|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""DuoRC: A Paraphrased |
|
Reading Comprehension Question Answering Dataset""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{DuoRC, |
|
author = { Amrita Saha and Rahul Aralikatte and Mitesh M. Khapra and Karthik Sankaranarayanan},\ |
|
title = {{DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension}}, |
|
booktitle = {Meeting of the Association for Computational Linguistics (ACL)}, |
|
year = {2018} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
DuoRC contains 186,089 unique question-answer pairs created from a collection of 7680 pairs of movie plots where each pair in the collection reflects two versions of the same movie. |
|
""" |
|
|
|
_HOMEPAGE = "https://duorc.github.io/" |
|
|
|
_LICENSE = "https://raw.githubusercontent.com/duorc/duorc/master/LICENSE" |
|
|
|
_URL = "https://raw.githubusercontent.com/duorc/duorc/master/dataset/" |
|
_URLs = { |
|
"SelfRC": { |
|
"train": _URL + "SelfRC_train.json", |
|
"dev": _URL + "SelfRC_dev.json", |
|
"test": _URL + "SelfRC_test.json", |
|
}, |
|
"ParaphraseRC": { |
|
"train": _URL + "ParaphraseRC_train.json", |
|
"dev": _URL + "ParaphraseRC_dev.json", |
|
"test": _URL + "ParaphraseRC_test.json", |
|
}, |
|
} |
|
|
|
|
|
class DuorcConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DuoRC SelfRC.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for DuoRC SelfRC. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(DuorcConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Duorc(datasets.GeneratorBasedBuilder): |
|
"""DuoRC Dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
DuorcConfig(name="SelfRC", version=VERSION, description="SelfRC dataset"), |
|
DuorcConfig(name="ParaphraseRC", version=VERSION, description="ParaphraseRC dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"plot_id": datasets.Value("string"), |
|
"plot": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"question_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence(datasets.Value("string")), |
|
"no_answer": datasets.Value("bool"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.name] |
|
downloaded_files = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["dev"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
duorc = json.load(f) |
|
for example in duorc: |
|
plot_id = example["id"] |
|
plot = example["plot"].strip() |
|
title = example["title"].strip() |
|
for qas in example["qa"]: |
|
question_id = qas["id"] |
|
question = qas["question"].strip() |
|
answers = [answer.strip() for answer in qas["answers"]] |
|
no_answer = qas["no_answer"] |
|
|
|
yield question_id, { |
|
"title": title, |
|
"plot": plot, |
|
"question": question, |
|
"plot_id": plot_id, |
|
"question_id": question_id, |
|
"answers": answers, |
|
"no_answer": no_answer, |
|
} |
|
|