File size: 8,307 Bytes
fdacc72 efa14a7 fdacc72 7bcdcd5 db992db 479a533 db992db eeec092 479a533 db992db 7bcdcd5 479a533 7bcdcd5 80f989d 479a533 656ae66 90196d2 656ae66 90196d2 656ae66 479a533 656ae66 90196d2 479a533 335a560 5347c94 335a560 c273efa 335a560 5347c94 c273efa 15da142 afe1d46 15da142 271956e 15da142 afe1d46 271956e f0dcb67 0e93511 f0dcb67 324736f 0e93511 324736f 7bcdcd5 db992db 7bcdcd5 656ae66 335a560 15da142 f0dcb67 fdacc72 dd16f41 479a533 3e3dd0b 5a4c096 de064ad 479a533 dd16f41 479a533 b76b31c 479a533 3ec1a9d b76b31c 3ec1a9d b89cc2f 3ec1a9d be81cb7 dd16f41 b76b31c dd16f41 b76b31c 479a533 dd16f41 479a533 be81cb7 479a533 dd16f41 479a533 be81cb7 479a533 be81cb7 479a533 be81cb7 479a533 dd16f41 479a533 5a4c096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
language:
- en
license: apache-2.0
dataset_info:
- config_name: graph_connectivity
features:
- name: image
dtype: image
- name: query_nodes_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: query_node_1
dtype: int64
- name: query_node_2
dtype: int64
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 62682553
num_examples: 128
download_size: 19391513
dataset_size: 62682553
- config_name: graph_isomorphism
features:
- name: image
dtype: image
- name: adjacency_matrix_G
dtype: string
- name: adjacency_matrix_H
dtype: string
- name: label
dtype: bool
- name: id
dtype: string
splits:
- name: validation
num_bytes: 25082487
num_examples: 128
download_size: 8931620
dataset_size: 25082487
- config_name: graph_maxflow
features:
- name: image
dtype: image
- name: source_node
dtype: int64
- name: source_node_color
dtype: string
- name: sink_node
dtype: int64
- name: sink_node_color
dtype: string
- name: adjacency_matrix
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 44530168
num_examples: 128
download_size: 16112025
dataset_size: 44530168
- config_name: math_breakpoint
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: int64
- name: id
dtype: string
splits:
- name: validation
num_bytes: 14120119.0
num_examples: 256
download_size: 12531449
dataset_size: 14120119.0
- config_name: math_convexity
features:
- name: image
dtype: image
- name: domain
dtype: string
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 11176740.0
num_examples: 256
download_size: 9253917
dataset_size: 11176740.0
- config_name: math_parity
features:
- name: image
dtype: image
- name: domain
dtype: float64
- name: latex
dtype: string
- name: code
dtype: string
- name: label
dtype: string
- name: id
dtype: string
splits:
- name: validation
num_bytes: 17012598.0
num_examples: 384
download_size: 14230745
dataset_size: 17012598.0
configs:
- config_name: graph_connectivity
data_files:
- split: validation
path: graph_connectivity/validation-*
- config_name: graph_isomorphism
data_files:
- split: validation
path: graph_isomorphism/validation-*
- config_name: graph_maxflow
data_files:
- split: validation
path: graph_maxflow/validation-*
- config_name: math_breakpoint
data_files:
- split: validation
path: math_breakpoint/validation-*
- config_name: math_convexity
data_files:
- split: validation
path: math_convexity/validation-*
- config_name: math_parity
data_files:
- split: validation
path: math_parity/validation-*
---
# Dataset Card for IsoBench
<!-- Provide a quick summary of the dataset. -->
π [paper](https://arxiv.org/abs/2404.01266) π [website](https://isobench.github.io)
Introducing IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. Details of IsoBench can be found in our [paper](https://arxiv.org/abs/2404.01266) or [website](https://isobench.github.io)!
