File size: 1,542 Bytes
9d041d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
pretty_name: '`lotte/writing/dev/search`'
viewer: false
source_datasets: ['irds/lotte_writing_dev']
task_categories:
- text-retrieval
---
# Dataset Card for `lotte/writing/dev/search`
The `lotte/writing/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/dev/search).
# Data
This dataset provides:
- `queries` (i.e., topics); count=497
- `qrels`: (relevance assessments); count=1,287
- For `docs`, use [`irds/lotte_writing_dev`](https://huggingface.co/datasets/irds/lotte_writing_dev)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/lotte_writing_dev_search', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/lotte_writing_dev_search', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in 🤗 Dataset format.
## Citation Information
```
@article{Santhanam2021ColBERTv2,
title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction",
author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia",
journal= "arXiv preprint arXiv:2112.01488",
year = "2021",
url = "https://arxiv.org/abs/2112.01488"
}
```
|