File size: 5,906 Bytes
88c9ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc1458
88c9ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11ac372
 
 
88c9ab8
 
 
 
692cc46
88c9ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8278aa9
88c9ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc1458
88c9ab8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
license: apache-2.0
task_categories:
- feature-extraction
language:
- en
tags:
- Out-of-Distribution Detection
- Multimodal Learning
pretty_name: MultiOOD
size_categories:
- 100K<n<1M
---
<div align="center">

<h1>MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities</h1>

<div>
    <a href='https://sites.google.com/view/dong-hao/' target='_blank'>Hao Dong</a><sup>1</sup>
    &emsp;
    <a href='https://viterbi-web.usc.edu/~yzhao010/' target='_blank'>Yue Zhao</a><sup>2</sup>
    &emsp;
    <a href='https://chatzi.ibk.ethz.ch/about-us/people/prof-dr-eleni-chatzi.html' target='_blank'>Eleni Chatzi</a><sup>1</sup>
    &emsp;
    <a href='https://people.epfl.ch/olga.fink?lang=en' target='_blank'>Olga Fink</a><sup>3</sup>
</div>
<div>
    <sup>1</sup>ETH Zurich, <sup>2</sup>University of Southern California, <sup>3</sup>EPFL
</div>


<div>
    <h4 align="center">
        • <a href="https://arxiv.org/abs/2405.17419" target='_blank'>arXiv</a> •
    </h4>
</div>



<div style="text-align:center">
<img src="multiood.jpg"  width="100%" height="100%">
</div>

---

</div>

MultiOOD is the first-of-its-kind benchmark for Multimodal OOD Detection, characterized by diverse dataset sizes and varying modality combinations.

## Code
https://github.com/donghao51/MultiOOD

## MultiOOD Benchmark
MultiOOD is based on five public action recognition datasets (HMDB51, UCF101, EPIC-Kitchens, HAC, and Kinetics-600). 

### Prepare Datasets
1. Download HMDB51 video data from [link](https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/#Downloads) and extract. Download HMDB51 optical flow data from [link](https://huggingface.co/datasets/hdong51/MultiOOD/blob/main/hmdb51_flow_mp4.tar.gz) and extract. The directory structure should be modified to match:

```
HMDB51
├── video
|   ├── catch
|   |   ├── *.avi
|   ├── climb
|   |   ├── *.avi
|   |── ...


├── flow
|   ├── *_flow_x.mp4
|   ├── *_flow_y.mp4
|   ├── ...
```

2. Download UCF101 video data from [link](https://www.crcv.ucf.edu/data/UCF101/UCF101.rar) and extract. Download UCF101 optical flow data from [link](https://huggingface.co/datasets/hdong51/MultiOOD/blob/main/ucf101_flow_mp4.tar.gz) and extract. The directory structure should be modified to match:

```
UCF101
├── video
|   ├── *.avi
|   |── ...


├── flow
|   ├── *_flow_x.mp4
|   ├── *_flow_y.mp4
|   ├── ...
```

3. Download EPIC-Kitchens video and optical flow data by 
```
bash utils/download_epic_script.sh 
```
Download audio data from [link](https://polybox.ethz.ch/index.php/s/PE2zIL99OWXQfMu).

Unzip all files and the directory structure should be modified to match:

```
EPIC-KITCHENS
├── rgb
|   ├── train
|   |   ├── D3
|   |   |   ├── P22_01.wav
|   |   |   ├── P22_01
|   |   |   |     ├── frame_0000000000.jpg
|   |   |   |     ├── ...
|   |   |   ├── P22_02
|   |   |   ├── ...
|   ├── test
|   |   ├── D3


├── flow
|   ├── train
|   |   ├── D3
|   |   |   ├── P22_01
|   |   |   |     ├── frame_0000000000.jpg
|   |   |   |     ├── ...
|   |   |   ├── P22_02
|   |   |   ├── ...
|   ├── test
|   |   ├── D3
```

4. Download HAC video, audio and optical flow data from [link](https://polybox.ethz.ch/index.php/s/3F8ZWanMMVjKwJK) and extract. The directory structure should be modified to match:

```
HAC
├── human
|   ├── videos
|   |   ├── ...
|   ├── flow
|   |   ├── ...
|   ├── audio
|   |   ├── ...

├── animal
|   ├── videos
|   |   ├── ...
|   ├── flow
|   |   ├── ...
|   ├── audio
|   |   ├── ...

├── cartoon
|   ├── videos
|   |   ├── ...
|   ├── flow
|   |   ├── ...
|   ├── audio
|   |   ├── ...
```
5. Download Kinetics-600 video data by 
```
wget -i utils/filtered_k600_train_path.txt
```
Extract all files and get audio data from video data by
```
python utils/generate_audio_files.py
```
Download Kinetics-600 optical flow data (kinetics600_flow_mp4_part_*) from [link](https://huggingface.co/datasets/hdong51/MultiOOD/tree/main) and extract (run `cat kinetics600_flow_mp4_part_* > kinetics600_flow_mp4.tar.gz` and then `tar -zxvf kinetics600_flow_mp4.tar.gz`).

Unzip all files and the directory structure should be modified to match:

```
Kinetics-600
├── video
|   ├── acting in play
|   |   ├── *.mp4
|   |   ├── *.wav
|   |── ...


├── flow
|   ├── acting in play
|   |   ├── *_flow_x.mp4
|   |   ├── *_flow_y.mp4
|   ├── ...
```

### Dataset Splits
The splits for Multimodal Near-OOD and Far-OOD Benchmarks are provided in https://github.com/donghao51/MultiOOD under `HMDB-rgb-flow/splits/` for HMDB51, UCF101, HAC, and Kinetics-600, and under `EPIC-rgb-flow/splits/` for EPIC-Kitchens.


## Methodology
<div style="text-align:left">
<img src="frame.jpg"  width="70%" height="100%">
</div>

---

An overview of the proposed framework for Multimodal OOD Detection. We introduce A2D algorithm to encourage enlarging the prediction discrepancy across modalities. Additionally, we propose a novel outlier synthesis algorithm, NP-Mix, designed to explore broader feature spaces, which complements A2D to strengthen the OOD detection performance.


## Contact
If you have any questions, please send an email to [email protected]

## Citation

If you find our work useful in your research please consider citing our paper:

```
@article{dong2024multiood,
	author   = {Hao Dong and Yue Zhao and Eleni Chatzi and Olga Fink},
	title    = {{MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities}},
    journal  = {arXiv preprint arXiv:2405.17419},
	year     = {2024},
}
```