## Table of Contents
- [Dataset Details](#dataset-details)
- [Mathematics](#mathematics)
- [Algorithms](#algorithms)
- [Games](#games)
- [Science](#science)
- [Data Fields](#deta-fields)
- [Mathematics](#mathematics)
- [Convexity](#convexity)
- [Breakpoint](#breakpoint)
- [Parity](#parity)
- [Algorithms](#algorithms)
- [Connectivity](#connectivity)
- [Maxflow](#maxflow)
- [Isomorphism](#isomorphism)
- [Games](#games)
- [Winner Identification](#winner-identification)
- [Chess Puzzle](#chess-puzzle)
- [Science](#science)
- [Chemistry](#chemistry)
- [Physics](#physics)
- [Citation](#citation)
- [Contact](#contact)
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
There are 4 major domains: math, algorithm, game, and science. Each domain has several subtasks. We will show how to load the data for each subtask.
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
IsoBench is designed with two objectives, which are:
- Analyzing the behavior difference between language-only and multimodal foundation models, by prompting them with distinct (*e.g.* mathematical expression and plot of a function) representations of the same input.
- Contributing a language-only/multimodal benchmark in the science domain.
#### Mathematics
There are three mathematics tasks. Each task is structured as a classification problem and each class contains 128 samples.
- **Parity** implements a ternary classification problem. A model has to classify an input function into an even function, odd function, or neither.
- **Convexity** implements a binary classification problem for a model to classify an input function as convex or concave. **Note**: some functions are only convex (resp. concave) within a certain domain (*e.g.* `x > 0`), which is reported in the `xlim` field of each sample. We recommend providing this information as part of the prompt!
- **Breakpoint** counts the number of breakpoints (*i.e.* intersections of a piecewise linear function). Each function contains either 2 or 3 breakpoints, which renders this task a binary classification problem.
```python
from datasets import load_dataset
dataset_connectivity = load_dataset('isobench/IsoBench', 'math_parity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'math_convexity', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'math_breakpoint', split='validation')
```
### Algorithms
There are three algorithmic tasks, with ascending complexity: graph connectivity, graph maximum flow, and graph isomorphism.
You can download the data by
```python
from datasets import load_dataset
dataset_connectivity = load_dataset('isobench/IsoBench', 'graph_connectivity', split='validation')
dataset_maxflow = load_dataset('isobench/IsoBench', 'graph_maxflow', split='validation')
dataset_isomorphism = load_dataset('isobench/IsoBench', 'graph_isomorphism', split='validation')
```
Each task has 128 dev samples under the validation split.
### Games
[More Information Needed]
### Science
[More Information Needed]
## Data Fields
### Mathematics
[More Information Needed]
### Algorithms
#### Connectivity
- `image`: a PIL Image feature
- `query_nodes_color`: a `string` feature
- `adjacency_matrix`: a `string` feature, a string of an 2d array representing the adjacency matrix of a graph
- `query_node_1`: a `unit32` feature
- `query_node_2`: a `unit32` feature
- `label`: a `bool` feature, with possible values including `True` (query nodes connected) and `False` (query nodes not connected)
- `id`: a `string` feature
#### Maxflow
#### Isomorphism
### Games
[More Information Needed]
### Science
[More Information Needed]
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```BibTeX
@misc{fu2024isobench,
title={{I}so{B}ench: Benchmarking Multimodal Foundation Models on Isomorphic Representations},
author={Deqing Fu$^*$ and Ghazal Khalighinejad$^*$ and Ollie Liu$^*$ and Bhuwan Dhingra and Dani Yogatama and Robin Jia and Willie Neiswanger},
year={2024},
eprint={2404.01266},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
```
**Chicago:**
Fu, Deqing, Ghazal Khalighinejad, Ollie Liu, Bhuwan Dhingra, Dani Yogatama, Robin Jia, and Willie Neiswanger. "IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations." arXiv preprint arXiv:2404.01266 (2024).
## Contact
[email protected], [email protected], [email protected] |