jeanlee commited on
Commit
64227fe
1 Parent(s): 1dbba12

Delete kmhas_Korean_hatespeech.py

Browse files
Files changed (1) hide show
  1. kmhas_Korean_hatespeech.py +0 -116
kmhas_Korean_hatespeech.py DELETED
@@ -1,116 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """K-MHaS Korean Multi-label Hate Speech Dataset"""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
- from datasets.tasks import TextClassification
22
-
23
- _CITATION = """\
24
- @inproceedings{lee-etal-2022-k,
25
- title = "K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment",
26
- author = "Lee, Jean and
27
- Lim, Taejun and
28
- Lee, Heejun and
29
- Jo, Bogeun and
30
- Kim, Yangsok and
31
- Yoon, Heegeun and
32
- Han, Soyeon Caren",
33
- booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
34
- month = oct,
35
- year = "2022",
36
- address = "Gyeongju, Republic of Korea",
37
- publisher = "International Committee on Computational Linguistics",
38
- url = "https://aclanthology.org/2022.coling-1.311",
39
- pages = "3530--3538",
40
- abstract = "Online hate speech detection has become an important issue due to the growth of online content, but resources in languages other than English are extremely limited. We introduce K-MHaS, a new multi-label dataset for hate speech detection that effectively handles Korean language patterns. The dataset consists of 109k utterances from news comments and provides a multi-label classification using 1 to 4 labels, and handles subjectivity and intersectionality. We evaluate strong baselines on K-MHaS. KR-BERT with a sub-character tokenizer outperforms others, recognizing decomposed characters in each hate speech class.",
41
- }
42
- """
43
-
44
- _DESCRIPTION = """\
45
- The K-MHaS (Korean Multi-label Hate Speech) dataset contains 109k utterances from Korean online news comments labeled with 8 fine-grained hate speech classes or Not Hate Speech class.
46
- The fine-grained hate speech classes are politics, origin, physical, age, gender, religion, race, and profanity and these categories are selected in order to reflect the social and historical context.
47
- """
48
-
49
- _HOMEPAGE = "https://github.com/adlnlp/K-MHaS"
50
-
51
- _LICENSE = "cc-by-sa-4.0"
52
-
53
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_train.txt"
54
- _VALIDATION_DOWNLOAD_URL = "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_valid.txt"
55
- _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/adlnlp/K-MHaS/main/data/kmhas_test.txt"
56
-
57
- _CLASS_NAMES = [
58
- "origin",
59
- "physical",
60
- "politics",
61
- "profanity",
62
- "age",
63
- "gender",
64
- "race",
65
- "religion",
66
- "not hate speech"
67
- ]
68
-
69
- class Kmhas(datasets.GeneratorBasedBuilder):
70
- """K-MHaS Korean Multi-label Hate Speech Dataset"""
71
-
72
- VERSION = datasets.Version("1.0.0")
73
-
74
- def _info(self):
75
-
76
- features = datasets.Features(
77
- {
78
- "document": datasets.Value("string"),
79
- "label": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES))
80
- }
81
- )
82
-
83
- return datasets.DatasetInfo(
84
- description=_DESCRIPTION,
85
- features=features,
86
- homepage=_HOMEPAGE,
87
- license=_LICENSE,
88
- citation=_CITATION,
89
- task_templates=[TextClassification(text_column="document", label_column="label")],
90
- )
91
-
92
- def _split_generators(self, dl_manager):
93
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
94
- validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL)
95
- test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
96
- return [
97
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
98
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}),
99
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
100
- ]
101
-
102
- def _generate_examples(self, filepath):
103
- """Generate K-MHaS Korean Multi-label Hate Speech examples"""
104
-
105
- with open(filepath, 'r') as f:
106
- lines = f.readlines()[1:]
107
-
108
- for index, line in enumerate(lines):
109
- row = line.strip().split('\t')
110
- sentence = row[0]
111
- label = [int(ind) for ind in row[1].split(",")]
112
- yield index, {
113
- "document" : sentence,
114
- "label": label,
115
- }
116
-