Datasets:
File size: 5,906 Bytes
88c9ab8 bcc1458 88c9ab8 11ac372 88c9ab8 692cc46 88c9ab8 8278aa9 88c9ab8 bcc1458 88c9ab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
license: apache-2.0
task_categories:
- feature-extraction
language:
- en
tags:
- Out-of-Distribution Detection
- Multimodal Learning
pretty_name: MultiOOD
size_categories:
- 100K<n<1M
---
<div align="center">
<h1>MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities</h1>
<div>
<a href='https://sites.google.com/view/dong-hao/' target='_blank'>Hao Dong</a><sup>1</sup>
 
<a href='https://viterbi-web.usc.edu/~yzhao010/' target='_blank'>Yue Zhao</a><sup>2</sup>
 
<a href='https://chatzi.ibk.ethz.ch/about-us/people/prof-dr-eleni-chatzi.html' target='_blank'>Eleni Chatzi</a><sup>1</sup>
 
<a href='https://people.epfl.ch/olga.fink?lang=en' target='_blank'>Olga Fink</a><sup>3</sup>
</div>
<div>
<sup>1</sup>ETH Zurich, <sup>2</sup>University of Southern California, <sup>3</sup>EPFL
</div>
<div>
<h4 align="center">
• <a href="https://arxiv.org/abs/2405.17419" target='_blank'>arXiv</a> •
</h4>
</div>
<div style="text-align:center">
<img src="multiood.jpg" width="100%" height="100%">
</div>
---
</div>
MultiOOD is the first-of-its-kind benchmark for Multimodal OOD Detection, characterized by diverse dataset sizes and varying modality combinations.
## Code
https://github.com/donghao51/MultiOOD
## MultiOOD Benchmark
MultiOOD is based on five public action recognition datasets (HMDB51, UCF101, EPIC-Kitchens, HAC, and Kinetics-600).
### Prepare Datasets
1. Download HMDB51 video data from [link](https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/#Downloads) and extract. Download HMDB51 optical flow data from [link](https://huggingface.co/datasets/hdong51/MultiOOD/blob/main/hmdb51_flow_mp4.tar.gz) and extract. The directory structure should be modified to match:
```
HMDB51
├── video
| ├── catch
| | ├── *.avi
| ├── climb
| | ├── *.avi
| |── ...
├── flow
| ├── *_flow_x.mp4
| ├── *_flow_y.mp4
| ├── ...
```
2. Download UCF101 video data from [link](https://www.crcv.ucf.edu/data/UCF101/UCF101.rar) and extract. Download UCF101 optical flow data from [link](https://huggingface.co/datasets/hdong51/MultiOOD/blob/main/ucf101_flow_mp4.tar.gz) and extract. The directory structure should be modified to match:
```
UCF101
├── video
| ├── *.avi
| |── ...
├── flow
| ├── *_flow_x.mp4
| ├── *_flow_y.mp4
| ├── ...
```
3. Download EPIC-Kitchens video and optical flow data by
```
bash utils/download_epic_script.sh
```
Download audio data from [link](https://polybox.ethz.ch/index.php/s/PE2zIL99OWXQfMu).
Unzip all files and the directory structure should be modified to match:
```
EPIC-KITCHENS
├── rgb
| ├── train
| | ├── D3
| | | ├── P22_01.wav
| | | ├── P22_01
| | | | ├── frame_0000000000.jpg
| | | | ├── ...
| | | ├── P22_02
| | | ├── ...
| ├── test
| | ├── D3
├── flow
| ├── train
| | ├── D3
| | | ├── P22_01
| | | | ├── frame_0000000000.jpg
| | | | ├── ...
| | | ├── P22_02
| | | ├── ...
| ├── test
| | ├── D3
```
4. Download HAC video, audio and optical flow data from [link](https://polybox.ethz.ch/index.php/s/3F8ZWanMMVjKwJK) and extract. The directory structure should be modified to match:
```
HAC
├── human
| ├── videos
| | ├── ...
| ├── flow
| | ├── ...
| ├── audio
| | ├── ...
├── animal
| ├── videos
| | ├── ...
| ├── flow
| | ├── ...
| ├── audio
| | ├── ...
├── cartoon
| ├── videos
| | ├── ...
| ├── flow
| | ├── ...
| ├── audio
| | ├── ...
```
5. Download Kinetics-600 video data by
```
wget -i utils/filtered_k600_train_path.txt
```
Extract all files and get audio data from video data by
```
python utils/generate_audio_files.py
```
Download Kinetics-600 optical flow data (kinetics600_flow_mp4_part_*) from [link](https://huggingface.co/datasets/hdong51/MultiOOD/tree/main) and extract (run `cat kinetics600_flow_mp4_part_* > kinetics600_flow_mp4.tar.gz` and then `tar -zxvf kinetics600_flow_mp4.tar.gz`).
Unzip all files and the directory structure should be modified to match:
```
Kinetics-600
├── video
| ├── acting in play
| | ├── *.mp4
| | ├── *.wav
| |── ...
├── flow
| ├── acting in play
| | ├── *_flow_x.mp4
| | ├── *_flow_y.mp4
| ├── ...
```
### Dataset Splits
The splits for Multimodal Near-OOD and Far-OOD Benchmarks are provided in https://github.com/donghao51/MultiOOD under `HMDB-rgb-flow/splits/` for HMDB51, UCF101, HAC, and Kinetics-600, and under `EPIC-rgb-flow/splits/` for EPIC-Kitchens.
## Methodology
<div style="text-align:left">
<img src="frame.jpg" width="70%" height="100%">
</div>
---
An overview of the proposed framework for Multimodal OOD Detection. We introduce A2D algorithm to encourage enlarging the prediction discrepancy across modalities. Additionally, we propose a novel outlier synthesis algorithm, NP-Mix, designed to explore broader feature spaces, which complements A2D to strengthen the OOD detection performance.
## Contact
If you have any questions, please send an email to [email protected]
## Citation
If you find our work useful in your research please consider citing our paper:
```
@article{dong2024multiood,
author = {Hao Dong and Yue Zhao and Eleni Chatzi and Olga Fink},
title = {{MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities}},
journal = {arXiv preprint arXiv:2405.17419},
year = {2024},
}
```
|