--- pretty_name: '`lotte/writing/dev/search`' viewer: false source_datasets: ['irds/lotte_writing_dev'] task_categories: - text-retrieval --- # Dataset Card for `lotte/writing/dev/search` The `lotte/writing/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=497 - `qrels`: (relevance assessments); count=1,287 - For `docs`, use [`irds/lotte_writing_dev`](https://huggingface.co/datasets/irds/lotte_writing_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_writing_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_writing_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in 🤗 Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```