes. For example, the `Politics` class is chosen, due to a significant influence on the style of Korean hate speech.
 
 
101
 
102
  ### Languages
103
 
@@ -107,7 +110,7 @@ Korean
107
 
108
  ### Data Instances
109
 
110
- The txt format with train/validation/test set. Each instance is a news comment with a corresponding one or more hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. The label numbers matching in both English and Korean is in the data fields section.
111
 
112
  ```python
113
  {'document':'μˆ˜κΌ΄ν‹€λ”±μ‹œν‚€λ“€μ΄ λ‹€ λ””μ Έμ•Ό λ‚˜λΌκ°€ λ˜‘λ°”λ‘œ 될것같닀..닡이 μ—†λŠ” μ’…μžλ“€γ… '
 
24
  - text-classification
25
  task_ids:
26
  - multi-label-classification
27
+ - hate-speech-detection
28
  paperswithcode_id: korean-multi-label-hate-speech-dataset
29
  dataset_info:
30
  features:
 
87
 
88
  - **Homepage:** [K-MHaS](https://github.com/adlnlp/K-MHaS)
89
  - **Repository:** [Korean Multi-label Hate Speech Dataset](https://github.com/adlnlp/K-MHaS)
90
+ - **Paper:** [K-MHaS: A Multi-label Hate Speech Detection Dataset in Korean Online News Comment](https://arxiv.org/abs/2208.10684)
91
  - **Point of Contact:** [Caren Han]([email protected])
92
 
93
  ### Dataset Summary
 
98
  Hate Speech Detection
99
 
100
  * `binary classification` (labels: `Hate Speech`, `Not Hate Speech`)
101
+ * `multi-label classification`: (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`, `Not Hate Speech`)
102
+
103
+ For the multi-label classification, a `Hate Speech` class from the binary classification, is broken down into eight classes, associated with the hate speech category. In order to reflect the social and historical context, we select the eight hate speech classes. For example, the `Politics` class is chosen, due to a significant influence on the style of Korean hate speech.
104
 
105
  ### Languages
106
 
 
110
 
111
  ### Data Instances
112
 
113
+ The dataset is provided with train/validation/test set in the txt format. Each instance is a news comment with a corresponding one or more hate speech classes (labels: `Politics`, `Origin`, `Physical`, `Age`, `Gender`, `Religion`, `Race`, `Profanity`) or `Not Hate Speech` class. The label numbers matching in both English and Korean is in the data fields section.
114
 
115
  ```python
116
  {'document':'μˆ˜κΌ΄ν‹€λ”±μ‹œν‚€λ“€μ΄ λ‹€ λ””μ Έμ•Ό λ‚˜λΌκ°€ λ˜‘λ°”λ‘œ 될것같닀..닡이 μ—†λŠ” μ’…μžλ“€γ… '