duorc / duorc.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
2e3fb0f
raw
history blame
5.21 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DuoRC: A Paraphrased
Reading Comprehension Question Answering Dataset"""
import json
import datasets
_CITATION = """\
@inproceedings{DuoRC,
author = { Amrita Saha and Rahul Aralikatte and Mitesh M. Khapra and Karthik Sankaranarayanan},\
title = {{DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension}},
booktitle = {Meeting of the Association for Computational Linguistics (ACL)},
year = {2018}
}
"""
_DESCRIPTION = """\
DuoRC contains 186,089 unique question-answer pairs created from a collection of 7680 pairs of movie plots where each pair in the collection reflects two versions of the same movie.
"""
_HOMEPAGE = "https://duorc.github.io/"
_LICENSE = "https://raw.githubusercontent.com/duorc/duorc/master/LICENSE"
_URL = "https://raw.githubusercontent.com/duorc/duorc/master/dataset/"
_URLs = {
"SelfRC": {
"train": _URL + "SelfRC_train.json",
"dev": _URL + "SelfRC_dev.json",
"test": _URL + "SelfRC_test.json",
},
"ParaphraseRC": {
"train": _URL + "ParaphraseRC_train.json",
"dev": _URL + "ParaphraseRC_dev.json",
"test": _URL + "ParaphraseRC_test.json",
},
}
class DuorcConfig(datasets.BuilderConfig):
"""BuilderConfig for DuoRC SelfRC."""
def __init__(self, **kwargs):
"""BuilderConfig for DuoRC SelfRC.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(DuorcConfig, self).__init__(**kwargs)
class Duorc(datasets.GeneratorBasedBuilder):
"""DuoRC Dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
DuorcConfig(name="SelfRC", version=VERSION, description="SelfRC dataset"),
DuorcConfig(name="ParaphraseRC", version=VERSION, description="ParaphraseRC dataset"),
]
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(
{
"plot_id": datasets.Value("string"),
"plot": datasets.Value("string"),
"title": datasets.Value("string"),
"question_id": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(datasets.Value("string")),
"no_answer": datasets.Value("bool"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
downloaded_files = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["dev"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"],
},
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
with open(filepath, encoding="utf-8") as f:
duorc = json.load(f)
for example in duorc:
plot_id = example["id"]
plot = example["plot"].strip()
title = example["title"].strip()
for qas in example["qa"]:
question_id = qas["id"]
question = qas["question"].strip()
answers = [answer.strip() for answer in qas["answers"]]
no_answer = qas["no_answer"]
yield question_id, {
"title": title,
"plot": plot,
"question": question,
"plot_id": plot_id,
"question_id": question_id,
"answers": answers,
"no_answer": no_answer,
}