File size: 8,307 Bytes
fdacc72
efa14a7
 
fdacc72
7bcdcd5
db992db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479a533
db992db
eeec092
479a533
db992db
7bcdcd5
 
 
 
 
 
 
 
 
 
 
 
 
479a533
7bcdcd5
80f989d
479a533
656ae66
 
 
 
 
 
90196d2
 
656ae66
 
90196d2
 
656ae66
 
 
 
 
 
 
 
479a533
656ae66
90196d2
479a533
335a560
 
 
 
5347c94
335a560
 
 
 
 
 
 
 
 
 
 
c273efa
335a560
5347c94
c273efa
15da142
 
 
 
afe1d46
15da142
 
 
 
 
 
 
 
 
 
 
271956e
15da142
afe1d46
271956e
f0dcb67
 
 
 
0e93511
f0dcb67
 
 
 
 
 
 
 
 
 
 
324736f
 
0e93511
324736f
7bcdcd5
db992db
 
 
 
7bcdcd5
 
 
 
656ae66
 
 
 
335a560
 
 
 
15da142
 
 
 
f0dcb67
 
 
 
fdacc72
dd16f41
479a533
 
 
3e3dd0b
5a4c096
de064ad
479a533
dd16f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479a533
 
 
b76b31c
479a533
3ec1a9d
b76b31c
3ec1a9d
 
 
 
 
 
 
 
 
b89cc2f
 
 
3ec1a9d
 
 
 
 
 
 
 
be81cb7
dd16f41
b76b31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd16f41
b76b31c
479a533
 
dd16f41
479a533
 
 
 
be81cb7
479a533
dd16f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479a533
be81cb7
479a533
 
 
 
 
be81cb7
 
 
 
 
 
 
 
 
 
479a533
be81cb7
 
479a533
 
dd16f41
479a533
5a4c096
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
---
language:
- en
license: apache-2.0
dataset_info:
- config_name: graph_connectivity
  features:
  - name: image
    dtype: image
  - name: query_nodes_color
    dtype: string
  - name: adjacency_matrix
    dtype: string
  - name: query_node_1
    dtype: int64
  - name: query_node_2
    dtype: int64
  - name: label
    dtype: bool
  - name: id
    dtype: string
  splits:
  - name: validation
    num_bytes: 62682553
    num_examples: 128
  download_size: 19391513
  dataset_size: 62682553
- config_name: graph_isomorphism
  features:
  - name: image
    dtype: image
  - name: adjacency_matrix_G
    dtype: string
  - name: adjacency_matrix_H
    dtype: string
  - name: label
    dtype: bool
  - name: id
    dtype: string
  splits:
  - name: validation
    num_bytes: 25082487
    num_examples: 128
  download_size: 8931620
  dataset_size: 25082487
- config_name: graph_maxflow
  features:
  - name: image
    dtype: image
  - name: source_node
    dtype: int64
  - name: source_node_color
    dtype: string
  - name: sink_node
    dtype: int64
  - name: sink_node_color
    dtype: string
  - name: adjacency_matrix
    dtype: string
  - name: label
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: validation
    num_bytes: 44530168
    num_examples: 128
  download_size: 16112025
  dataset_size: 44530168
- config_name: math_breakpoint
  features:
  - name: image
    dtype: image
  - name: domain
    dtype: float64
  - name: latex
    dtype: string
  - name: code
    dtype: string
  - name: label
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: validation
    num_bytes: 14120119.0
    num_examples: 256
  download_size: 12531449
  dataset_size: 14120119.0
- config_name: math_convexity
  features:
  - name: image
    dtype: image
  - name: domain
    dtype: string
  - name: latex
    dtype: string
  - name: code
    dtype: string
  - name: label
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: validation
    num_bytes: 11176740.0
    num_examples: 256
  download_size: 9253917
  dataset_size: 11176740.0
- config_name: math_parity
  features:
  - name: image
    dtype: image
  - name: domain
    dtype: float64
  - name: latex
    dtype: string
  - name: code
    dtype: string
  - name: label
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: validation
    num_bytes: 17012598.0
    num_examples: 384
  download_size: 14230745
  dataset_size: 17012598.0
configs:
- config_name: graph_connectivity
  data_files:
  - split: validation
    path: graph_connectivity/validation-*
- config_name: graph_isomorphism
  data_files:
  - split: validation
    path: graph_isomorphism/validation-*
- config_name: graph_maxflow
  data_files:
  - split: validation
    path: graph_maxflow/validation-*
- config_name: math_breakpoint
  data_files:
  - split: validation
    path: math_breakpoint/validation-*
- config_name: math_convexity
  data_files:
  - split: validation
    path: math_convexity/validation-*
- config_name: math_parity
  data_files:
  - split: validation
    path: math_parity/validation-*
---
# Dataset Card for IsoBench

<!-- Provide a quick summary of the dataset. -->

πŸ“š [paper](https://arxiv.org/abs/2404.01266) 🌐 [website](https://isobench.github.io)

Introducing IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. Details of IsoBench can be found in our [paper](https://arxiv.org/abs/2404.01266) or [website](https://isobench.github.io)!

