File size: 6,062 Bytes
24f5fbe
7e3723f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f5fbe
7e3723f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24f5fbe
7e3723f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
language:
- af
- ar
- az
- bg
- bn
- de
- el
- en
- es
- et
- eu
- fa
- fi
- fr
- gu
- he
- hi
- ht
- hu
- id
- it
- ja
- jv
- ka
- kk
- ko
- lt
- ml
- mr
- ms
- my
- nl
- pa
- pl
- pt
- qu
- ro
- ru
- sw
- ta
- te
- th
- tl
- tr
- uk
- ur
- vi
- wo
- yo
- zh
license: apache-2.0
pretty_name: Mewsli-X
task_categories:
- text-retrieval
task_ids:
- entity-linking-retrieval
configs:
- config_name: wikipedia_pairs
  data_files:
  - split: train
    path: wikipedia_pairs/train.jsonl.tar.gz
  - split: validation
    path: wikipedia_pairs/dev.jsonl.tar.gz
- config_name: ar
  data_files:
  - split: validation
    path: wikinews_mentions/ar/dev.jsonl
  - split: test
    path: wikinews_mentions/ar/test.jsonl
- config_name: de
  data_files:
  - split: validation
    path: wikinews_mentions/de/dev.jsonl
  - split: test
    path: wikinews_mentions/de/test.jsonl
- config_name: en
  data_files:
  - split: validation
    path: wikinews_mentions/en/dev.jsonl
  - split: test
    path: wikinews_mentions/en/test.jsonl
- config_name: es
  data_files:
  - split: validation
    path: wikinews_mentions/es/dev.jsonl
  - split: test
    path: wikinews_mentions/es/test.jsonl
- config_name: fa
  data_files:
  - split: validation
    path: wikinews_mentions/fa/dev.jsonl
  - split: test
    path: wikinews_mentions/fa/test.jsonl
- config_name: ja
  data_files:
  - split: validation
    path: wikinews_mentions/ja/dev.jsonl
  - split: test
    path: wikinews_mentions/ja/test.jsonl
- config_name: pl
  data_files:
  - split: validation
    path: wikinews_mentions/pl/dev.jsonl
  - split: test
    path: wikinews_mentions/pl/test.jsonl
- config_name: ro
  data_files:
  - split: validation
    path: wikinews_mentions/ro/dev.jsonl
  - split: test
    path: wikinews_mentions/ro/test.jsonl
- config_name: ta
  data_files:
  - split: validation
    path: wikinews_mentions/ta/dev.jsonl
  - split: test
    path: wikinews_mentions/ta/test.jsonl
- config_name: tr
  data_files:
  - split: validation
    path: wikinews_mentions/tr/dev.jsonl
  - split: test
    path: wikinews_mentions/tr/test.jsonl
- config_name: uk
  data_files:
  - split: validation
    path: wikinews_mentions/uk/dev.jsonl
  - split: test
    path: wikinews_mentions/uk/test.jsonl
- config_name: candidate_entities
  data_files:
  - split: test
    path: candidate_entities.jsonl.tar.gz
size_categories:
- 100K<n<1M
---

I generated the dataset following [mewsli-x.md#getting-started](https://github.com/google-research/google-research/blob/master/dense_representations_for_entity_retrieval/mel/mewsli-x.md#getting-started)
and converted into different parts (see [`process.py`](process.py)):
 - ar/de/en/es/fa/ja/pl/ro/ta/tr/uk wikinews_mentions dev and test (from `wikinews_mentions-dev/test.jsonl`)
 - candidate entities of 50 languages (from `candidate_set_entities.jsonl`)
 - English wikipedia_pairs to fine-tune models (from `wikipedia_pairs-dev/train.jsonl`)

Raw data files are in [`raw.tar.gz`](raw.tar.gz), which contains:
```
[...] 535M Feb 24 22:06 candidate_set_entities.jsonl
[...] 9.8M Feb 24 22:06 wikinews_mentions-dev.jsonl
[...]  35M Feb 24 22:06 wikinews_mentions-test.jsonl
[...]  24M Feb 24 22:06 wikipedia_pairs-dev.jsonl
[...] 283M Feb 24 22:06 wikipedia_pairs-train.jsonl
```

**Below is from the original [readme](https://github.com/google-research/google-research/blob/master/dense_representations_for_entity_retrieval/mel/mewsli-x.md)**

# Mewsli-X

Mewsli-X is a multilingual dataset of entity mentions appearing in
[WikiNews](https://www.wikinews.org/) and
[Wikipedia](https://www.wikipedia.org/) articles, that have been automatically
linked to [WikiData](https://www.wikidata.org/) entries.

The primary use case is to evaluate transfer-learning in the zero-shot
cross-lingual setting of the
[XTREME-R benchmark suite](https://sites.research.google/xtremer):

1.  Fine-tune a pretrained model on English Wikipedia examples;
2.  Evaluate on WikiNews in other languages &mdash; **given an *entity mention*
    in a WikiNews article, retrieve the correct *entity* from the predefined
    candidate set by means of its textual description.**

Mewsli-X constitutes a *doubly zero-shot* task by construction: at test time, a
model has to contend with different languages and a different set of entities
from those observed during fine-tuning.

๐Ÿ‘‰ For data examples and other editions of Mewsli, see [README.md](https://github.com/google-research/google-research/blob/master/dense_representations_for_entity_retrieval/mel/README.md).

๐Ÿ‘‰ Consider submitting to the
**[XTREME-R leaderboard](https://sites.research.google/xtremer)**. The XTREME-R
[repository](https://github.com/google-research/xtreme) includes code for
getting started with training and evaluating a baseline model in PyTorch.

๐Ÿ‘‰ Please cite this paper if you use the data/code in your work: *[XTREME-R:
Towards More Challenging and Nuanced Multilingual Evaluation (Ruder et al.,
2021)](https://aclanthology.org/2021.emnlp-main.802.pdf)*.

> _**NOTE:** New evaluation results on Mewsli-X are **not** directly comparable to those reported in the paper because the dataset required further updates, as detailed [below](#updated-dataset). This does not affect the overall findings of the paper._

```
@inproceedings{ruder-etal-2021-xtreme,
    title = "{XTREME}-{R}: Towards More Challenging and Nuanced Multilingual Evaluation",
    author = "Ruder, Sebastian  and
      Constant, Noah  and
      Botha, Jan  and
      Siddhant, Aditya  and
      Firat, Orhan  and
      Fu, Jinlan  and
      Liu, Pengfei  and
      Hu, Junjie  and
      Garrette, Dan  and
      Neubig, Graham  and
      Johnson, Melvin",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.802",
    doi = "10.18653/v1/2021.emnlp-main.802",
    pages = "10215--10245",
}
```