## Table of Contents
- [Dataset Details](#dataset-details)
  - [Mathematics](#mathematics)
  - [Algorithms](#algorithms)
  - [Games](#games)
  - [Science](#science)
- [Data Fields](#deta-fields)
  - [Mathematics](#mathematics)
    - [Convexity](#convexity)
    - [Breakpoint](#breakpoint)
    - [Parity](#parity)
  - [Algorithms](#algorithms)
    - [Connectivity](#connectivity)
    - [Maxflow](#maxflow)
    - [Isomorphism](#isomorphism)
  - [Games](#games)
    - [Winner Identification](#winner-identification)
    - [Chess Puzzle](#chess-puzzle)
  - [Science](#science)
    - [Chemistry](#chemistry)
    - [Physics](#physics)
- [Citation](#citation)
- [Contact](#contact)

## Uses

<!-- Address questions around how the dataset is intended to be used. -->
There are 4 major domains: math, algorithm, game, and science. Each domain has several subtasks. We will show how to load the data for each subtask.

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->
IsoBench is designed with two objectives, which are:

- Analyzing the behavior difference between language-only and multimodal foundation models, by prompting them with distinct (*e.g.* mathematical expression and plot of a function) representations of the same input.
- Contributing a language-only/multimodal benchmark in the science domain.

#### Mathematics
There are three mathematics tasks. Each task is structured as a classification problem and each class contains 128 samples.

- **Parity** implements a ternary classification problem. A model has to classify an input function into an even function, odd function, or neither.
- **Convexity** implements a binary classification problem for a model to classify an input function as convex or concave. **Note**: some functions are only convex (resp. concave) within a certain domain (*e.g.* `x > 0`), which is reported in the `xlim` field of each sample. We recommend providing this information as part of the prompt!
- **Breakpoint** counts the number of breakpoints (*i.e.* intersections of a piecewise linear function). Each function contains either 2 or 3 breakpoints, which renders this task a binary classification problem.

```python
from datasets import load_dataset

dataset_connectivity = load_dataset('isobench/IsoBench', 'math_parity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'math_convexity', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'math_breakpoint', split='validation')
```

### Algorithms
There are three algorithmic tasks, with ascending complexity: graph connectivity, graph maximum flow, and graph isomorphism.

You can download the data by
```python
from datasets import load_dataset

dataset_connectivity = load_dataset('isobench/IsoBench', 'graph_connectivity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'graph_maxflow', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'graph_isomorphism', split='validation')
```

Each task has 128 dev samples under the validation split. 



### Games

[More Information Needed]

### Science

[More Information Needed]


## Data Fields

### Mathematics

[More Information Needed]

### Algorithms

#### Connectivity
- `image`: a PIL Image feature
- `query_nodes_color`: a `string` feature
- `adjacency_matrix`:  a `string` feature, a string of an 2d array representing the adjacency matrix of a graph
- `query_node_1`: a `unit32` feature
- `query_node_2`: a `unit32` feature
- `label`: a `bool` feature, with possible values including `True` (query nodes connected) and `False` (query nodes not connected)
- `id`: a `string` feature

#### Maxflow

#### Isomorphism

### Games

[More Information Needed]

### Science

[More Information Needed]

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```BibTeX
@misc{fu2024isobench,
      title={{I}so{B}ench: Benchmarking Multimodal Foundation Models on Isomorphic Representations}, 
      author={Deqing Fu$^*$ and Ghazal Khalighinejad$^*$ and Ollie Liu$^*$ and Bhuwan Dhingra and Dani Yogatama and Robin Jia and Willie Neiswanger},
      year={2024},
      eprint={2404.01266},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

**Chicago:**
Fu, Deqing, Ghazal Khalighinejad, Ollie Liu, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and Willie Neiswanger. "IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations." arXiv preprint arXiv:2404.01266 (2024).


## Contact

[email protected], [email protected], [email protected]